19,472
社区成员




BOOL CDIBDisplayView::Harris(LPSTR lpDIBBits,LONG lWidth, LONG lHeight)
{
//gausswidth:二维高斯窗口宽度
//sigma:高斯函数的方差
//size:非极大值抑制的邻域宽度
//thresh:最终确定角点所需的阈值
int i,j,m,n,size,thresh,gausswidth;
double sigma;
int totalcorner = 0; //角点计数
//设置四个参数
gausswidth =5;
sigma =0.8;
size =5;
thresh =5000;
unsigned char *lpSrc;//一个指向源、目的像素的移动指针
int cxDIB = (int) lWidth; // 图像宽度
int cyDIB = (int) lHeight; // 图像高度
long lLineBytes = WIDTHBYTES(cxDIB * 8); // 计算灰度图像每行的字节数
//创建I、Ix、Ix2、Iy、Iy2、Ixy、cim、mx、corner数组
double *I=new double[cxDIB*cyDIB];
double *Ix=new double[cxDIB*cyDIB];
double *Ix2=new double[cxDIB*cyDIB];
double *Iy=new double[cxDIB*cyDIB];
double *Iy2=new double[cxDIB*cyDIB];
double *Ixy=new double[cxDIB*cyDIB];
double *cim=new double[cxDIB*cyDIB];
double *mx=new double[cxDIB*cyDIB];
corner=new bool[cxDIB*cyDIB];
memset(corner, 0, cxDIB*cyDIB*sizeof(bool));
//定义宏以方便访问元素
#define I(ROW,COL) I[cxDIB*(ROW)+(COL)]
#define Ix(ROW,COL) Ix[cxDIB*(ROW)+(COL)]
#define Ix2(ROW,COL) Ix2[cxDIB*(ROW)+(COL)]
#define Iy(ROW,COL) Iy[cxDIB*(ROW)+(COL)]
#define Iy2(ROW,COL) Iy2[cxDIB*(ROW)+(COL)]
#define Ixy(ROW,COL) Ixy[cxDIB*(ROW)+(COL)]
#define cim(ROW,COL) cim[cxDIB*(ROW)+(COL)]
#define mx(ROW,COL) mx[cxDIB*(ROW)+(COL)]
#define corner(ROW,COL) corner[cxDIB*(ROW)+(COL)]
//将图像灰度值复制到I中
for(i = 0; i < cyDIB; i++)
{
for(j = 0; j < cxDIB; j++)
{
lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (cyDIB - 1 - i) + j;
//将256级灰度图像转化为double型
I(i,j)=double(*lpSrc);
}
}
/* 利用差分算子对图像进行滤波*/
//定义水平方向差分算子并求Ix
double dx[9]={-1,0,1,-1,0,1,-1,0,1};
Ix=Template(I,cxDIB,cyDIB,dx,3,3); //Template做卷积运算
//定义垂直方向差分算子并求Iy
double dy[9]={-1,-1,-1,0,0,0,1,1,1};
Iy=Template(I,cxDIB,cyDIB,dy,3,3);
//计算Ix2、Iy2、Ixy
for(i = 0; i < cyDIB; i++)
{
for(j = 0; j < cxDIB; j++)
{ Ix2(i,j)=Ix(i,j)*Ix(i,j);
Iy2(i,j)=Iy(i,j)*Iy(i,j);
Ixy(i,j)=Ix(i,j)*Iy(i,j);
}
}
/* 对Ix2/Iy2/Ixy进行高斯平滑,以去除噪声*/
//本例中使用5×5的高斯模板
//计算模板参数
double *g=new double[gausswidth*gausswidth];
for(i=0;i<gausswidth;i++)
for(j=0;j<gausswidth;j++)
g[i*gausswidth+j]=exp(-((i-int(gausswidth/2))*(i-int(gausswidth/2))+(j-int(gausswidth/2))*(j-int(gausswidth/2)))/(2*sigma));
//进行高斯平滑//Template用于卷积
Ix2=Template(Ix2,cxDIB,cyDIB,g,gausswidth,gausswidth);//A
Iy2=Template(Iy2,cxDIB,cyDIB,g,gausswidth,gausswidth);//B
Ixy=Template(Ixy,cxDIB,cyDIB,g,gausswidth,gausswidth);//C
/*计算角点量*/
//计算cim:即cornerness of image,我们把它称做‘角点量’
for(i = 0; i < cyDIB; i++)
{
for(j = 0; j < cxDIB; j++)
{
//注意:要在分母中加入一个极小量以防止除数为零溢出
cim(i,j) = (Ix2(i,j)*Iy2(i,j) - Ixy(i,j)*Ixy(i,j))/(Ix2(i,j) + Iy2(i,j) + 0.000001);
}
}
//注意到这里是特征值的计算,可是程序给出的公式跟论文不符合啊
/*进行局部非极大值抑制以获得最终角点*/
//注意进行局部极大值抑制的思路
//const double size=7;
double max;
//对每个点在邻域内做极大值滤波:即将该点的值设为邻域中最大的那个值(跟中值滤波有点类似)
for(i = 0; i < cyDIB; i++)
{
for(j = 0; j < cxDIB; j++)
{
max=-1000000;
if(i>int(size/2) && i<cyDIB-int(size/2) && j>int(size/2) && j<cxDIB-int(size/2))
for(m=0;m<size;m++)
{
for(n=0;n<size;n++)
{
if(cim(i+m-int(size/2),j+n-int(size/2))>max)
max=cim(i+m-int(size/2),j+n-int(size/2));
}
}
if(max>0)
mx(i,j)=max;
else
mx(i,j)=0;
}
}
//最终确定角点
//const double thresh=4500;
for(i = 0; i < cyDIB; i++)
{
for(j = 0; j < cxDIB; j++)
{
if(cim(i,j)==mx(i,j)) //首先取得局部极大值
if(mx(i,j)>thresh) //然后大于这个阈值
{ corner(i,j)=1; //满足上两个条件,才是角点!
totalcorner++;
}
}
}
//画点
toal =totalcorner;
OnImgShowcorner() ;
delete corner ;
return true;
}