如何清除cisco router 3604的密码?

chenjbok 2003-10-17 10:14:47
如何清除cisco router 3604的密码?
...全文
43 9 打赏 收藏 转发到动态 举报
写回复
用AI写文章
9 条回复
切换为时间正序
请发表友善的回复…
发表回复
niyh 2003-10-21
  • 打赏
  • 举报
回复
详细了解可下载: http://www.cisco.com/warp/public/474/pswdrec_3600.pdf 文件
niyh 2003-10-21
  • 打赏
  • 举报
回复
to:chenjbok(帧中继) "3600系列都是这样操作的吗?"

不相信吗?! 看看这里!
http://www.cisco.com/en/US/products/hw/routers/ps274/products_password_recovery09186a0080094774.shtml#ex_pass
leekace 2003-10-20
  • 打赏
  • 举报
回复
niyh(倪) 应该算的上是行内人了!
照做吧!
chenjbok 2003-10-20
  • 打赏
  • 举报
回复
哪有什么电池可以扣啊?
pinghell 2003-10-19
  • 打赏
  • 举报
回复
我有cisco全部系列的密码恢复例子,要的给我消息~
luck10 2003-10-19
  • 打赏
  • 举报
回复
把电池扣了
再装上
chenjbok 2003-10-19
  • 打赏
  • 举报
回复
3600系列都是这样操作的吗?
niyh 2003-10-18
  • 打赏
  • 举报
回复
1、开机,按Ctrl+Break,进入Rom monitor

2、>confreg 0x2142

3、>reset

4、进了Setup模式,按Ctrl+C

5、进了用户模式,输入enable

6、进了特权模式,输入copy start run ,恢复原配置

7、输入config ter,进入全局配置模式

8、输入enable secret *** ,定义新特权密码

9、输入config-register 0x2102,恢复寄存器值

10、输入line con 0

11、输入password *** ,定义新控制台密码

12、按Ctrl+Z,到特权模式

13、输入copy run start ,备份新配置

14、输入reload ,重新启动

15、用新密码进入
swwwwwww 2003-10-18
  • 打赏
  • 举报
回复
帮你顶
CISCO 技术大集合 {适合你们的技术} 二、命令状态 1. router> 路由器处于用户命令状态,这时用户可以看路由器的连接状态,访问其它网络和主机,但不能看到和更改路由器的设置内容。 2. router# 在router>提示符下键入enable,路由器进入特权命令状态router#,这时不但可以执行所有的用户命令,还可以看到和更改路由器的设置内容。 3. router(config)# 在router#提示符下键入configure terminal,出现提示符router(config)#,此时路由器处于全局设置状态,这时可以设置路由器的全局参数。 4. router(config-if)#; router(config-line)#; router(config-router)#;… 路由器处于局部设置状态,这时可以设置路由器某个局部的参数。 5. > 路由器处于RXBOOT状态,在开机后60秒内按ctrl-break可进入此状态,这时路由器不能完成正常的功能,只能进行软件升级和手工引导。 6. 设置对话状态 这是一台新路由器开机时自动进入的状态,在特权命令状态使用SETUP命令也可进入此状态,这时可通过对话方式对路由器进行设置。   返回目录 三、设置对话过程 1. 显示提示信息 2. 全局参数的设置 3. 接口参数的设置 4. 显示结果 利用设置对话过程可以避免手工输入命令的烦琐,但它还不能完全代替手工设置,一些特殊的设置还必须通过手工输入的方式完成。 进入设置对话过程后,路由器首先会显示一些提示信息: --- System Configuration Dialog --- At any point you may enter a question mark '?' for help. Use ctrl-c to abort configuration dialog at any prompt. Default settings are in square brackets '[]'. 这是告诉你在设置对话过程中的任何地方都可以键入“?”得到系统的帮助,按ctrl-c可以退出设置过程,缺省设置将显示在‘[]’中。然后路由器会问是否进入设置对话: Would you like to enter the initial configuration dialog? [yes]: 如果按y或回车,路由器就会进入设置对话过程。首先你可以看到各端口当前的状况: First, would you like to see the current interface summary? [yes]: Any interface listed with OK? value "NO" does not have a valid configuration Interface IP-Address OK? Method Status Protocol Ethernet0 unassigned NO unset up up Serial0 unassigned NO unset up up ……… ……… … …… … … 然后,路由器就开始全局参数的设置: Configuring global parameters: 1.设置路由器名: Enter host name [Router]: 2.设置进入特权状态的密文(secret),此密文在设置以后不会以明文方式显示: The enable secret is a one-way cryptographic secret used instead of the enable password when it exists. Enter enable secret: cisco 3.设置进入特权状态的密码(password),此密码只在没有密文时起作用,并且在设置以后会以明文方式显示: The enable password is used when there is no enable secret and when using older software and some boot images. Enter enable password: pass 4.设置虚拟终端访问时的密码: Enter virtual terminal password: cisco 5.询问是否要设置路由器支持的各种网络协议: Configure SNMP Network Management? [yes]: Configure DECnet? [no]: Configure AppleTalk? [no]: Configure IPX? [no]: Configure IP? [yes]: Configure IGRP routing? [yes]: Configure RIP routing? [no]: ……… 6.如果配置的是拨号访问服务器,系统还会设置异步口的参数: Configure Async lines? [yes]: 1) 设置线路的最高速度: Async line speed [9600]: 2) 是否使用硬件流控: Configure for HW flow control? [yes]: 3) 是否设置modem: Configure for modems? [yes/no]: yes 4) 是否使用默认的modem命令: Configure for default chat script? [yes]: 5) 是否设置异步口的PPP参数: Configure for Dial-in IP SLIP/PPP access? [no]: yes 6) 是否使用动态IP地址: Configure for Dynamic IP addresses? [yes]: 7) 是否使用缺省IP地址: Configure Default IP addresses? [no]: yes 8) 是否使用TCP头压缩: Configure for TCP Header Compression? [yes]: 9) 是否在异步口上使用路由表更新: Configure for routing updates on async links? [no]: y 10) 是否设置异步口上的其它协议。 接下来,系统会对每个接口进行参数的设置。 1.Configuring interface Ethernet0: 1) 是否使用此接口: Is this interface in use? [yes]: 2) 是否设置此接口的IP参数: Configure IP on this interface? [yes]: 3) 设置接口的IP地址: IP address for this interface: 192.168.162.2 4) 设置接口的IP子网掩码: Number of bits in subnet field [0]: Class C network is 192.168.162.0, 0 subnet bits; mask is /24 在设置完所有接口的参数后,系统会把整个设置对话过程的结果显示出来: The following configuration command script was created: hostname Router enable secret 5 $1$W5Oh$p6J7tIgRMBOIKVXVG53Uh1 enable password pass ………… 请注意在enable secret后面显示的是乱码,而enable password后面显示的是设置的内容。 显示结束后,系统会问是否使用这个设置: Use this configuration? [yes/no]: yes 如果回答yes,系统就会把设置的结果存入路由器的NVRAM中,然后结束设置对话过程,使路由器开始正常的工作。 返回目录   四、常用命令 1. 帮助 在IOS操作中,无论任何状态和位置,都可以键入“?”得到系统的帮助。 2. 改变命令状态 任务 命令 进入特权命令状态 enable 退出特权命令状态 disable 进入设置对话状态 setup 进入全局设置状态 config terminal 退出全局设置状态 end 进入端口设置状态 interface type slot/number 进入子端口设置状态 interface type number.subinterface [point-to-point | multipoint] 进入线路设置状态 line type slot/number 进入路由设置状态 router protocol 退出局部设置状态 exit 3. 显示命令 任务 命令 查看版本及引导信息 show version 查看运行设置 show running-config 查看开机设置 show startup-config 显示端口信息 show interface type slot/number 显示路由信息 show ip router 4. 拷贝命令 用于IOS及CONFIG的备份和升级 5. 网络命令 任务 命令 登录远程主机 telnet hostname|IP address 网络侦测 ping hostname|IP address 路由跟踪 trace hostname|IP address   6. 基本设置命令 任务 命令 全局设置 config terminal 设置访问用户及密码 username username password password 设置特权密码 enable secret password 设置路由器名 hostname name 设置静态路由 ip route destination subnet-mask next-hop 启动IP路由 ip routing 启动IPX路由 ipx routing 端口设置 interface type slot/number 设置IP地址 ip address address subnet-mask 设置IPX网络 ipx network network 激活端口 no shutdown 物理线路设置 line type number 启动登录进程 login [local|tacacs server] 设置登录密码 password password   五、配置IP寻址   1. IP地址分类 IP地址分为网络地址和主机地址二个部分,A类地址前8位为网络地址,后24位为主机地址,B类地址16位为网络地址,后16位为主机地址,C类地址前24位为网络地址,后8位为主机地址,网络地址范围如下表所示: 种类 网络地址范围 A  1.0.0.0 到126.0.0.0有效 0.0.0.0 和127.0.0.0保留 B 128.1.0.0到191.254.0.0有效 128.0.0.0和191.255.0.0保留 C 192.0.1.0 到223.255.254.0有效 192.0.0.0和223.255.255.0保留 D 224.0.0.0到239.255.255.255用于多点广播 E 240.0.0.0到255.255.255.254保留 255.255.255.255用于广播 2. 分配接口IP地址 任务 命令 接口设置 interface type slot/number 为接口设置IP地址 ip address ip-address mask 掩玛(mask)用于识别IP地址中的网络地址位数,IP地址(ip-address)和掩码(mask)相与即得到网络地址。 3. 使用可变长的子网掩码 通过使用可变长的子网掩码可以让位于不同接口的同一网络编号的网络使用不同的掩码,这样可以节省IP地址,充分利用有效的IP地址空间。 如下图所示: Router1和Router2的E0端口均使用了C类地址192.1.0.0作为网络地址,Router1的E0的网络地址为192.1.0.128,掩码为255.255.255.192, Router2的E0的网络地址为192.1.0.64,掩码为255.255.255.192,这样就将一个C类网络地址分配给了二个网,既划分了二个子网,起到了节约地址的作用。 4. 使用网络地址翻译(NAT) NAT(Network Address Translation)起到将内部私有地址翻译成外部合法的全局地址的功能,它使得不具有合法IP地址的用户可以通过NAT访问到外部Internet. 当建立内部网的时候,建议使用以下地址组用于主机,这些地址是由Network Working Group(RFC 1918)保留用于私有网络地址分配的. l Class A:10.1.1.1 to 10.254.254.254 l Class B:172.16.1.1 to 172.31.254.254 l Class C:192.168.1.1 to 192.168.254.254 命令描述如下: 任务 命令 定义一个标准访问列表 access-list access-list-number permit source [source-wildcard] 定义一个全局地址池 ip nat pool name start-ip end-ip {netmask netmask | prefix-length prefix-length} [type rotary] 建立动态地址翻译 ip nat inside source {list {access-list-number | name} pool name [overload] | static local-ip global-ip} 指定内部和外部端口 ip nat {inside | outside} 如下图所示, 路由器的Ethernet 0端口为inside端口,即此端口连接内部网络,并且此端口所连接的网络应该被翻译,Serial 0端口为outside端口,其拥有合法IP地址(由NIC或服务提供商所分配的合法的IP地址),来自网络10.1.1.0/24的主机将从IP地址池c2501中选择一个地址作为自己的合法地址,经由Serial 0口访问Internet。命令ip nat inside source list 2 pool c2501 overload中的参数overload,将允许多个内部地址使用相同的全局地址(一个合法IP地址,它是由NIC或服务提供商所分配的地址)。命令ip nat pool c2501 202.96.38.1 202.96.38.62 netmask 255.255.255.192定义了全局地址的范围。 设置如下: ip nat pool c2501 202.96.38.1 202.96.38.62 netmask 255.255.255.192 interface Ethernet 0 ip address 10.1.1.1 255.255.255.0 ip nat inside ! interface Serial 0 ip address 202.200.10.5 255.255.255.252 ip nat outside ! ip route 0.0.0.0 0.0.0.0 Serial 0 access-list 2 permit 10.0.0.0 0.0.0.255 ! Dynamic NAT ! ip nat inside source list 2 pool c2501 overload line console 0 exec-timeout 0 0 ! line vty 0 4 end   六、配置静态路由 通过配置静态路由,用户可以人为地指定对某一网络访问时所要经过的路径,在网络结构比较简单,且一般到达某一网络所经过的路径唯一的情况下采用静态路由。 任务 命令 建立静态路由 ip route prefix mask {address | interface} [distance] [tag tag] [permanent] Prefix :所要到达的目的网络 mask :子网掩码 address :下一个跳的IP地址,即相邻路由器的端口地址。 interface :本地网络接口 distance :管理距离(可选) tag tag :tag值(可选) permanent :指定此路由即使该端口关掉也不被移掉。 以下在Router1上设置了访问192.1.0.64/26这个网下一跳地址为192.200.10.6,即当有目的地址属于192.1.0.64/26的网络范围的数据报,应将其路由到地址为192.200.10.6的相邻路由器。在Router3上设置了访问192.1.0.128/26及192.200.10.4/30这二个网下一跳地址为192.1.0.65。由于在Router1上端口Serial 0地址为192.200.10.5,192.200.10.4/30这个网属于直连的网,已经存在访问192.200.10.4/30的路径,所以不需要在Router1上添加静态路由。 Router1: ip route 192.1.0.64 255.255.255.192 192.200.10.6 Router3: ip route 192.1.0.128 255.255.255.192 192.1.0.65 ip route 192.200.10.4 255.255.255.252 192.1.0.65 同时由于路由器Router3除了与路由器Router2相连外,不再与其他路由器相连,所以也可以为它赋予一条默认路由以代替以上的二条静态路由, ip route 0.0.0.0 0.0.0.0 192.1.0.65 即只要没有在路由表里找到去特定目的地址的路径,则数据均被路由到地址为192.1.0.65的相邻路由器。 返回目录   一、HDLC   HDLC是CISCO路由器使用的缺省协议,一台新路由器在未指定封装协议时默认使用HDLC封装。 1. 有关命令 端口设置 任务 命令 设置HDLC封装 encapsulation hdlc 设置DCE端线路速度 clockrate speed 复位一个硬件接口 clear interface serial unit 显示接口状态 show interfaces serial [unit] 1 注:1.以下给出一个显示Cisco同步串口状态的例子. Router#show interface serial 0 Serial 0 is up, line protocol is up Hardware is MCI Serial Internet address is 150.136.190.203, subnet mask is 255.255.255.0 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255 Encapsulation HDLC, loopback not set, keepalive set (10 sec) Last input 0:00:07, output 0:00:00, output hang never Output queue 0/40, 0 drops; input queue 0/75, 0 drops Five minute input rate 0 bits/sec, 0 packets/sec Five minute output rate 0 bits/sec, 0 packets/sec 16263 packets input, 1347238 bytes, 0 no buffer Received 13983 broadcasts, 0 runts, 0 giants 2 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 2 abort 22146 packets output, 2383680 bytes, 0 underruns 0 output errors, 0 collisions, 2 interface resets, 0 restarts 1 carrier transitions 2. 举例     设置如下: Router1: interface Serial0 ip address 192.200.10.1 255.255.255.0 clockrate 1000000 Router2: interface Serial0 ip address 192.200.10.2 255.255.255.0 ! 3. 举例使用E1线路实现多个64K专线连接. 相关命令: 任务 命令 进入controller配置模式 controller {t1 | e1} number 选择帧类型 framing {crc4 | no-crc4} 选择line-code类型 linecode {ami | b8zs | hdb3} 建立逻辑通道组与时隙的映射 channel-group number timeslots range1 显示controllers接口状态 show controllers e1 [slot/port]2 注: 1. 当链路为T1时,channel-group编号为0-23, Timeslot范围1-24; 当链路为E1时, channel-group编号为0-30, Timeslot范围1-31. 2.使用show controllers e1观察controller状态,以下为帧类型为crc4时controllers正常的状态. Router# show controllers e1 e1 0/0 is up. Applique type is Channelized E1 - unbalanced Framing is CRC4, Line Code is HDB3 No alarms detected. Data in current interval (725 seconds elapsed): 0 Line Code Violations, 0 Path Code Violations 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs Total Data (last 24 hours) 0 Line Code Violations, 0 Path Code Violations, 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins, 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs 以下例子为E1连接3条64K专线, 帧类型为NO-CRC4,非平衡链路,路由器具体设置如下: shanxi#wri t Building configuration... Current configuration: ! version 11.2 no service udp-small-servers no service tcp-small-servers ! hostname shanxi ! enable secret 5 $1$XN08$Ttr8nfLoP9.2RgZhcBzkk/ enable password shanxi ! ! ip subnet-zero ! controller E1 0 framing NO-CRC4 channel-group 0 timeslots 1 channel-group 1 timeslots 2 channel-group 2 timeslots 3 ! interface Ethernet0 ip address 133.118.40.1 255.255.0.0 media-type 10BaseT ! interface Ethernet1 no ip address shutdown ! interface Serial0:0 ip address 202.119.96.1 255.255.255.252 no ip mroute-cache ! interface Serial0:1 ip address 202.119.96.5 255.255.255.252 no ip mroute-cache ! interface Serial0:2 ip address 202.119.96.9 255.255.255.252 no ip mroute-cache ! no ip classless ip route 133.210.40.0 255.255.255.0 Serial0:0 ip route 133.210.41.0 255.255.255.0 Serial0:1 ip route 133.210.42.0 255.255.255.0 Serial0:2 ! line con 0 line aux 0 line vty 0 4 password shanxi login ! end 广域网设置:   一、HDLC   HDLC是CISCO路由器使用的缺省协议,一台新路由器在未指定封装协议时默认使用HDLC封装。 1. 有关命令 端口设置 任务 命令 设置HDLC封装 encapsulation hdlc 设置DCE端线路速度 clockrate speed 复位一个硬件接口 clear interface serial unit 显示接口状态 show interfaces serial [unit] 1 注:1.以下给出一个显示Cisco同步串口状态的例子. Router#show interface serial 0 Serial 0 is up, line protocol is up Hardware is MCI Serial Internet address is 150.136.190.203, subnet mask is 255.255.255.0 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255 Encapsulation HDLC, loopback not set, keepalive set (10 sec) Last input 0:00:07, output 0:00:00, output hang never Output queue 0/40, 0 drops; input queue 0/75, 0 drops Five minute input rate 0 bits/sec, 0 packets/sec Five minute output rate 0 bits/sec, 0 packets/sec 16263 packets input, 1347238 bytes, 0 no buffer Received 13983 broadcasts, 0 runts, 0 giants 2 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 2 abort 22146 packets output, 2383680 bytes, 0 underruns 0 output errors, 0 collisions, 2 interface resets, 0 restarts 1 carrier transitions 2. 举例     设置如下: Router1: interface Serial0 ip address 192.200.10.1 255.255.255.0 clockrate 1000000 Router2: interface Serial0 ip address 192.200.10.2 255.255.255.0 ! 3. 举例使用E1线路实现多个64K专线连接. 相关命令: 任务 命令 进入controller配置模式 controller {t1 | e1} number 选择帧类型 framing {crc4 | no-crc4} 选择line-code类型 linecode {ami | b8zs | hdb3} 建立逻辑通道组与时隙的映射 channel-group number timeslots range1 显示controllers接口状态 show controllers e1 [slot/port]2 注: 1. 当链路为T1时,channel-group编号为0-23, Timeslot范围1-24; 当链路为E1时, channel-group编号为0-30, Timeslot范围1-31. 2.使用show controllers e1观察controller状态,以下为帧类型为crc4时controllers正常的状态. Router# show controllers e1 e1 0/0 is up. Applique type is Channelized E1 - unbalanced Framing is CRC4, Line Code is HDB3 No alarms detected. Data in current interval (725 seconds elapsed): 0 Line Code Violations, 0 Path Code Violations 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs Total Data (last 24 hours) 0 Line Code Violations, 0 Path Code Violations, 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins, 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs 以下例子为E1连接3条64K专线, 帧类型为NO-CRC4,非平衡链路,路由器具体设置如下: shanxi#wri t Building configuration... Current configuration: ! version 11.2 no service udp-small-servers no service tcp-small-servers ! hostname shanxi ! enable secret 5 $1$XN08$Ttr8nfLoP9.2RgZhcBzkk/ enable password shanxi ! ! ip subnet-zero ! controller E1 0 framing NO-CRC4 channel-group 0 timeslots 1 channel-group 1 timeslots 2 channel-group 2 timeslots 3 ! interface Ethernet0 ip address 133.118.40.1 255.255.0.0 media-type 10BaseT ! interface Ethernet1 no ip address shutdown ! interface Serial0:0 ip address 202.119.96.1 255.255.255.252 no ip mroute-cache ! interface Serial0:1 ip address 202.119.96.5 255.255.255.252 no ip mroute-cache ! interface Serial0:2 ip address 202.119.96.9 255.255.255.252 no ip mroute-cache ! no ip classless ip route 133.210.40.0 255.255.255.0 Serial0:0 ip route 133.210.41.0 255.255.255.0 Serial0:1 ip route 133.210.42.0 255.255.255.0 Serial0:2 ! line con 0 line aux 0 line vty 0 4 password shanxi login ! end 返回目录   二、PPP   PPP(Point-to-Point Protocol)是SLIP(Serial Line IP protocol)的继承者,它提供了跨过同步和异步电路实现路由器到路由器(router-to-router)和主机到网络(host-to-network)的连接。 CHAP(Challenge Handshake Authentication Protocol)和PAP(Password Authentication Protocol) (PAP)通常被用于在PPP封装的串行线路上提供安全性认证。使用CHAP和PAP认证,每个路由器通过名字来识别,可以防止未经授权的访问。 CHAP和PAP在RFC 1334上有详细的说明。 1. 有关命令 端口设置 任务 命令 设置PPP封装 encapsulation ppp1 设置认证方法 ppp authentication {chap | chap pap | pap chap | pap} [if-needed][list-name | default] [callin] 指定口令 username name password secret 设置DCE端线路速度 clockrate speed 注:1、要使用CHAP/PAP必须使用PPP封装。在与非Cisco路由器连接时,一般采用PPP封装,其它厂家路由器一般不支持Cisco的HDLC封装协议。 2. 举例 路由器Router1和Router2的S0口均封装PPP协议,采用CHAP做认证,在Router1中应建立一个用户,以对端路由器主机名作为用户名,即用户名应为router2。同时在Router2中应建立一个用户,以对端路由器主机名作为用户名,即用户名应为router1。所建的这两用户的password必须相同。 设置如下: Router1: hostname router1 username router2 password xxx interface Serial0 ip address 192.200.10.1 255.255.255.0 clockrate 1000000 ppp authentication chap ! Router2: hostname router2 username router1 password xxx interface Serial0 ip address 192.200.10.2 255.255.255.0 ppp authentication chap !   返回目录   三、x.25 1. X25技术 X.25规范对应OSI三层,X.25的第三层描述了分组的格式及分组交换的过程。X.25的第二层由LAPB(Link Access Procedure, Balanced)实现,它定义了用于DTE/DCE连接的帧格式。X.25的第一层定义了电气和物理端口特性。 X.25网络设备分为数据终端设备(DTE)、数据电路终端设备(DCE)及分组交换设备(PSE)。DTE是X.25的末端系统,如终端、计算机或网络主机,一般位于用户端,Cisco路由器就是DTE设备。DCE设备是专用通信设备,如调制解调器和分组交换机。PSE是公共网络的主干交换机。 X.25定义了数据通讯的电话网络,每个分配给用户的x.25 端口都具有一个x.121地址,当用户申请到的是SVC(交换虚电路)时,x.25一端的用户在访问另一端的用户时,首先将呼叫对方x.121地址,然后接收到呼叫的一端可以接受或拒绝,如果接受请求,于是连接建立实现数据传输,当没有数据传输时挂断连接,整个呼叫过程就类似我们拨打普通电话一样,其不同的是x.25可以实现一点对多点的连接。其中x.121地址、htc均必须与x.25服务提供商分配的参数相同。X.25 PVC(永久虚电路),没有呼叫的过程,类似DDN专线。 2. 有关命令: 任务 命令 设置X.25封装 encapsulation x25 [dce] 设置X.121地址 x25 address x.121-address 设置远方站点的地址映射 x25 map protocol address [protocol2 address2[...[protocol9 address9]]] x121-address [option] 设置最大的双向虚电路数 x25 htc citcuit-number1 设置一次连接可同时建立的虚电路数 x25 nvc count2 设置x25在清除空闲虚电路前的等待周期 x25 idle minutes 重新启动x25,或清一个svc,启动一个pvc相关参数 clear x25 {serial number | cmns-interface mac-address} [vc-number] 3 清x25虚电路 clear x25-vc 显示接口及x25相关信息 show interfaces serial show x25 interface show x25 map show x25 vc 注:1、虚电路号从1到4095,Cisco路由器默认为1024,国内一般分配为16。 2、虚电路计数从1到8,缺省为1。 3、在改变了x.25各层的相关参数后,应重新启动x25(使用clear x25 {serial number | cmns-interface mac-address} [vc-number]或clear x25-vc命令),否则新设置的参数可能不能生效。同时应对照服务提供商对于x.25交换机端口的设置来配置路由器的相关参数,若出现参数不匹配则可能会导致连接失败或其它意外情况。 3. 实例: 3.1. 在以下实例中每二个路由器间均通过svc实现连接。 路由器设置如下: Router1: interface Serial0 encapsulation x25 ip address 192.200.10.1 255.255.255.0 x25 address 110101 x25 htc 16 x25 nvc 2 x25 map ip 192.200.10.2 110102 broadcast x25 map ip 192.200.10.3 110103 broadcast ! Router2: interface Serial0 encapsulation x25 ip address 192.200.10.2 255.255.255.0 x25 address 110102 x25 htc 16 x25 nvc 2 x25 map ip 192.200.10.1 110101 broadcast x25 map ip 192.200.10.3 110103 broadcast ! Router: interface Serial0 encapsulation x25 ip address 192.200.10.3 255.255.255.0 x25 address 110103 x25 htc 16 x25 nvc 2 x25 map ip 192.200.10.1 110101 broadcast x25 map ip 192.200.10.2 110102 broadcast ! 相关调试命令: clear x25-vc show interfaces serial show x25 map show x25 route show x25 vc 3.2. 在以下实例中路由器router1和router2均通过svc与router连接,但router1和router2不通过svc直接连接,此三个路由器的串口运行RIP路由协议,使用了子接口的概念。由于使用子接口,router1和router2均学习到了访问对方局域网的路径,若不使用子接口,router1和router2将学不到到对方局域网的路由。 子接口(Subinterface)是一个物理接口上的多个虚接口,可以用于在同一个物理接口上连接多个网。我们知道为了避免路由循环,路由器支持split horizon法则,它只允许路由更新被分配到路由器的其它接口,而不会再分配路由更新回到此路由被接收的接口。 无论如何,在广域网环境使用基于连接的接口(象 X.25和Frame Relay),同一接口通过虚电路(vc)连接多台远端路由器时,从同一接口来的路由更新信息不可以再被发回到相同的接口,除非强制使用分开的物理接口连接不同的路由器。Cisco提供子接口(subinterface)作为分开的接口对待。你可以将路由器逻辑地连接到相同物理接口的不同子接口, 这样来自不同子接口的路由更新就可以被分配到其他子接口,同时又满足split horizon法则。 Router1: interface Serial0 encapsulation x25 ip address 192.200.10.1 255.255.255.0 x25 address 110101 x25 htc 16 x25 nvc 2 x25 map ip 192.200.10.3 110103 broadcast ! router rip network 192.200.10.0 ! Router2: interface Serial0 encapsulation x25 ip address 192.200.11.2 255.255.255.0 x25 address 110102 x25 htc 16 x25 nvc 2 x25 map ip 192.200.11.3 110103 broadcast ! router rip network 192.200.11.0 ! Router: interface Serial0 encapsulation x25 x25 address 110103 x25 htc 16 x25 nvc 2 ! interface Serial0.1 point-to-point ip address 192.200.10.3 255.255.255.0 x25 map ip 192.200.10.1 110101 broadcast ! interface Serial0.2 point-to-point ip address 192.200.11.3 255.255.255.0 x25 map ip 192.200.11.2 110102 broadcast ! router rip network 192.200.10.0 network 192.200.11.0 ! 返回目录   帧中继是一种高性能的WAN协议,它运行在OSI参考模型的物理层和数据链路层。它是一种数据包交换技术,是X.25的简化版本。它省略了X.25的一些强健功能,如提供窗口技术和数据重发技术,而是依靠高层协议提供纠错功能,这是因为帧中继工作在更好的WAN设备上,这些设备较之X.25的WAN设备具有更可靠的连接服务和更高的可靠性,它严格地对应于OSI参考模型的最低二层,而X.25还提供第三层的服务,所以,帧中继比X.25具有更高的性能和更有效的传输效率。 帧中继广域网的设备分为数据终端设备(DTE)和数据电路终端设备(DCE),Cisco路由器作为 DTE设备。 帧中继技术提供面向连接的数据链路层的通信,在每对设备之间都存在一条定义好的通信链路,且该链路有一个链路识别码。这种服务通过帧中继虚电路实现,每个帧中继虚电路都以数据链路识别码(DLCI)标识自己。DLCI的值一般由帧中继服务提供商指定。帧中继即支持PVC也支持SVC。 帧中继本地管理接口(LMI)是对基本的帧中继标准的扩展。它是路由器和帧中继交换机之间信令标准,提供帧中继管理机制。它提供了许多管理复杂互联网络的特性,其中包括全局寻址、虚电路状态消息和多目发送等功能。 2. 有关命令: 端口设置 任务 命令 设置Frame Relay封装 encapsulation frame-relay[ietf] 1 设置Frame Relay LMI类型 frame-relay lmi-type {ansi | cisco | q933a}2 设置子接口 interface interface-type interface-number.subinterface-number [multipoint|point-to-point] 映射协议地址与DLCI frame-relay map protocol protocol-address dlci [broadcast]3 设置FR DLCI编号 frame-relay interface-dlci dlci [broadcast] 注:1.若使Cisco路由器与其它厂家路由设备相连,则使用Internet工程任务组(IETF)规定的帧中继封装格式。 2.从Cisco IOS版本11.2开始,软件支持本地管理接口(LMI)“自动感觉”, “自动感觉”使接口能确定交换机支持的LMI类型,用户可以不明确配置LMI接口类型。 3.broadcast选项允许在帧中继网络上传输路由广播信息。 3. 帧中继point to point配置实例: Router1: interface serial 0 encapsulation frame-relay ! interface serial 0.1 point-to-point ip address 172.16.1.1 255.255.255.0 frame-reply interface-dlci 105 ! interface serial 0.2 point-to-point ip address 172.16.2.1 255.255.255.0 frame-reply interface-dlci 102 ! interface serial 0.3 point-to-point ip address 172.16.4.1 255.255.255.0 frame-reply interface-dlci 104 ! Router2: interface serial 0 encapsulation frame-relay ! interface serial 0.1 point-to-point ip address 172.16.2.2 255.255.255.0 frame-reply interface-dlci 201 ! interface serial 0.2 point-to-point ip address 172.16.3.1 255.255.255.0 frame-reply interface-dlci 203 ! 相关调试命令: show frame-relay lmi show frame-relay map show frame-relay pvc show frame-relay route show interfaces serial go top 4. 帧中继 Multipoint 配置实例: Router1: interface serial 0 encapsulation frame-reply ! interface serial 0.1 multipoint ip address 172.16.1.2 255.255.255.0 frame-reply map ip 172.16.1.1 201 broadcast frame-reply map ip 172.16.1.3 301 broadcast frame-reply map ip 172.16.1.4 401 broadcast ! Router2: interface serial 0 encapsulation frame-reply ! interface serial 0.1 multipoint ip address 172.16.1.1 255.255.255.0 frame-reply map ip 172.16.1.2 102 broadcast frame-reply map ip 172.16.1.3 102 broadcast frame-reply map ip 172.16.1.4 102 broadcast ! 五、ISDN   1. 综合数字业务网(ISDN) 综合数字业务网(ISDN)由数字电话和数据传输服务两部分组成,一般由电话局提供这种服务。ISDN的基本速率接口(BRI)服务提供2个B信道和1个D信道(2B+D)。BRI的B信道速率为64Kbps,用于传输用户数据。D信道的速率为16Kbps,主要传输控制信号。在北美和日本,ISDN的主速率接口(PRI)提供23个B信道和1个D信道,总速率可达1.544Mbps,其中D信道速率为64Kbps。而在欧洲、澳大利亚等国家,ISDN的PRI提供30个B信道和1个64Kbps D信道,总速率可达2.048Mbps。我国电话局所提供ISDN PRI为30B+D。 2. 基本命令 任务 命令 设置ISDN交换类型 isdn switch-type switch-type1 接口设置 interface bri 0 设置PPP封装 encapsulation ppp 设置协议地址与电话号码的映射 dialer map protocol next-hop-address [name hostname] [broadcast] [dial-string] 启动PPP多连接 ppp multilink 设置启动另一个B通道的阈值 dialer load-threshold load 显示ISDN有关信息 show isdn {active | history | memory | services | status [dsl | interface-type number] | timers} 注:1.交换机类型如下表,国内交换机一般为basic-net3。 按区域分关键字 交换机类型 Australia basic-ts013 Australian TS013 switches Europe basic-1tr6 German 1TR6 ISDN switches basic-nwnet3 Norway NET3 switches (phase 1) basic-net3 NET3 ISDN switches (UK, Denmark, and other nations); covers the Euro-ISDN E-DSS1 signalling system primary-net5 NET5 switches (UK and Europe) vn2 French VN2 ISDN switches vn3 French VN3 ISDN switches Japan ntt Japanese NTT ISDN switches primary-ntt Japanese ISDN PRI switches North America basic-5ess AT&T basic rate switches basic-dms100 NT DMS-100 basic rate switches basic-ni1 National ISDN-1 switches primary-4ess AT&T 4ESS switch type for the U.S. (ISDN PRI only) primary-5ess AT&T 5ESS switch type for the U.S. (ISDN PRI only) primary-dms100 NT DMS-100 switch type for the U.S. (ISDN PRI only) New Zealand basic-nznet3 New Zealand Net3 switches 3. ISDN实现DDR(dial-on-demand routing)实例: 设置如下: Router1: hostname router1 user router2 password cisco ! isdn switch-type basic-net3 ! interface bri 0 ip address 192.200.10.1 255.255.255.0 encapsulation ppp dialer map ip 192.200.10.2 name router2 572 dialer load-threshold 80 ppp multilink dialer-group 1 ppp authentication chap ! dialer-list 1 protocol ip permit ! Router2: hostname router2 user router1 password cisco ! isdn switch-type basic-net3 ! interface bri 0 ip address 192.200.10.2 255.255.255.0 encapsulation ppp dialer map ip 192.200.10.1 name router1 571 dialer load-threshold 80 ppp multilink dialer-group 1 ppp authentication chap ! dialer-list 1 protocol ip permit ! Cisco路由器同时支持回拨功能,我们将路由器Router1作为Callback Server,Router2作为Callback Client。 与回拨相关命令: 任务 命令 映射协议地址和电话号码,并在接口上使用在全局模式下定义的PPP回拨的映射类别。 dialer map protocol address name hostname class classname dial-string 设置接口支持PPP回拨 ppp callback accept 在全局模式下为PPP回拨设置映射类别 map-class dialer classname 通过查找注册在dialer map里的主机名来决定回拨. dialer callback-server [username] 设置接口要求PPP回拨 ppp callback request 设置如下: Router1: hostname router1 user router2 password cisco ! isdn switch-type basic-net3 ! interface bri 0 ip address 192.200.10.1 255.255.255.0 encapsulation ppp dialer map ip 192.200.10.2 name router2 class s3 572 dialer load-threshold 80 ppp callback accept ppp multilink dialer-group 1 ppp authentication chap ! map-class dialer s3 dialer callback-server username dialer-list 1 protocol ip permit ! Router2: hostname router2 user router1 password cisco ! isdn switch-type basic-net3 ! interface bri 0 ip address 192.200.10.2 255.255.255.0 encapsulation ppp dialer map ip 192.200.10.1 name router1 571 dialer load-threshold 80 ppp callback request ppp multilink dialer-group 1 ppp authentication chap ! dialer-list 1 protocol ip permit ! 相关调试命令: debug dialer debug isdn event debug isdn q921 debug isdn q931 debug ppp authentication debug ppp error debug ppp negotiation debug ppp packet show dialer show isdn status 举例:执行debug dialer命令观察router2呼叫router1,router1回拨router2的过程. router1#debug dialer router2#ping 192.200.10.1 router1# 00:03:50: %LINK-3-UPDOWN: Interface BRI0:1, changed state to up 00:03:50: BRI0:1:PPP callback Callback server starting to router2 572 00:03:50: BRI0:1: disconnecting call 00:03:50: %LINK-3-UPDOWN: Interface BRI0:1, changed state to down 00:03:50: BRI0:1: disconnecting call 00:03:50: BRI0:1: disconnecting call 00:03:51: %LINK-3-UPDOWN: Interface BRI0:2, changed state to up 00:03:52: callback to router2 already started 00:03:52: BRI0:2: disconnecting call 00:03:52: %LINK-3-UPDOWN: Interface BRI0:2, changed state to down 00:03:52: BRI0:2: disconnecting call 00:03:52: BRI0:2: disconnecting call 00:04:05: : Callback timer expired 00:04:05: BRI0:beginning callback to router2 572 00:04:05: BRI0: Attempting to dial 572 00:04:05: Freeing callback to router2 572 00:04:05: %LINK-3-UPDOWN: Interface BRI0:1, changed state to up 00:04:05: BRI0:1: No callback negotiated 00:04:05: %LINK-3-UPDOWN: Interface Virtual-Access1, changed state to up 00:04:05: dialer Protocol up for Vi1 00:04:06: %LINEPROTO-5-UPDOWN: Line protocol on Interface BRI0:1, changed state to up 00:04:06: %LINEPROTO-5-UPDOWN: Line protocol on Interface Virtual-Access1, chang ed state to up 00:04:11: %ISDN-6-CONNECT: Interface BRI0:1 is now connected to 572 #router1 4. ISDN访问首都在线263网实例: 本地局部网地址为10.0.0.0/24,属于保留地址,通过NAT地址翻译功能,局域网用户可以通过ISDN上263网访问Internet。263的ISDN电话号码为2633,用户为263,口令为263,所涉及的命令如下表: 任务 命令 指定接口通过PPP/IPCP地址协商获得IP地址 ip address negotiated 指定内部和外部端口 ip nat {inside | outside} 使用ppp/pap作认证 ppp authentication pap callin 指定接口属于拨号组1 dialer-group 1 定义拨号组1允许所有IP协议 dialer-list 1 protocol ip permit 设定拨号,号码为2633 dialer string 2633 设定登录263的用户名和口令 ppp pap sent-username 263 password 263 设定默认路由 ip route 0.0.0.0 0.0.0.0 bri 0 设定符合访问列表2的所有源地址被翻译为bri 0所拥有的地址 ip nat inside source list 2 interface bri 0 overload 设定访问列表2,允许所有协议 access-list 2 permit any 具体配置如下: hostname Cisco2503 ! isdn switch-type basic-net3 ! ip subnet-zero no ip domain-lookup ip routing ! interface Ethernet 0 ip address 10.0.0.1 255.255.255.0 ip nat inside no shutdown ! interface Serial 0 shutdown no description no ip address ! interface Serial 1 shutdown no description no ip address ! interface bri 0 ip address negotiated ip nat outside encapsulation ppp ppp authentication pap callin ppp multilink dialer-group 1 dialer hold-queue 10 dialer string 2633 dialer idle-timeout 120 ppp pap sent-username 263 password 263 no cdp enable no ip split-horizon no shutdown ! ip classless ! ! Static Routes ! ip route 0.0.0.0 0.0.0.0 bri 0 ! ! Access Control List 2 ! access-list 2 permit any ! dialer-list 1 protocol ip permit ! ! Dynamic NAT ! ip nat inside source list 2 interface bri 0 overload snmp-server community public ro ! line console 0 exec-timeout 0 0 ! line vty 0 4 ! end 5. Cisco765M通过ISDN拨号上263 由于Cisco765的设置命令与我们常用的Cisco路由器的命令不同,所以以下列举了通过Cisco765上263访问Internet的具体命令行设置步骤。 >set system c765 c765> set multidestination on c765> set switch net3 c765> set ppp multilink on c765> cd lan c765:LAN> set ip routing on c765:LAN> set ip address 10.0.0.1 c765:LAN> set ip netmask 255.0.0.0 c765:LAN> set briding off c765:LAN>cd c765> set user remotenet New user remotenet being created c765:remotenet> set ip routing on c765:remotenet> set bridging off c765:remotenet> set ip framing none c765:remotenet> set ppp clientname 263 c765:remotenet> set ppp password client Enter new Password: 263 Re-Type new Password: 263 c765:remotenet> set ppp authentication out none c765:remotenet> set ip address 0.0.0.0 c765:remotenet> set ip netmask 0.0.0.0 c765:remotenet> set ppp address negotiation local on c765:remotenet> set ip pat on c765:remotenet> set ip route destination 0.0.0.0/0 gateway 0.0.0.0 c765:remotenet> set number 2633 c765:remotenet> set active 命令描述如下: 任务 命令 设置路由器系统名称 set system c765 允许路由器呼叫多个目的地 set multidestination on 设置ISDN交换机类型为NET3 set switch net3 允许点到点间多条通道连接实现负载均衡 set ppp multilink on 关掉桥接 set briding off 建立用户预制文件用于设置拨号连接参数- 可以设置多个用户预制文件用于相同的物理端口对应于不同的连接。 set user remotenet 使用PPP/IPCP set ip framing none 设置上网用户帐号 set ppp clientname 263 设置上网口令 set ppp password client Enter new Password: 263 Re-Type new Password: 263 不用PPP/CHAP或PAP做认证 set ppp authentication out none 允许地址磋商 set ppp address negotiation local on 设置地址翻译 set ip pat on 设置默认路由 set ip route destination 0.0.0.0/0 gateway 0.0.0.0 设置ISP的电话号码 set number 2633 激活用户预制文件 set active   返回目录   六、PSTN   电话网络(PSTN)是目前普及程度最高、成本最低的公用通讯网络,它在网络互连中也有广泛的应用。电话网络的应用一般可分为两种类型,一种是同等级别机构之间以按需拨号(DDR)的方式实现互连,一种是ISP为拨号上网为用户提供的远程访问服务的功能。 1. 远程访问 1.1.Access Server基本设置: 选用Cisco2511作为访问服务器,采用IP地址池动态分配地址.远程工作站使用WIN95拨号网络实现连接。 全局设置: 任务 命令 设置用户名和密码 username username password password 设置用户的IP地址池 ip local pool {default | pool-name low-ip-address [high-ip-address]} 指定地址池的工作方式 ip address-pool [dhcp-proxy-client | local] 基本接口设置命令: 任务 命令 设置封装形式为PPP encapsulation ppp 启动异步口的路由功能 async default routing 设置异步口的PPP工作方式 async mode {dedicated | interactive} 设置用户的IP地址 peer default ip address {ip-address | dhcp | pool [pool-name]} 设置IP地址与Ethernet0相同 ip unnumbered ethernet0 line拨号线设置: 任务 命令 设置modem的工作方式 modem {inout|dialin} 自动配置modem类型 modem autoconfig discovery 设置拨号线的通讯速率 speed speed 设置通讯线路的流控方式 flowcontrol {none | software [lock] [in | out] | hardware [in | out]} 连通后自动执行命令 autocommand command 访问服务器设置如下: Router: hostname Router enable secret 5 $1$EFqU$tYLJLrynNUKzE4bx6fmH// ! interface Ethernet0 ip address 10.111.4.20 255.255.255.0 ! interface Async1 ip unnumbered Ethernet0 encapsulation ppp keepalive 10 async mode interactive peer default ip address pool Cisco2511-Group-142 ! ip local pool Cisco2511-Group-142 10.111.4.21 10.111.4.36 ! line con 0 exec-timeout 0 0 password cisco ! line 1 16 modem InOut modem autoconfigure discovery flowcontrol hardware ! line aux 0 transport input all line vty 0 4 password cisco ! end 相关调试命令: show interface show line 1.2. Access Server通过Tacacs服务器实现安全认证: 使用一台WINDOWS NT服务器作为Tacacs服务器,地址为10.111.4.2,运行Cisco2511随机带的Easy ACS 1.0软件实现用户认证功能. 相关设置: 任务 命令 激活AAA访问控制 aaa new-model 用户登录时默认起用Tacacs+做AAA认证 aaa authentication login default tacacs+ 列表名为no_tacacs使用ENABLE口令做认证 aaa authentication login no_tacacs enable 在运行PPP的串行线上采用Tacacs+做认证 aaa authentication ppp default tacacs+ 由TACACS+服务器授权运行EXEC aaa authorization exec tacacs+ 由TACACS+服务器授权与网络相关的服务请求。 aaa authorization network tacacs+ 为EXEC会话运行记帐.进程开始和结束时发通告给TACACS+服务器。 aaa accounting exec start-stop tacacs+ 为与网络相关的服务需求运行记帐包括SLIP,PPP,PPP NCPs,ARAP等.在进程开始和结束时发通告给TACACS+服务器。 aaa accounting network start-stop tacacs+ 指定Tacacs服务器地址 tacacs-server host 10.111.4.2 在Tacacs+服务器和访问服务器设定共享的关键字,访问服务器和Tacacs+服务器使用这个关键字去加密口令和响应信息。这里使用tac作为关键字。 tacacs-server key tac 访问服务器设置如下: hostname router ! aaa new-model aaa authentication login default tacacs+ aaa authentication login no_tacacs enable aaa authentication ppp default tacacs+ aaa authorization exec tacacs+ aaa authorization network tacacs+ aaa accounting exec start-stop tacacs+ aaa accounting network start-stop tacacs+ enable secret 5 $1$kN4g$CvS4d2.rJzWntCnn/0hvE0 ! interface Ethernet0 ip address 10.111.4.20 255.255.255.0 ! interface Serial0 no ip address shutdown interface Serial1 no ip address shutdown ! interface Group-Async1 ip unnumbered Ethernet0 encapsulation ppp async mode interactive peer default ip address pool Cisco2511-Group-142 no cdp enable group-range 1 16 ! ip local pool Cisco2511-Group-142 10.111.4.21 10.111.4.36 tacacs-server host 10.111.4.2 tacacs-server key tac ! line con 0 exec-timeout 0 0 password cisco login authentication no_tacacs line 1 16 login authentication tacacs modem InOut modem autoconfigure type usr_courier autocommand ppp transport input all stopbits 1 rxspeed 115200 txspeed 115200 flowcontrol hardware line aux 0 transport input all line vty 0 4 password cisco ! end 2. DDR(dial-on-demand routing)实例 此例通过Cisco 2500系列路由器的aux端口实现异步拨号DDR连接。Router1拨号连接到Router2。其中采用PPP/CHAP做安全认证,在Router1中应建立一个用户,以对端路由器主机名作为用户名,即用户名应为Router2。同时在Router2中应建立一个用户,以对端路由器主机名作为用户名,即用户名应为Router1。所建的这两用户的password必须相同。 相关命令如下: 任务 命令 设置路由器与modem的接口指令 chat-script script-name EXPECT SEND EXPECT SEND (etc.) 设置端口在挂断前的等待时间 dialer idle-timeout seconds 设置协议地址与电话号码的映射 dialer map protocol next-hop-address [name hostname] [broadcast] [modem-script modem-regexp] [system-script system-regexp] [dial-string] 设置电话号码 dialer string dial-string 指定在特定线路下路由器默认 使用的chat-script script {dialer|reset} script-name Router1: hostname Router1 ! enable secret 5 $1$QKI7$wXjpFqC74vDAyKBUMallw/ ! username Router2 password cisco chat-script cisco-default "" "AT" TIMEOUT 30 OK "ATDT \T" TIMEOUT 30 CONNECT \c ! interface Ethernet0 ip address 10.0.0.1 255.255.255.0 ! interface Async1 ip address 192.200.10.1 255.255.255.0 encapsulation ppp async default routing async mode dedicated dialer in-band dialer idle-timeout 60 dialer map ip 192.200.10.2 name Router2 modem-script cisco-default 573 dialer-group 1 ppp authentication chap ! ip route 10.0.1.0 255.255.255.0 192.200.10.2 dialer-list 1 protocol ip permit ! line con 0 line aux 0 modem InOut modem autoconfigure discovery flowcontrol hardware Router2: hostname Router2 ! enable secret 5 $1$F6EV$5U8puzNt2/o9g.t56PXHo. ! username Router1 password cisco ! interface Ethernet0 ip address 10.0.1.1 255.255.255.0 ! interface Async1 ip address 192.200.10.2 255.255.255.0 encapsulation ppp async default routing async mode dedicated dialer in-band dialer idle-timeout 60 dialer map ip 192.200.10.1 name Router1 dialer-group 1 ppp authentication chap ! ip route 10.0.0.0 255.255.255.0 192.200.10.1 dialer-list 1 protocol ip permit ! line con 0 line aux 0 modem InOut modem autoconfigure discovery flowcontrol hardware ! 相关调试命令: debug dialer debug ppp authentication debug ppp error debug ppp negotiation debug ppp packet show dialer 3. 异步拨号备份DDN专线: 此例主连接采用DDN专线,备份线路为电话拨号。当DDN专线连接正常时,主端口S0状态为up,line protocol亦为up,则备份线路状态为standby,line protocol为down,此时所有通信均通过主接口进行。当主接口连接发生故障时,端口状态为down,则激活备份接口,完成数据通信。此方法不适合为X.25做备份。因为,配置封装为X.25的接口只要和X.25交换机之间的连接正常其接口及line protocol的状态亦为 up,它并不考虑其它地方需与之通信的路由器的状态如何,所以若本地路由器状态正常,而对方路由器连接即使发生故障,本地也不会激活备份线路。例4将会描述如何为X.25做拨号备份。 以下是相关命令: 任务 命令 指定主线路改变后,次线路状态发生改变的延迟时间 backup delay {enable-delay | never} {disable-delay | never} 指定一个接口作为备份接口 backup interface type number hostname c2522rb ! enable secret 5 $1$J5vn$ceYDe2FwPhrZi6qsIIz6g0 enable password cisco ! username c4700 password 0 cisco ip subnet-zero chat-script cisco-default "" "AT" TIMEOUT 30 OK "ATDT \T" TIMEOUT 30 CONNECT \c chat-script reset atz ! interface Ethernet0 ip address 16.122.51.254 255.255.255.0 no ip mroute-cache ! interface Serial0 backup delay 10 10 backup interface Serial2 ip address 16.250.123.18 255.255.255.252 no ip mroute-cache no fair-queue ! interface Serial1 no ip address no ip mroute-cache shutdown ! interface Serial2 physical-layer async ip address 16.249.123.18 255.255.255.252 encapsulation ppp async mode dedicated dialer in-band dialer idle-timeout 60 dialer map ip 16.249.123.17 name c4700 6825179 dialer-group 1 ppp authentication chap ! interface Serial3 no ip address shutdown no cdp enable ! interface Serial4 no ip address shutdown no cdp enable ! interface Serial5 no ip address no ip mroute-cache shutdown ! interface Serial6 no ip address no ip mroute-cache shutdown ! interface Serial7 no ip address no ip mroute-cache shutdown ! interface Serial8 no ip address no ip mroute-cache shutdown ! interface Serial9 no ip address no ip mroute-cache shutdown ! interface BRI0 no ip address no ip mroute-cache shutdown ! router eigrp 200 network 16.0.0.0 ! ip classless ! dialer-list 1 protocol ip permit ! line con 0 line 2 script dialer cisco-default script reset reset modem InOut modem autoconfigure discovery rxspeed 38400 txspeed 38400 flowcontrol hardware line aux 0 line vty 0 4 password cisco login ! end c2522rb# 4. 异步拨号备份X.25: 设置X.25的拨号备份,首先X.25连接的端口必须运行动态路由协议,异步拨号口必须使用静态路由.本例选择EIGRP作为路由选择协议,将静态路由的Metric的值设置为200,由于EIGRP的默认Metric为90,所以当同时有两条路径通往同一网段时,其中Metric值小的路径生效,而当X.25连接出现问题时,路由器无法通过路由协议学习到路由表,则此时静态路由生效,访问通过拨号端口实现。当X.25连接恢复正常时,路由器又可以学习到路由表,则由于 Metric值的不同,静态路由自动被动态路由所代替,这样就实现了备份的功能。 路由器Router1配置如下: hostname router1 ! enable secret 5 $1$UTvD$99YiY2XsRMxHudcYeHn.Y. enable password cisco ! username router2 password cisco ip subnet-zero chat-script cisco-default "" "AT" TIMEOUT 30 OK "ATDT \T" TIMEOUT 30 CONNECT \c chat-script reset atz interface Ethernet0 ip address 202.96.38.100 255.255.255.0 ! interface Serial0 ip address 202.96.0.1 255.255.255.0 encapsulation x25 x25 address 10112227 x25 htc 16 x25 map ip 202.96.0.2 10112225 broadcast ! interface Serial1 no ip address shutdown ! ! interface Async 1 ip address 202.96.1.1 255.255.255.252 encapsulation ppp dialer in-band dialer idle-timeout 60 dialer map ip 202.96.1.2 name router2 modem-script cisco-default 2113470 dialer-group 1 ppp authentication chap ! router eigrp 200 redistribute connected network 202.96.0.0 ! ip route 202.96.37.0 255.255.255.0 202.96.1.2 200 dialer-list 1 protocol ip permit line con 0 line aux 0 script dialer cisco-default script reset reset modem InOut modem autoconfigure discovery transport input all rxspeed 38400 txspeed 38400 flowcontrol hardware line vty 0 4 password cisco login ! end 路由器Router2配置如下: hostname router2 ! enable secret 5 $1$T4IU$2cIqak8f/E4Ug6dLT0k.J0 enable password cisco ! username router1 password cisco ip subnet-zero chat-script cisco-default "" "AT" TIMEOUT 30 OK "ATDT \T" TIMEOUT 30 CONNECT \c chat-script reset atz ! interface Ethernet0 ip address 202.96.37.100 255.255.255.0 ! interface Serial0 ip address 202.96.0.2 255.255.255.0 no ip mroute-cache encapsulation x25 x25 address 10112225 x25 htc 16 x25 map ip 202.96.0.1 10112227 broadcast ! interface Serial1 no ip address shutdown ! interface Async1 ip address 202.96.1.2 255.255.255.252 encapsulation ppp keepalive 30 async default routing async mode dedicated dialer in-band dialer idle-timeout 60 dialer wait-for-carrier-time 120 dialer map ip 202.96.1.1 name router1 modem-script cisco-default 2113469 dialer-group 1 ppp authentication chap ! router eigrp 200 redistribute static network 202.96.0.0 ! no ip classless ip route 202.96.38.0 255.255.255.0 202.96.1.1 200 dialer-list 1 protocol ip permit ! line con 0 exec-timeout 0 0 line aux 0 script reset reset modem InOut modem autoconfigure discovery transport input all rxspeed 38400 txspeed 38400 flowcontrol hardware line vty 0 4 password cisco login ! end   路由协议: 一、RIP协议   RIP(Routing information Protocol)是应用较早、使用较普遍的内部网关协议(Interior Gateway Protocol,简称IGP),适用于小型同类网络,是典型的距离向量(distance-vector)协议。文档见RFC1058、RFC1723。 RIP通过广播UDP报文来交换路由信息,每30秒发送一次路由信息更新。RIP提供跳跃计数(hop count)作为尺度来衡量路由距离,跳跃计数是一个包到达目标所必须经过的路由器的数目。如果到相同目标有二个不等速或不同带宽的路由器,但跳跃计数相同,则RIP认为两个路由是等距离的。RIP最多支持的跳数为15,即在源和目的网间所要经过的最多路由器的数目为15,跳数16表示不可达。 1. 有关命令 任务 命令 指定使用RIP协议 router rip 指定RIP版本 version {1|2}1 指定与该路由器相连的网络 network network 注:1.Cisco的RIP版本2支持验证、密钥管理、路由汇总、无类域间路由(CIDR)和变长子网掩码(VLSMs) 2. 举例 Router1: router rip version 2 network 192.200.10.0 network 192.20.10.0 ! 相关调试命令: show ip protocol show ip route   返回目录   二、IGRP协议   IGRP (Interior Gateway Routing Protocol)是一种动态距离向量路由协议,它由Cisco公司八十年代中期设计。使用组合用户配置尺度,包括延迟、带宽、可靠性和负载。 缺省情况下,IGRP每90秒发送一次路由更新广播,在3个更新周期内(即270秒),没有从路由中的第一个路由器接收到更新,则宣布路由不可访问。在7个更新周期即630秒后,Cisco IOS 软件从路由表中清除路由。 1. 有关命令 任务 命令 指定使用RIP协议 router igrp autonomous-system1 指定与该路由器相连的网络 network network 指定与该路由器相邻的节点地址 neighbor ip-address 注:1、autonomous-system可以随意建立,并非实际意义上的autonomous-system,但运行IGRP的路由器要想交换路由更新信息其autonomous-system需相同。 2.举例 Router1: router igrp 200 network 192.200.10.0 network 192.20.10.0 ! 三、OSPF协议   OSPF(Open Shortest Path First)是一个内部网关协议(Interior Gateway Protocol,简称IGP),用于在单一自治系统(autonomous system,AS)内决策路由。与RIP相对,OSPF是链路状态路有协议,而RIP是距离向量路由协议。 链路是路由器接口的另一种说法,因此OSPF也称为接口状态路由协议。OSPF通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,每个OSPF路由器使用这些最短路径构造路由表。 文档见RFC2178。 1.有关命令 全局设置 任务 命令 指定使用OSPF协议 router ospf process-id1 指定与该路由器相连的网络 network address wildcard-mask area area-id2 指定与该路由器相邻的节点地址 neighbor ip-address 注:1、OSPF路由进程process-id必须指定范围在1-65535,多个OSPF进程可以在同一个路由器上配置,但最好不这样做。多个OSPF进程需要多个OSPF数据库的副本,必须运行多个最短路径算法的副本。process-id只在路由器内部起作用,不同路由器的process-id可以不同。 2、wildcard-mask 是子网掩码的反码, 网络区域ID area-id在0-4294967295内的十进制数,也可以是带有IP地址格式的x.x.x.x。当网络区域ID为0或0.0.0.0时为主干域。不同网络区域的路由器通过主干域学习路由信息。 2.基本配置举例: Router1: interface ethernet 0 ip address 192.1.0.129 255.255.255.192 ! interface serial 0 ip address 192.200.10.5 255.255.255.252 ! router ospf 100 network 192.200.10.4 0.0.0.3 area 0 network 192.1.0.128 0.0.0.63 area 1 ! Router2: interface ethernet 0 ip address 192.1.0.65 255.255.255.192 ! interface serial 0 ip address 192.200.10.6 255.255.255.252 ! router ospf 200 network 192.200.10.4 0.0.0.3 area 0 network 192.1.0.64 0.0.0.63 area 2 ! Router3: interface ethernet 0 ip address 192.1.0.130 255.255.255.192 ! router ospf 300 network 192.1.0.128 0.0.0.63 area 1 ! Router4: interface ethernet 0 ip address 192.1.0.66 255.255.255.192 ! router ospf 400 network 192.1.0.64 0.0.0.63 area 1 ! 相关调试命令: debug ip ospf events debug ip ospf packet show ip ospf show ip ospf database show ip ospf interface show ip ospf neighbor show ip route 3. 使用身份验证 为了安全的原因,我们可以在相同OSPF区域的路由器上启用身份验证的功能,只有经过身份验证的同一区域的路由器才能互相通告路由信息。 在默认情况下OSPF不使用区域验证。通过两种方法可启用身份验证功能,纯文本身份验证和消息摘要(md5)身份验证。纯文本身份验证传送的身份验证口令为纯文本,它会被网络探测器确定,所以不安全,不建议使用。而消息摘要(md5)身份验证在传输身份验证口令前,要对口令进行加密,所以一般建议使用此种方法进行身份验证。 使用身份验证时,区域内所有的路由器接口必须使用相同的身份验证方法。为起用身份验证,必须在路由器接口配置模式下,为区域的每个路由器接口配置口令。 任务 命令 指定身份验证 area area-id authentication [message-digest] 使用纯文本身份验证 ip ospf authentication-key password 使用消息摘要(md5)身份验证 ip ospf message-digest-key keyid md5 key 以下列举两种验证设置的示例,示例的网络分布及地址分配环境与以上基本配置举例相同,只是在Router1和Router2的区域0上使用了身份验证的功能。: 例1.使用纯文本身份验证 Router1: interface ethernet 0 ip address 192.1.0.129 255.255.255.192 ! interface serial 0 ip address 192.200.10.5 255.255.255.252 ip ospf authentication-key cisco ! router ospf 100 network 192.200.10.4 0.0.0.3 area 0 network 192.1.0.128 0.0.0.63 area 1 area 0 authentication ! Router2: interface ethernet 0 ip address 192.1.0.65 255.255.255.192 ! interface serial 0 ip address 192.200.10.6 255.255.255.252 ip ospf authentication-key cisco ! router ospf 200 network 192.200.10.4 0.0.0.3 area 0 network 192.1.0.64 0.0.0.63 area 2 area 0 authentication ! 例2.消息摘要(md5)身份验证: Router1: interface ethernet 0 ip address 192.1.0.129 255.255.255.192 ! interface serial 0 ip address 192.200.10.5 255.255.255.252 ip ospf message-digest-key 1 md5 cisco ! router ospf 100 network 192.200.10.4 0.0.0.3 area 0 network 192.1.0.128 0.0.0.63 area 1 area 0 authentication message-digest ! Router2: interface ethernet 0 ip address 192.1.0.65 255.255.255.192 ! interface serial 0 ip address 192.200.10.6 255.255.255.252 ip ospf message-digest-key 1 md5 cisco ! router ospf 200 network 192.200.10.4 0.0.0.3 area 0 network 192.1.0.64 0.0.0.63 area 2 area 0 authentication message-digest ! 相关调试命令: debug ip ospf adj debug ip ospf events   返回目录   四、重新分配路由   在实际工作中,我们会遇到使用多个IP路由协议的网络。为了使整个网络正常地工作,必须在多个路由协议之间进行成功的路由再分配。 以下列举了OSPF与RIP之间重新分配路由的设置范例: Router1的Serial 0端口和Router2的Serial 0端口运行OSPF,在Router1的Ethernet 0端口运行RIP 2,Router3运行RIP2,Router2有指向Router4的192.168.2.0/24网的静态路由,Router4使用默认静态路由。需要在Router1和Router3之间重新分配OSPF和RIP路由,在Router2上重新分配静态路由和直连的路由。 范例所涉及的命令 任务 命令 重新分配直连的路由 redistribute connected 重新分配静态路由 redistribute static 重新分配ospf路由 redistribute ospf process-id metric metric-value 重新分配rip路由 redistribute rip metric metric-value Router1: interface ethernet 0 ip address 192.168.1.1 255.255.255.0 ! interface serial 0 ip address 192.200.10.5 255.255.255.252 ! router ospf 100 redistribute rip metric 10 network 192.200.10.4 0.0.0.3 area 0 ! router rip version 2 redistribute ospf 100 metric 1 network 192.168.1.0 ! Router2: interface loopback 1 ip address 192.168.3.2 255.255.255.0 ! interface ethernet 0 ip address 192.168.0.2 255.255.255.0 ! interface serial 0 ip address 192.200.10.6 255.255.255.252 ! router ospf 200 redistribute connected subnet redistribute static subnet network 192.200.10.4 0.0.0.3 area 0 ! ip route 192.168.2.0 255.255.255.0 192.168.0.1 ! Router3: interface ethernet 0 ip address 192.168.1.2 255.255.255.0 ! router rip version 2 network 192.168.1.0 ! Router4: interface ethernet 0 ip address 192.168.0.1 255.255.255.0 ! interface ethernet 1 ip address 192.168.2.1 255.255.255.0 ! ip route 0.0.0.0 0.0.0.0 192.168.0.2 !   五、IPX协议设置   IPX协议与IP协议是两种不同的网络层协议,它们的路由协议也不一样,IPX的路由协议不象IP的路由协议那样丰富,所以设置起来比较简单。但IPX协议在以太网上运行时必须指定封装形式。 1. 有关命令 启动IPX路由 ipx routing 设置IPX网络及以太网封装形式 ipx network network [encapsulation encapsulation-type]1 指定路由协议,默认为RIP ipx router {eigrp autonomous-system-number | nlsp [tag] | rip} 注:1.network 范围是1 到FFFFFFFD. IPX封装类型列表 接口类型 封装类型 IPX帧类型 Ethernet novell-ether (默认) arpa sap snap Ethernet_802.3 Ethernet_II Ethernet_802.2 Ethernet_Snap Token Ring sap (默认) snap Token-Ring Token-Ring_Snap FDDI snap (默认) sap novell-fddi Fddi_Snap Fddi_802.2 Fddi_Raw 举例: 在此例中,WAN的IPX网络为3a00,Router1所连接的局域网IPX网络号为2a00,在此局域网有一台Novell服务器,IPX网络号也是2a00, 路由器接口的IPX网络号必须与在同一网络的Novell服务器上设置的IPX网络号相同。路由器通过监听SAP来建立已知的服务及自己的网络地址表,并每60秒发送一次自己的SAP表。 Router1: ipx routing interface ethernet 0 ipx network 2a00 encapsulation sap ! interface serial 0 ipx network 3a00 ! ipx router eigrp 10 network 3a00 network 2a00 ! Router2: ipx routing interface ethernet 0 ipx network 2b00 encapsulation sap ! interface serial 0 ipx network 3a00 ! ipx router eigrp 10 network 2b00 network 3a00 ! 相关调试命令: debug ipx packet debug ipx routing debug ipx sap debug ipx spoof debug ipx spx show ipx eigrp interfaces show ipx eigrp neighbors show ipx eigrp topology show ipx interface show ipx route show ipx servers show ipx spx-spoof   五、IPX协议设置   IPX协议与IP协议是两种不同的网络层协议,它们的路由协议也不一样,IPX的路由协议不象IP的路由协议那样丰富,所以设置起来比较简单。但IPX协议在以太网上运行时必须指定封装形式。 1. 有关命令 启动IPX路由 ipx routing 设置IPX网络及以太网封装形式 ipx network network [encapsulation encapsulation-type]1 指定路由协议,默认为RIP ipx router {eigrp autonomous-system-number | nlsp [tag] | rip} 注:1.network 范围是1 到FFFFFFFD. IPX封装类型列表 接口类型 封装类型 IPX帧类型 Ethernet novell-ether (默认) arpa sap snap Ethernet_802.3 Ethernet_II Ethernet_802.2 Ethernet_Snap Token Ring sap (默认) snap Token-Ring Token-Ring_Snap FDDI snap (默认) sap novell-fddi Fddi_Snap Fddi_802.2 Fddi_Raw 举例: 在此例中,WAN的IPX网络为3a00,Router1所连接的局域网IPX网络号为2a00,在此局域网有一台Novell服务器,IPX网络号也是2a00, 路由器接口的IPX网络号必须与在同一网络的Novell服务器上设置的IPX网络号相同。路由器通过监听SAP来建立已知的服务及自己的网络地址表,并每60秒发送一次自己的SAP表。 Router1: ipx routing interface ethernet 0 ipx network 2a00 encapsulation sap ! interface serial 0 ipx network 3a00 ! ipx router eigrp 10 network 3a00 network 2a00 ! Router2: ipx routing interface ethernet 0 ipx network 2b00 encapsulation sap ! interface ser
实验一 路由器与交换机基础实验 一.实验目的 掌握思科模拟软件Packet Tracer5.0的使用 掌握中低端路由器、交换机的基本配置 掌握路由器、交换机的常用命令 二.实验内容 <一>Packet Tracer 5.0 的使用 1.创建有三台PC和一个集线器的逻辑网络 2.配置IP 在PC选项卡中找到config可以设置PC的各种属性,可以配置IP,将IP地址输入选项卡中 ,子网掩码会自动 <二>路由器、交换机的基本配置 (1) 修改名称 Router(config)# hostname R1 //R1为定义的名称 R1(config)# (2) 配置控制台密码 R1(config)# line console 0 R1(config-line)# password cisco //配置进入控制台密码 R1(config-line)# login R1(config-line)# exit (3) 配置路由器或交换机,使得控制台端口不会终止你的连接 R1(config-line)# exec-timeout 0 R1(config-line)# exit (4) 查看当前配置 设备是否正常运行,决定于当前的配置是否正确,所以在设备配置过程中和故障 排除中,查看当前配置是必不可少的操作之一。 R1# show running-config (5) 查看端口状态 R1# show ip interface brief (6) 保存当前设备配置 R1#write (7)删除配置 R1# erase startup-config (8)重启交换机 清除配置信息时,需要重启网络设备,其实在某些时候为了让某些修改后的配置 信息生效,我们也需要重启社保。 R1# reload (9)显示系统软件版本 Router> show versi 三.实验总结 通过使用软件进行动手实践,学会了如何配置交换机及路由器,以及对普通模式,特殊 模式,全局模式,端口模式的熟悉掌握。同时通过认真阅读实验一课件的内容,结合课 本知识,理解了什么是ARP协议,什么是ICMP协议,以及它们的作用和工作原理。ARP协 议下,源主机与目的主机如何第一次完成信息传递。 ----------------------- 实验一-路由器与交换机基础实验实验报告全文共2页,当前为第1页。 实验一-路由器与交换机基础实验实验报告全文共2页,当前为第2页。
   IEEE于1999年颁布了用于标准化VLAN实现方案的802.1Q协议标准草案。VLAN技术的出现,使得管理员根据 Vlan网卡 Intel82573    实际应用需求,把同一物理局域网内的不同用户逻辑地划分成不同的广播域,每一个VLAN都包含一组有着相同需求的计算机工作站,与物理上形成的LAN有着相同的属性。由于它是从逻辑上划分,而不是从物理上划分,所以同一个VLAN内的各个工作站没有限制在同一个物理范围中,即这些工作站可以在不同物理LAN网段。由VLAN的特点可知,一个VLAN内部的广播和单播流量都不会转发到其他VLAN中,从而有助于控制流量、减少设备投资、简化网络管理、提高网络的安全性。    交换技术的发展,也加快了新的交换技术(VLAN)的应用速度。通过将企业网络划分为虚拟网络VLAN网段,可以强化网络管理和网络安全,控制不必要的数据广播。在共享网络中,一个物理的网段就是一个广播域。而在交换网络中,广播域可以是有一组任意选定的第二层网络地址(MAC地址)组成的虚拟网段。这样,网络中工作组的划分可以突破共享网络中的地理位置限制,而完全根据管理功能来划分。这种基于工作流的分组模式,大大提高了网络规划和重组的管理功能。在同一个VLAN中的工作站,不论它们实际与哪个交换机连接,它们之间的通讯就好象在独立的交换机上一样。同一个VLAN中的广播只有VLAN中的成员才能听到,而不会传输到其他的VLAN中去,这样可以很好的控制不必要的广播风暴的产生。同时,若没有路由的话,不同VLAN之间不能相互通讯,这样增加了企业网络中不同部门之间的安全性。网络管理员可以通过配置VLAN之间的路由来全面管理企业内部不同管理单元之间的信息互访。交换机是根据交换机的端口来划分VLAN的。所以,用户可以自由的在企业网络中移动办公,不论他在何处接入交换网络,他都可以与VLAN内其他用户自如通讯。    VLAN网络可以是有混合的网络类型设备组成,比如:10M以太网、100M以太网、令牌网、FDDI、CDDI等等,可以是工作站、服务器、集线器、网络上行主干等等。    VLAN除了能将网络划分为多个广播域,从而有效地控制广播风暴的发生,以及使网络的拓扑结构变得非常灵活的优点外,还可以用于控制网络中不同部门、不同站点之间的互相访问。    VLAN是为解决以太网的广播问题和安全性而提出的一种协议,它在以太网帧的基础上增加了VLAN头,用VLAN ID把用户划分为更小的工作组,限制不同工作组间的用户互访,每个工作组就是一个虚拟局域网。虚拟局域网的好处是可以限制广播范围,并能够形成虚拟工作组,动态管理网络。 编辑本段VLAN的目的    VLAN(Virtual Local Area Network,虚拟局域网)的目的非常的多。通过认识VLAN的本质,将可以了解到其用处究竟在哪些地方。    第一,要知道192.168.1.2/30和192.168.2.6/30都属于不同的网段,都必须要通过路由器才能进行访问,凡是不同网段间要互相访问,都必须通过路由器。    第二,VLAN本质就是指一个网段,之所以叫做虚拟的局域网,是因为它是在虚拟的路由器的接口下创建的网段。    下面,给予说明。比如一个路由器只有一个用于终端连接的端口(当然这种情况基本不可能发生,只不过简化举例),这个端口被分配了192.168.1.1/24的地址。然而由于公司有两个部门,一个销售部,一个企划部,每个部门要求单独成为一个子网,有单独的服务器。那么当然可以划分为192.168.1.0--127/25、192.168.1.128--255/25。但是路由器的物理端口只应该可以分配一个IP地址,那怎样来区分不同网段了?这就可以在这个物理端口下,创建两个子接口---逻辑接口实现。    比如逻辑接口F0/0.1就分配IP地址192.168.1.1/25,用于销售部,而F0/0.2就分配IP地址192.168.1.129/25,用于企划部。这样就等于用一个物理端口确实现了两个逻辑接口的功能,这样就将原本只能划分一个网段的情形,扩展到了可以划分2个或者更多个网段的情形。这些网段因为是在逻辑接口下创建的,所以称之为虚拟局域网VLAN。    这是在路由器的层次上阐述了VLAN的目的。    第三,将在交换机的层次上阐述VLAN的目的。    在现实中,由于很多原因必须划分出不同网段。比如就简单的只有销售部和企划部两个网段。那么可以简单的将销售部全部接入一个交换机,然后接入路由器的一个端口,把企划部全部接入一个交换机,然后接入一个路由器端口。这种情况是LAN.然而正如上面所说,如果路由器就一个用于终端的接口,那么这两个交换机就必须接入这同一个路由器的接口,这个时候,如果还想保持原来的网段的划分,那么就必须使用路由器的子接口,创建VLAN.    同样,比如两个交换机,如果你想要每个交换机上的端口都分别属于不同的网段,那么你有几个网段,就提供几个路由器的接口,这个时候,虽然在路由器的物理接口上可以定义这个接口可以连接哪个网段,但是在交换机的层次上,它并不能区分哪个端口属于哪个网段,那么唯一实现能区分的方法,就是划分VLAN,使用了VLAN就能区分出某个交换机端口的终端是属于哪个网段的。    综上,当一个交换机上的所有端口中有至少一个端口属于不同网段的时候,当路由器的一个物理端口要连接2个或者以上的网段的时候,就是VLAN发挥作用的时候,这就是VLAN的目的。 编辑本段VLAN的优点 广播风暴防范    限制网络上的广播,将网络划分为多个VLAN可减少参与广播风暴的设备数量。LAN分段可以防止广播风暴波及整个网络。VLAN可以提供建立防火墙的机制,防止交换网络的过量广播。使用VLAN,可以将某个交换端口或用户赋于某一个特定的VLAN组,该VLAN组可以在一个交换网中或跨接多个交换机,在一个VLAN中的广播不会送到VLAN之外。同样,相邻的端口不会收到其他VLAN产生的广 播。这样可以减少广播流量,释放带宽给用户应用,减少广播的产生。 安全    增强局域网的安全性,含有敏感数据的用户组可与网络的其余部分隔离,从而降低泄露机密信息的可能性。不同VLAN内的报文在传输时是相互隔离的,即一个VLAN内的用户不能和其它VLAN内的用户直接通信,如果不同VLAN要进行通信,则需要通过路由器或三层交换机等三层设备。 成本降低    成本高昂的网络升级需求减少,现有带宽和上行链路的利用率更高,因此可节约成本。 性能提高    将第二层平面网络划分为多个逻辑工作组(广播域)可以减少网络上不必要的流量并提高性能。 提高IT员工效率    VLAN为网络管理带来了方便,因为有相似网络需求的用户将共享同一个VLAN。 应用管理    VLAN 将用户和网络设备聚合到一起,以支持商业需求或地域上的需求。通过职能划分,项目管理或特殊应用的处理都变得十分方便,例如可以轻松管理教师的电子教学开发平台。此外,也很容易确定升级网络服务的影响范围。 增加网络连接的灵活性    借助VLAN技术,能将不同地点、不同网络、不同用户组合在一起,形成一个虚拟的网络环境,就像使用本地LAN一样方便、灵活、有效。VLAN可以降低移动或变更工作站地理位置的管 理费用,特别是一些业务情况有经常性变动的公司使用了VLAN后,这部分管理费用大大降低。 编辑本段组建VLAN的条件    VLAN是建立在物理网络基础上的一种逻辑子网,因此建立VLAN需要相应的支持VLAN技术的网络设备。当网络中的不同VLAN间进行相互通信时,需要路由的支持,这时就需要增加路由设备——要实现路由功能,既可采用路由器,也可采用三层交换机来完成,同时还严格限制了用户数量。 编辑本段VLAN的划分 根据端口来划分VLAN    许多VLAN厂商都利用交换机的端口来划分VLAN成员。被设定的端口都在同一个广播域中。例如,一个交换机的1,2,3,4,5端口被定义为虚拟网AAA,同一交换机的6,7,8端口组成虚拟网BBB。这样做允许各端口之间的通讯,并允许共享型网络的升级。但是,这种划分模式将虚拟网限制在了一台交换机上。    第二代端口VLAN技术允许跨越多个交换机的多个不同端口划分VLAN,不同交换机上的若干个端口可以组成同一个虚拟网。    以交换机端口来划分网络成员,其配置过程简单明了。因此,从目前来看,这种根据端口来划分VLAN的方式仍然是最常用的一种方式。 根据MAC地址划分VLAN    这种划分VLAN的方法是根据每个主机的MAC地址来划分,即对每个MAC地址的主机都配置它属于哪个组。这种划分VLAN方法的最大优点就是当用户物理位置移动时,即从一个交换机换到其他的交换机时,VLAN不用重新配置,所以,可以认为这种根据MAC地址的划分方法是基于用户的VLAN,这种方法的缺点是初始化时,所有的用户都必须进行配置,如果有几百个甚至上千个用户的话,配置是非常累的。而且这种划分的方法也导致了交换机执行效率的降低,因为在每一个交换机的端口都可能存在很多个VLAN组的成员,这样就无法限制广播包了。另外,对于使用笔记本电脑的用户来说,他们的网卡可能经常更换,这样,VLAN就必须不停地配置。 根据网络层划分VLAN    这种划分VLAN的方法是根据每个主机的网络层地址或协议类型(如果支持多协议)划分的,虽然这种划分方法是根据网络地址,比如IP地址,但它不是路由,与网络层的路由毫无关系。    这种方法的优点是用户的物理位置改变了,不需要重新配置所属的VLAN,而且可以根据协议类型来划分VLAN,这对网络管理者来说很重要,还有,这种方法不需要附加的帧标签来识别VLAN,这样可以减少网络的通信量。    这种方法的缺点是效率低,因为检查每一个数据包的网络层地址是需要消耗处理时间的(相对于前面两种方法),一般的交换机芯片都可以自动检查网络上数据包的以太网帧头,但要让芯片能检查IP帧头,需要更高的技术,同时也更费时。当然,这与各个厂商的实现方法有关。 根据IP组播划分VLAN    IP 组播实际上也是一种VLAN的定义,即认为一个组播组就是一个VLAN,这种划分的方法将VLAN扩大到了广域网,因此这种方法具有更大的灵活性,而且也很容易通过路由器进行扩展,当然这种方法不适合局域网,主要是效率不高。 基于规则的VLAN    也称为基于策略的VLAN。这是最灵活的VLAN划分方法,具有自动配置的能力,能够把相关的用户连成一体,在逻辑划分上称为“关系网络”。网络管理员只需在网管软件中确定划分VLAN的规则(或属性),那么当一个站点加入网络中时,将会被“感知”,并被自动地包含进正确的VLAN中。同时,对站点的移动和改变也可自动识别和跟踪。    采用这种方法,整个网络可以非常方便地通过路由器扩展网络规模。有的产品还支持一个端口上的主机分别属于不同的VLAN,这在交换机与共享式Hub共存的环境中显得尤为重要。自动配置VLAN时,交换机中软件自动检查进入交换机端口的广播信息的IP源地址,然后软件自动将这个端口分配给一个由IP子网映射成的VLAN。 按用户划分VLAN    基于用户定义、非用户授权来划分VLAN,是指为了适应特别的VLAN网络,根据具体的网络用户的特别要求来定义和设计VLAN,而且可以让非VLAN群体用户访问VLAN,但是需要提供用户密码,在得到VLAN管理的认证后才可以加入一个VLAN。    * 以上划分VLAN的方式中,基于端口的VLAN端口方式建立在物理层上;MAC方式建立在数据链路层上;网络层和IP广播方式建立在第三层上。 编辑本段VLAN的标准    对VLAN的标准,我们只是介绍两种比较通用的标准,当然也有一些公司具有自己的标准,比如Cisco公司的ISL标准,虽然不是一种大众化的标准,但是由于Cisco Catalyst交换机的大量使用,ISL也成为一种不是标准的标准了。    · 802.10VLAN标准    在1995年,Cisco公司提倡使用IEEE802.10协议。在此之前,IEEE802.10曾经在全球范围内作为VLAN安全性的同一规范。Cisco公司试图采用优化后的802.10帧格式在网络上传输FramTagging模式中所必须的VLAN标签。然而,大多数802委员会的成员都反对推广802.10。因为,该协议是基于FrameTagging方式的。    · 802.1Q    在1996年3月,IEEE802.1Internetworking委员会结束了对VLAN初期标准的修订工作。新出台的标准进一步完善了VLAN的体系结构,统一了Frame-Tagging方式中不同厂商的标签格式,并制定了VLAN标准在未来一段时间内的发展方向,形成的802.1Q的标准在业界获得了广泛的推广。它成为VLAN史上的一块里程碑。802.1Q的出现打破了虚拟网依赖于单一厂商的僵局,从一个侧面推动了VLAN的迅速发展。另外,来自市场的压力使各大网络厂商立刻将新标准融合到他们各自的产品中。    802.1q帧格式:    · Cisco ISL 标签    ISL(Inter-Switch Link)是Cisco公司的专有封装方式,因此只能在Cisco的设备上支持。ISL是一个在交换机之间、交换机与路由器之间及交换机与服务器之间传递多个VLAN信息及VLAN数据流的协议,通过在交换机直接的端口配置ISL封装,即可跨越交换机进行整个网络的VLAN分配和配置。 编辑本段划分VLAN的基本策略    从技术角度讲,VLAN的划分可依据不同原则,一般有以下三种划分方法: 基于端口    这种划分是把一个或多个交换机上的几个端口划分一个逻辑组,这是最简单、最有效的划分方法。该方法只需网络管理员对网络设备的交换端口进行重新分配即可,不用考虑该端口所连接的设备。 基于MAC地址    MAC地址其实就是指网卡的标识符,每一块网卡的MAC地址都是唯一且固化在网卡上的。MAC地址由12位16进制数表示,前6位为网卡的厂商标识(OUI),后6位为网卡标识(NIC)。网络管理员可按MAC地址把一些站点划分为一个逻辑子网。 基于路由    路由协议工作在网络层,相应的工作设备有路由器和路由交换机(即三层交换机)。该方式允许一个VLAN跨越多个交换机,或一个端口位于多个VLAN中。    就目前来说,对于VLAN的划分主要采取上述第1、3种方式,第2种方式为辅助性的方案。 编辑本段VLAN技术简单谈    局域网的发展是VLAN产生的基础,所以在介绍VLAN之前,我们先来了解一下局域网的有关知识。    局域网(LAN)通常是一个单独的广播域,主要由Hub、网桥或交换机等网络设备连接同一网段内的所有节点形成。处于同一个局域网之内的网络节点之间可以直接通信,而处于不同局域网段的设备之间的通信则必须经过路由器才能通信。图1所示即为使用路由器构建的典型的局域网环境。    随着网络的不断扩展,接入设备逐渐增多,网络结构也日趋复杂,必须使用更多的路由器才能将不同的用户划分到各自的广播域中,在不同的局域网之间提供网络互联。    但这样做存在两个缺陷:    首先,随着网络中路由器数量的增多,网络延时逐渐加长,从而导致网络数据传输速度的下降。这主要是因为数据在从一个局域网传递到另一个局域网时,必须经过路由器的路由操作:路由器根据数据包中的相应信息确定数据包的目标地址,然后再选择合适的路径转发出去。    其次,用户是按照它们的物理连接被自然地划分到不同的用户组(广播域)中。这种分割方式并不是根据工作组中所有用户的共同需要和带宽的需求来进行的。因此,尽管不同的工作组或部门对带宽的需求有很大的差异,但它们却被机械地划分到同一个广播域中争用相同的带宽。 编辑本段VLAN的定义及特点    虚拟局域网(VLAN)是一组逻辑上的设备和用户,这些设备和用户并不受物理位置的限制,可以根据功能、部门及应用等因素将它们组织起来,相互之间的通信就好像它们在同一个网段中一样,由此得名虚拟局域网。VLAN是一种比较新的技术,工作在OSI参考模型的第2层和第3层,一个VLAN就是一个广播域,VLAN之间的通信是通过第3层的路由器来完成的。与传统的局域网技术相比较,VLAN技术更加灵活,它具有以下优点:    ● 网络设备的移动、添加和修改的管理开销减少;    ●可以控制广播活动;    ●可提高网络的安全性。 编辑本段VLAN的分类及优缺点    定义VLAN成员的方法有很多,由此也就分成了几种不同类型的VLAN。 1. 基于端口的VLAN    基于端口的VLAN的划分是最简单、有效的VLAN划分方法,它按照局域网交换机端口来定义VLAN成员。VLAN从逻辑上把局域网交换机的端口划分开来,从而把终端系统划分为不同的部分,各部分相对独立,在功能上模拟了传统的局域网。基于端口的VLAN又分为在单交换机端口和多交换机端口定义VLAN两种情况: 多交换机端口定义VLAN    如图3所示,交换机1的1、2、3端口和交换机2的4、5、6端口组成VLAN1,交换机1的4、5、6、7、8端口和交换机2的1、2、3、7、8端口组成VLAN2。 单交换机端口定义VLAN    如图2所示,交换机的1、2、6、7、8端口组成VLAN1,3、4、5端口组成了VLAN2。这种VLAN只支持一个交换机。    基于端口的VLAN的划分简单、有效,但其缺点是当用户从一个端口移动到另一个端口时,网络管理员必须对VLAN成员进行重新配置。 2. 基于MAC地址的VLAN    基于MAC地址的VLAN是用终端系统的MAC地址定义的VLAN。MAC地址其实就是指网卡的标识符,每一块网卡的MAC地址都是唯一的。这种方法允许工作站移动到网络的其他物理网段,而自动保持原来的VLAN成员资格。在网络规模较小时,该方案可以说是一个好的方法,但随着网络规模的扩大,网络设备、用户的增加,则会在很大程度上加大管理的难度。 3. 基于路由的VLAN    路由协议工作在7层协议的第3层—网络层,比如基于IP和IPX的路由协议,这类设备包括路由器和路由交换机。该方式允许一个VLAN跨越多个交换机,或一个端口位于多个VLAN中。在按IP划分的VLAN中,很容易实现路由,即将交换功能和路由功能融合在VLAN交换机中。这种方式既达到了作为VLAN控制广播风暴的最基本目的,又不需要外接路由器。但这种方式对VLAN成员之间的通信速度不是很理想。 4. 基于策略的VLAN    基于策略的VLAN的划分是一种比较有效而直接的方式,主要取决于在VLAN的划分中所采用的策略。 编辑本段常见的应用VLAN    Port vlan与Tag vlan    port vlan 基于端口的VLAN,处于同一VLAN端口之间才能相互通信。    tag vlan 基于IEEE 802.1Q(vlan标准),用VID(vlan id)来划分不同的VLAN 基于端口的VLAN优缺点    基于端口的VLAN,简单的讲就是交换机的一个端口就是一个虚拟局域网,凡是连接在这个端口上的主机属于同个虚拟局域网之中。基于端口的VLAN的优点为:由于一个端口就是一个独立的局域网。所以,当数据在网络中传输的时候,交换机就不会把数据包转发给其他的端口,如果用户需要将数据发送到其他的虚拟局域网中,就需要先由交换机发往路由器再由路由器发往其他端口;同时以端口为中心的VLAN中完全由用户自由支配端口,无形之中就更利于管理。但是美中不足的是以端口为中心的VLAN,当用户位置改变时,往往也伴随着用户位置的改变而对网线也要进行迁移。如果不会经常移动客户机的话,采用这一方式倒也不错。 静态VLAN的优缺点    可以说静态VLAN与基于端口的VLAN有一丝相似之处,用户可在交换机上让一个或多个交换机端口形成一个略大一些的虚拟局域网。从一定意义上讲静态虚拟局域网在某些程度上弥补了基于端口的虚拟局域网的缺点。缺陷方面,静态VLAN虽说是可以使多个端口的设置成一个虚拟局域网,假如两个不同端口、不同虚拟局域网的人员聚到一起协商一些事情,这时候问题就出现了,因为端口及虚拟局域网的不一致往往就会直接导致某一个虚拟局域网的人员就不能正常的访问他原先所在的VLAN之中(静态虚拟局域网的端口在同一时间只能属于同一个虚拟局域网),这样就需要网络管理人员随时配合及时修改该线路上的端口。 动态VLAN的优缺点    与上面两种虚拟局域网的组成方式相比动态的虚拟局域网的优点真的是太多了。首先它适用于当前的无线局域网技术,其次,当用户有需要时对工作基点进行移动时完全不用担心在静态虚拟局域网与基于端口的虚拟局域网出现的一些问题在动态的虚拟局域网中出现,因为动态的虚拟局域网在建立初期已经由网络管理员将整个网络中的所有MAC地址全部输入到了路由器之中,同时如何由路由器通过MAC地址来自动区分每一台电脑属于那一个虚拟局域网,之后将这台电脑连接到对应的虚拟局域网之中。说起缺点,动态的虚拟局域网的缺点跟本谈不上缺点,只是在VLAN建立初期,网络管理人员需将所有机器的MAC进行登记之后划分出MAC所对应的机器的不同权限(虚拟局域网)即可。 编辑本段VLAN发展趋势    目前在宽带网络中实现的VLAN基本上能满足广大网络用户的需求,但其网络性能、网络流量控制、网络通信优先级控制等还有待提高。前面所提到的VTP技术、STP技术,基于三层交换的VLAN技术等在VLAN使用中存在网络效率的瓶颈问题,这主要是IEEE802.1Q、IEEE802.1D协议的不完善所致,IEEE正在制定和完善IEEE802.1S(Multiple Spanning Trees)和IEEE802.1W(Rapid Reconfiguration of Spanning Tree)来改善VLAN的性能。采用IEEE802.3z和IEEE802.3ab协议,并结合使用RISC(精简指令集计算)处理器或者网络处理器而研制的吉位VLAN交换机在网络流量等方面采取了相应的措施,大大提高了VLAN网络的性能。IEEE802.1P协议提出了COS(Class of Service)标准,这使网络通信优先级控制机制有了参考。 编辑本段VLAN的基本配置命令    1、创建vlan方法一:从VLAN配置模式建立VLAN    switch# vlan database (进入VLAN配置模式)    switch(vlan)# vlan 10 name wz (声明VLAN 10,并命名WX)    switch(vlan)#exit (退出VALN配置模式)    2、创建vlan方法二:从全局配置模式建立VLAN    switch# configure terminal (进入全局配置模式)    switch(config)# vlan 10 (声明VLAN 10)    switch(config-vlan)# name wz (命名WX)    3、删除vlan方法一:从VALN配置模式删除VLAN    switch(vlan)# no vlan 10 (删除VLAN 10)    switch(vlan)# exit (退出VLAN配置模式)    4、删除vlan方法二:从全局配置模式删除VLAN    switch(config)# no interface vlan 10 (将所有属于VLAN 10的接口删除)    switch(config)# no vlan 10 (删除VLAN 10)    5、删除vlan方法三:从配置文件中删除VLAN.DAT文件    switch# delete vlan.dat (从配置文件中删除DAT文件,可以彻底删除VLAN信息)    6、将端口加入到vlan中    switch(config-if)# switchport access vlan 10    7、将一组连续的端口加入到vlan中    switch(config)# interface range f0/1 –5    switch(config)# interface range f0/6-8,0/9-11,0/22 (将不连续多个端口加入到Vlan中)    switch(config-if-range)# switchport access vlan 10    8、将端口从vlan中删除    switch(config-if)# no switchport access vlan 10    switch(config-if)# switchport access vlan 1    switch(config-if-range)# no switchport access vlan 10    switch(config-if-range)# switchport access vlan 1    9、查看所有vlan的摘要信息    switch# show vlan brief    10、查看指定vlan的信息    switch# show vlan id 10 (查看指定VLAN号为10的信息)    11、指定端口成为trunk    switch(config-if)# switchport mode trunk (配置接口为TRUNK模式)    12、Trunk的自动协商    switch(config-if)#switchport mode dynamic desirable     switch(config-if)#switchport mode dynamic auto    注意:如果中继链路两端都设置成auto将不能成为trunk    13、查看端口状态    switch# show interface f0/2 switchport    14、在trunk上移出vlan    switch(config-if)# switchport trunk allowed vlan remove 20    15、在trunk上添加vlan    switch(config-if)# switchport trunk allowed vlan add 20 编辑本段VLAN的划分实例    对于每个公司而言都有自己不同的需求,下面我们给出一个典型的公司的VLAN的实例,这样也可以成为我们以后为公司划分VLAN的依据。    某公司现在有工程部、销售部、财务部。VLAN的划分:工程部VLAN10,销售部VLAN20,财务部VLAN30,并且各部门还可以相互通讯。现有设备如下:Cisco 3640路由器,Cisco Catalyst 2924交换机一台,二级交换机若干台。    交换机配置文件中的部分代码如下:    ……    !    interface vlan10    ip address 192.168.0.1    !    interface vlan20    ip address 192.168.1.1    !    interface vlan30    ip address 192.168.2.1    !    ……    路由器配置文件中的部分代码如下:    ……    interface FastEthernet 1/0.1    encapsulation isl 10    ip address 192.168.0.2    !    interface FastEthernet 1/0.2    encapsulation isl 20    ip address 192.168.1.2    !    interface FastEthernet 1/0.3    encapsulation isl 30    ip address 192.168.2.2    !    ……    !    router rip    network 192.168.0.0    !    【交换机的端口工作模式的利用】    交换机的端口工作模式通常可以分为三种,它们分别为Access模式、Multi模式、Trunk模式。允许多个vlan的是multi模式,而不是trunk模式。Access模式的交换端口往往只能属于1个VLAN,通常用于连接普通计算机的端口;Trunk模式的交换端口可以属于多个VLAN,能够发送和接收多个VLAN的数据报文,通常使用在交换机之间的级联端口上;multi模式的交换端口可以属于多个VLAN,能够发送和接受多个VLAN的数据报文,可以用于交换机之间的连接,也可以用于连接普通计算机的端口,所以access和trunk没有可比性。三种模式的交换端口能够共同使用在相同的一台交换机中,不过Trunk模式的交换端口和multi模式的交换端口相互之间不能直接切换,往往只能先将交换端口设置为Access模式,之后再设置为其他模式。 编辑本段vlan拓扑试验    实验: 划分VLAN 1. 实验目的    通过本实验,读者可以掌握如下技能:    (1)熟悉VLAN 的创建    (2)把交换机接口划分到特定VLAN 2. 实验拓扑 vlan试验拓扑图(1张)    实验拓扑图 3. 实验步骤    要配置VLAN,首先要先创建VLAN,然后才把交换机的端口划分到特定的端口上:    (1) 步骤1:在划分VLAN 前,配置R1 和R2 路由器的g0/0 接口,从R1ping192.168.12.2。    默认时,交换机的全部接口都在VLAN1 上,R1 和R2 应该能够通信    (2) 步骤2:在S1 上创建VLAN    S1#vlan database    //进入到VLAN 配置模式    S1(vlan)#vlan 2 name VLAN2    VLAN 2 added:    Name: VLAN2    //以上创建vlan,2 就是vlan 的编号,VLAN 号的范围为1~1001,VLAN2 是该VLAN 的名字:    S1(vlan)#vlan 3 name VLAN3    VLAN 3 added:    Name: VLAN3    S1(vlan)#exit    APPLY completed.    Exiting….    //退出VLAN模式,创建的VLAN立即生效:    【提示】交换机中的VLAN 信息存放在单独的文件中flash:vlan.dat,因此如果要完全清除    交换机的配置,除了使用“erase starting-config”命令外,还要使用“delete    flash:vlan.dat”命令把VLAN 数据删除。    【提示】新的IOS 版本中,可以在全局配置模式中创建VLAN,如下:    S1(config)#vlan 2    S1(config-vlan)#name VLAN2    S1(config-vlan)#exit    S1(config)#vlan 3    S1(config-vlan)#name VLAN3    (3)步骤3:把端口划分在VLAN 中    S1(config)#interface f0/1    S1(config-if)#switch mode access    //以上把交换机端口的模式改为access 模式,说明该端口是用于连接计算机的,而不是用    于trunk    S1(config-if)#switch access vlan 2    //然后把该端口f0/1 划分到VLAN 2 中    S1(config)#interface f0/2    S1(config-if)#switch mode access    S1(config-if)#switch access vlan 3    【提示】默认时,所有交换机接口都在VLAN 1 上,VLAN 1 是不能删除的。如果有多个接口    需要划分到同一VLAN 下,也可以采用如下方式以节约时间,注意破折号前后的空格:    S1(config)#interface range f0/2 -3    S1(config-rang-if)#switch mode access    S1(config-rang-if)#switch access vlan 2    【提示】如果要删除VLAN,使用“no vlan 2”命令即可。删除某一VLAN后,要记得把该VLAN    上的端口重新划分到别的VLAN上,否则将导致端口的“消失”。 4. 实验调试    (1)查看VLAN    使用“show vlan”或者“show vlan brief”命令可以查看VLAN 的信息,以及每个    VLAN 上有什么端口。要注意这里只能看到的是本交换机上哪个端口在VLAN 上,而不能看到    其他交换机的端口在什么VLAN 上。如下:    SW1#show vlan    VLAN Name Status Ports    ---- -------------------------------- --------- -------------------------------    1.default active Fa0/1,Fa0/2,Fa0/3,Fa0/4    Fa0/5,Fa0/6,Fa0/7,Fa0/8    Fa0/9,Fa0/10,Fa0/11,Fa0/12    Fa0/13,Fa0/14,Fa0/16,Fa0/17    Fa0/18,Fa0/19,Fa0/20,Fa0/21    Fa0/22,Fa0/23,Fa0/24,Gi0/1    Gi0/2    2.VLAN2 active    3.VLAN3 active    1002 fddi-default act/unsup    1003 token-ring-default act/unsup    1004 fddinet-default act/unsup    (此处省略)    //在交换上,VLAN1是默认VLAN,不能删除,也不能改名。此外还有1002、1003等VLAN的存    在。    (2)VLAN 间的通信    由于f0/1 和f0/2 属于不同的VLAN,从R1 ping 192.168.12.2 应该不能成功了。 编辑本段互联方式    (1)边界路由。    (2)“独臂”路由。    (3)MPOA路由。    

3,812

社区成员

发帖
与我相关
我的任务
社区描述
硬件使用 交换及路由技术相关问题讨论专区
社区管理员
  • 交换及路由技术社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧