bad runtime function reference错误

kylin8505 2007-03-16 10:14:47
PB9程序
程序在PB环境下运行没有问题
编译后,在用某个功能时就会出现bad runtime function reference错误
但是这个功能在系统的其他地方也有,并可以正常使用,可以判定函数是没有问题的.
求高手解决.
...全文
2289 3 打赏 收藏 转发到动态 举报
写回复
用AI写文章
3 条回复
切换为时间正序
请发表友善的回复…
发表回复
zzznzzzz 2007-05-30
  • 打赏
  • 举报
回复
我也碰到这个问题!就是传入对象为空!但是我把出错得东西重新一样再做一个就不会出现这个问题!然而过一阵,做作别得什么修改同样得问题又出现!
kkbgp 2007-03-16
  • 打赏
  • 举报
回复
你调用的外部应用是什么?
有可能是你计算机系统的原因,如调用媒体播放器,而播放器本身损坏就不行
universe 2007-03-16
  • 打赏
  • 举报
回复
代码原因吧,比如该传入一个对象的地方传入为空了,函数中调用这个对象就出问题

而另一个地方调用时传入了正确的对象
Table of Contents Header Files The #define Guard Header File Dependencies Inline Functions The -inl.h Files Function Parameter Ordering Names and Order of Includes Scoping Namespaces Nested Classes Nonmember, Static Member, and Global Functions Local Variables Static and Global Variables Classes Doing Work in Constructors Default Constructors Explicit Constructors Copy Constructors Structs vs. Classes Inheritance Multiple Inheritance Interfaces Operator Overloading Access Control Declaration Order Write Short Functions Google-Specific Magic Smart Pointers cpplint Other C++ Features Reference Arguments Function Overloading Default Arguments Variable-Length Arrays and alloca() Friends Exceptions Run-Time Type Information (RTTI) Casting Streams Preincrement and Predecrement Use of const Integer Types 64-bit Portability Preprocessor Macros 0 and NULL sizeof Boost C++0x Naming General Naming Rules File Names Type Names Variable Names Constant Names Function Names Namespace Names Enumerator Names Macro Names Exceptions to Naming Rules Comments Comment Style File Comments Class Comments Function Comments Variable Comments Implementation Comments Punctuation, Spelling and Grammar TODO Comments Deprecation Comments Formatting Line Length Non-ASCII Characters Spaces vs. Tabs Function Declarations and Definitions Function Calls Conditionals Loops and Switch Statements Pointer and Reference Expressions Boolean Expressions Return Values Variable and Array Initialization Preprocessor Directives Class Format Constructor Initializer Lists Namespace Formatting Horizontal Whitespace Vertical Whitespace Exceptions to the Rules Existing Non-conformant Code Windows Code Important Note Displaying Hidden Details in this Guide link ▶This style guide contains many details that are initially hidden from view. They are marked by the triangle icon, which you see here on your left. Click it now. You should see "Hooray" appear below. Hooray! Now you know you can expand points to get more details. Alternatively, there's an "expand all" at the top of this document. Background C++ is the main development language used by many of Google's open-source projects. As every C++ programmer knows, the language has many powerful features, but this power brings with it complexity, which in turn can make code more bug-prone and harder to read and maintain. The goal of this guide is to manage this complexity by describing in detail the dos and don'ts of writing C++ code. These rules exist to keep the code base manageable while still allowing coders to use C++ language features productively. Style, also known as readability, is what we call the conventions that govern our C++ code. The term Style is a bit of a misnomer, since these conventions cover far more than just source file formatting. One way in which we keep the code base manageable is by enforcing consistency. It is very important that any programmer be able to look at another's code and quickly understand it. Maintaining a uniform style and following conventions means that we can more easily use "pattern-matching" to infer what various symbols are and what invariants are true about them. Creating common, required idioms and patterns makes code much easier to understand. In some cases there might be good arguments for changing certain style rules, but we nonetheless keep things as they are in order to preserve consistency. Another issue this guide addresses is that of C++ feature bloat. C++ is a huge language with many advanced features. In some cases we constrain, or even ban, use of certain features. We do this to keep code simple and to avoid the various common errors and problems that these features can cause. This guide lists these features and explains why their use is restricted. Open-source projects developed by Google conform to the requirements in this guide. Note that this guide is not a C++ tutorial: we assume that the reader is familiar with the language. Header Files In general, every .cc file should have an associated .h file. There are some common exceptions, such as unittests and small .cc files containing just a main() function. Correct use of header files can make a huge difference to the readability, size and performance of your code. The following rules will guide you through the various pitfalls of using header files. The #define Guard link ▶All header files should have #define guards to prevent multiple inclusion. The format of the symbol name should be ___H_. To guarantee uniqueness, they should be based on the full path in a project's source tree. For example, the file foo/src/bar/baz.h in project foo should have the following guard: #ifndef FOO_BAR_BAZ_H_ #define FOO_BAR_BAZ_H_ ... #endif // FOO_BAR_BAZ_H_ Header File Dependencies link ▶Don't use an #include when a forward declaration would suffice. When you include a header file you introduce a dependency that will cause your code to be recompiled whenever the header file changes. If your header file includes other header files, any change to those files will cause any code that includes your header to be recompiled. Therefore, we prefer to minimize includes, particularly includes of header files in other header files. You can significantly minimize the number of header files you need to include in your own header files by using forward declarations. For example, if your header file uses the File class in ways that do not require access to the declaration of the File class, your header file can just forward declare class File; instead of having to #include "file/base/file.h". How can we use a class Foo in a header file without access to its definition? We can declare data members of type Foo* or Foo&. We can declare (but not define) functions with arguments, and/or return values, of type Foo. (One exception is if an argument Foo or const Foo& has a non-explicit, one-argument constructor, in which case we need the full definition to support automatic type conversion.) We can declare static data members of type Foo. This is because static data members are defined outside the class definition. On the other hand, you must include the header file for Foo if your class subclasses Foo or has a data member of type Foo. Sometimes it makes sense to have pointer (or better, scoped_ptr) members instead of object members. However, this complicates code readability and imposes a performance penalty, so avoid doing this transformation if the only purpose is to minimize includes in header files. Of course, .cc files typically do require the definitions of the classes they use, and usually have to include several header files. Note: If you use a symbol Foo in your source file, you should bring in a definition for Foo yourself, either via an #include or via a forward declaration. Do not depend on the symbol being brought in transitively via headers not directly included. One exception is if Foo is used in myfile.cc, it's ok to #include (or forward-declare) Foo in myfile.h, instead of myfile.cc. Inline Functions link ▶Define functions inline only when they are small, say, 10 lines or less. Definition: You can declare functions in a way that allows the compiler to expand them inline rather than calling them through the usual function call mechanism. Pros: Inlining a function can generate more efficient object code, as long as the inlined function is small. Feel free to inline accessors and mutators, and other short, performance-critical functions. Cons: Overuse of inlining can actually make programs slower. Depending on a function's size, inlining it can cause the code size to increase or decrease. Inlining a very small accessor function will usually decrease code size while inlining a very large function can dramatically increase code size. On modern processors smaller code usually runs faster due to better use of the instruction cache. Decision: A decent rule of thumb is to not inline a function if it is more than 10 lines long. Beware of destructors, which are often longer than they appear because of implicit member- and base-destructor calls! Another useful rule of thumb: it's typically not cost effective to inline functions with loops or switch statements (unless, in the common case, the loop or switch statement is never executed). It is important to know that functions are not always inlined even if they are declared as such; for example, virtual and recursive functions are not normally inlined. Usually recursive functions should not be inline. The main reason for making a virtual function inline is to place its definition in the class, either for convenience or to document its behavior, e.g., for accessors and mutators. The -inl.h Files link ▶You may use file names with a -inl.h suffix to define complex inline functions when needed. The definition of an inline function needs to be in a header file, so that the compiler has the definition available for inlining at the call sites. However, implementation code properly belongs in .cc files, and we do not like to have much actual code in .h files unless there is a readability or performance advantage. If an inline function definition is short, with very little, if any, logic in it, you should put the code in your .h file. For example, accessors and mutators should certainly be inside a class definition. More complex inline functions may also be put in a .h file for the convenience of the implementer and callers, though if this makes the .h file too unwieldy you can instead put that code in a separate -inl.h file. This separates the implementation from the class definition, while still allowing the implementation to be included where necessary. Another use of -inl.h files is for definitions of function templates. This can be used to keep your template definitions easy to read. Do not forget that a -inl.h file requires a #define guard just like any other header file. Function Parameter Ordering link ▶When defining a function, parameter order is: inputs, then outputs. Parameters to C/C++ functions are either input to the function, output from the function, or both. Input parameters are usually values or const references, while output and input/output parameters will be non-const pointers. When ordering function parameters, put all input-only parameters before any output parameters. In particular, do not add new parameters to the end of the function just because they are new; place new input-only parameters before the output parameters. This is not a hard-and-fast rule. Parameters that are both input and output (often classes/structs) muddy the waters, and, as always, consistency with related functions may require you to bend the rule. Names and Order of Includes link ▶Use standard order for readability and to avoid hidden dependencies: C library, C++ library, other libraries' .h, your project's .h. All of a project's header files should be listed as descentants of the project's source directory without use of UNIX directory shortcuts . (the current directory) or .. (the parent directory). For example, google-awesome-project/src/base/logging.h should be included as #include "base/logging.h" In dir/foo.cc, whose main purpose is to implement or test the stuff in dir2/foo2.h, order your includes as follows: dir2/foo2.h (preferred location — see details below). C system files. C++ system files. Other libraries' .h files. Your project's .h files. The preferred ordering reduces hidden dependencies. We want every header file to be compilable on its own. The easiest way to achieve this is to make sure that every one of them is the first .h file #included in some .cc. dir/foo.cc and dir2/foo2.h are often in the same directory (e.g. base/basictypes_test.cc and base/basictypes.h), but can be in different directories too. Within each section it is nice to order the includes alphabetically. For example, the includes in google-awesome-project/src/foo/internal/fooserver.cc might look like this: #include "foo/public/fooserver.h" // Preferred location. #include #include #include #include #include "base/basictypes.h" #include "base/commandlineflags.h" #include "foo/public/bar.h" Scoping Namespaces link ▶Unnamed namespaces in .cc files are encouraged. With named namespaces, choose the name based on the project, and possibly its path. Do not use a using-directive. Definition: Namespaces subdivide the global scope into distinct, named scopes, and so are useful for preventing name collisions in the global scope. Pros: Namespaces provide a (hierarchical) axis of naming, in addition to the (also hierarchical) name axis provided by classes. For example, if two different projects have a class Foo in the global scope, these symbols may collide at compile time or at runtime. If each project places their code in a namespace, project1::Foo and project2::Foo are now distinct symbols that do not collide. Cons: Namespaces can be confusing, because they provide an additional (hierarchical) axis of naming, in addition to the (also hierarchical) name axis provided by classes. Use of unnamed spaces in header files can easily cause violations of the C++ One Definition Rule (ODR). Decision: Use namespaces according to the policy described below. Unnamed Namespaces Unnamed namespaces are allowed and even encouraged in .cc files, to avoid runtime naming conflicts: namespace { // This is in a .cc file. // The content of a namespace is not indented enum { kUnused, kEOF, kError }; // Commonly used tokens. bool AtEof() { return pos_ == kEOF; } // Uses our namespace's EOF. } // namespace However, file-scope declarations that are associated with a particular class may be declared in that class as types, static data members or static member functions rather than as members of an unnamed namespace. Terminate the unnamed namespace as shown, with a comment // namespace. Do not use unnamed namespaces in .h files. Named Namespaces Named namespaces should be used as follows: Namespaces wrap the entire source file after includes, gflags definitions/declarations, and forward declarations of classes from other namespaces: // In the .h file namespace mynamespace { // All declarations are within the namespace scope. // Notice the lack of indentation. class MyClass { public: ... void Foo(); }; } // namespace mynamespace // In the .cc file namespace mynamespace { // Definition of functions is within scope of the namespace. void MyClass::Foo() { ... } } // namespace mynamespace The typical .cc file might have more complex detail, including the need to reference classes in other namespaces. #include "a.h" DEFINE_bool(someflag, false, "dummy flag"); class C; // Forward declaration of class C in the global namespace. namespace a { class A; } // Forward declaration of a::A. namespace b { ...code for b... // Code goes against the left margin. } // namespace b Do not declare anything in namespace std, not even forward declarations of standard library classes. Declaring entities in namespace std is undefined behavior, i.e., not portable. To declare entities from the standard library, include the appropriate header file. You may not use a using-directive to make all names from a namespace available. // Forbidden -- This pollutes the namespace. using namespace foo; You may use a using-declaration anywhere in a .cc file, and in functions, methods or classes in .h files. // OK in .cc files. // Must be in a function, method or class in .h files. using ::foo::bar; Namespace aliases are allowed anywhere in a .cc file, anywhere inside the named namespace that wraps an entire .h file, and in functions and methods. // Shorten access to some commonly used names in .cc files. namespace fbz = ::foo::bar::baz; // Shorten access to some commonly used names (in a .h file). namespace librarian { // The following alias is available to all files including // this header (in namespace librarian): // alias names should therefore be chosen consistently // within a project. namespace pd_s = ::pipeline_diagnostics::sidetable; inline void my_inline_function() { // namespace alias local to a function (or method). namespace fbz = ::foo::bar::baz; ... } } // namespace librarian Note that an alias in a .h file is visible to everyone #including that file, so public headers (those available outside a project) and headers transitively #included by them, should avoid defining aliases, as part of the general goal of keeping public APIs as small as possible. Nested Classes link ▶Although you may use public nested classes when they are part of an interface, consider a namespace to keep declarations out of the global scope. Definition: A class can define another class within it; this is also called a member class. class Foo { private: // Bar is a member class, nested within Foo. class Bar { ... }; }; Pros: This is useful when the nested (or member) class is only used by the enclosing class; making it a member puts it in the enclosing class scope rather than polluting the outer scope with the class name. Nested classes can be forward declared within the enclosing class and then defined in the .cc file to avoid including the nested class definition in the enclosing class declaration, since the nested class definition is usually only relevant to the implementation. Cons: Nested classes can be forward-declared only within the definition of the enclosing class. Thus, any header file manipulating a Foo::Bar* pointer will have to include the full class declaration for Foo. Decision: Do not make nested classes public unless they are actually part of the interface, e.g., a class that holds a set of options for some method. Nonmember, Static Member, and Global Functions link ▶Prefer nonmember functions within a namespace or static member functions to global functions; use completely global functions rarely. Pros: Nonmember and static member functions can be useful in some situations. Putting nonmember functions in a namespace avoids polluting the global namespace. Cons: Nonmember and static member functions may make more sense as members of a new class, especially if they access external resources or have significant dependencies. Decision: Sometimes it is useful, or even necessary, to define a function not bound to a class instance. Such a function can be either a static member or a nonmember function. Nonmember functions should not depend on external variables, and should nearly always exist in a namespace. Rather than creating classes only to group static member functions which do not share static data, use namespaces instead. Functions defined in the same compilation unit as production classes may introduce unnecessary coupling and link-time dependencies when directly called from other compilation units; static member functions are particularly susceptible to this. Consider extracting a new class, or placing the functions in a namespace possibly in a separate library. If you must define a nonmember function and it is only needed in its .cc file, use an unnamed namespace or static linkage (eg static int Foo() {...}) to limit its scope. Local Variables link ▶Place a function's variables in the narrowest scope possible, and initialize variables in the declaration. C++ allows you to declare variables anywhere in a function. We encourage you to declare them in as local a scope as possible, and as close to the first use as possible. This makes it easier for the reader to find the declaration and see what type the variable is and what it was initialized to. In particular, initialization should be used instead of declaration and assignment, e.g. int i; i = f(); // Bad -- initialization separate from declaration. int j = g(); // Good -- declaration has initialization. Note that gcc implements for (int i = 0; i < 10; ++i) correctly (the scope of i is only the scope of the for loop), so you can then reuse i in another for loop in the same scope. It also correctly scopes declarations in if and while statements, e.g. while (const char* p = strchr(str, '/')) str = p + 1; There is one caveat: if the variable is an object, its constructor is invoked every time it enters scope and is created, and its destructor is invoked every time it goes out of scope. // Inefficient implementation: for (int i = 0; i < 1000000; ++i) { Foo f; // My ctor and dtor get called 1000000 times each. f.DoSomething(i); } It may be more efficient to declare such a variable used in a loop outside that loop: Foo f; // My ctor and dtor get called once each. for (int i = 0; i < 1000000; ++i) { f.DoSomething(i); } Static and Global Variables link ▶Static or global variables of class type are forbidden: they cause hard-to-find bugs due to indeterminate order of construction and destruction. Objects with static storage duration, including global variables, static variables, static class member variables, and function static variables, must be Plain Old Data (POD): only ints, chars, floats, or pointers, or arrays/structs of POD. The order in which class constructors and initializers for static variables are called is only partially specified in C++ and can even change from build to build, which can cause bugs that are difficult to find. Therefore in addition to banning globals of class type, we do not allow static POD variables to be initialized with the result of a function, unless that function (such as getenv(), or getpid()) does not itself depend on any other globals. Likewise, the order in which destructors are called is defined to be the reverse of the order in which the constructors were called. Since constructor order is indeterminate, so is destructor order. For example, at program-end time a static variable might have been destroyed, but code still running -- perhaps in another thread -- tries to access it and fails. Or the destructor for a static 'string' variable might be run prior to the destructor for another variable that contains a reference to that string. As a result we only allow static variables to contain POD data. This rule completely disallows vector (use C arrays instead), or string (use const char []). If you need a static or global variable of a class type, consider initializing a pointer (which will never be freed), from either your main() function or from pthread_once(). Note that this must be a raw pointer, not a "smart" pointer, since the smart pointer's destructor will have the order-of-destructor issue that we are trying to avoid. Classes Classes are the fundamental unit of code in C++. Naturally, we use them extensively. This section lists the main dos and don'ts you should follow when writing a class. Doing Work in Constructors link ▶In general, constructors should merely set member variables to their initial values. Any complex initialization should go in an explicit Init() method. Definition: It is possible to perform initialization in the body of the constructor. Pros: Convenience in typing. No need to worry about whether the class has been initialized or not. Cons: The problems with doing work in constructors are: There is no easy way for constructors to signal errors, short of using exceptions (which are forbidden). If the work fails, we now have an object whose initialization code failed, so it may be an indeterminate state. If the work calls virtual functions, these calls will not get dispatched to the subclass implementations. Future modification to your class can quietly introduce this problem even if your class is not currently subclassed, causing much confusion. If someone creates a global variable of this type (which is against the rules, but still), the constructor code will be called before main(), possibly breaking some implicit assumptions in the constructor code. For instance, gflags will not yet have been initialized. Decision: If your object requires non-trivial initialization, consider having an explicit Init() method. In particular, constructors should not call virtual functions, attempt to raise errors, access potentially uninitialized global variables, etc. Default Constructors link ▶You must define a default constructor if your class defines member variables and has no other constructors. Otherwise the compiler will do it for you, badly. Definition: The default constructor is called when we new a class object with no arguments. It is always called when calling new[] (for arrays). Pros: Initializing structures by default, to hold "impossible" values, makes debugging much easier. Cons: Extra work for you, the code writer. Decision: If your class defines member variables and has no other constructors you must define a default constructor (one that takes no arguments). It should preferably initialize the object in such a way that its internal state is consistent and valid. The reason for this is that if you have no other constructors and do not define a default constructor, the compiler will generate one for you. This compiler generated constructor may not initialize your object sensibly. If your class inherits from an existing class but you add no new member variables, you are not required to have a default constructor. Explicit Constructors link ▶Use the C++ keyword explicit for constructors with one argument. Definition: Normally, if a constructor takes one argument, it can be used as a conversion. For instance, if you define Foo::Foo(string name) and then pass a string to a function that expects a Foo, the constructor will be called to convert the string into a Foo and will pass the Foo to your function for you. This can be convenient but is also a source of trouble when things get converted and new objects created without you meaning them to. Declaring a constructor explicit prevents it from being invoked implicitly as a conversion. Pros: Avoids undesirable conversions. Cons: None. Decision: We require all single argument constructors to be explicit. Always put explicit in front of one-argument constructors in the class definition: explicit Foo(string name); The exception is copy constructors, which, in the rare cases when we allow them, should probably not be explicit. Classes that are intended to be transparent wrappers around other classes are also exceptions. Such exceptions should be clearly marked with comments. Copy Constructors link ▶Provide a copy constructor and assignment operator only when necessary. Otherwise, disable them with DISALLOW_COPY_AND_ASSIGN. Definition: The copy constructor and assignment operator are used to create copies of objects. The copy constructor is implicitly invoked by the compiler in some situations, e.g. passing objects by value. Pros: Copy constructors make it easy to copy objects. STL containers require that all contents be copyable and assignable. Copy constructors can be more efficient than CopyFrom()-style workarounds because they combine construction with copying, the compiler can elide them in some contexts, and they make it easier to avoid heap allocation. Cons: Implicit copying of objects in C++ is a rich source of bugs and of performance problems. It also reduces readability, as it becomes hard to track which objects are being passed around by value as opposed to by reference, and therefore where changes to an object are reflected. Decision: Few classes need to be copyable. Most should have neither a copy constructor nor an assignment operator. In many situations, a pointer or reference will work just as well as a copied value, with better performance. For example, you can pass function parameters by reference or pointer instead of by value, and you can store pointers rather than objects in an STL container. If your class needs to be copyable, prefer providing a copy method, such as CopyFrom() or Clone(), rather than a copy constructor, because such methods cannot be invoked implicitly. If a copy method is insufficient in your situation (e.g. for performance reasons, or because your class needs to be stored by value in an STL container), provide both a copy constructor and assignment operator. If your class does not need a copy constructor or assignment operator, you must explicitly disable them. To do so, add dummy declarations for the copy constructor and assignment operator in the private: section of your class, but do not provide any corresponding definition (so that any attempt to use them results in a link error). For convenience, a DISALLOW_COPY_AND_ASSIGN macro can be used: // A macro to disallow the copy constructor and operator= functions // This should be used in the private: declarations for a class #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&); \ void operator=(const TypeName&) Then, in class Foo: class Foo { public: Foo(int f); ~Foo(); private: DISALLOW_COPY_AND_ASSIGN(Foo); }; Structs vs. Classes link ▶Use a struct only for passive objects that carry data; everything else is a class. The struct and class keywords behave almost identically in C++. We add our own semantic meanings to each keyword, so you should use the appropriate keyword for the data-type you're defining. structs should be used for passive objects that carry data, and may have associated constants, but lack any functionality other than access/setting the data members. The accessing/setting of fields is done by directly accessing the fields rather than through method invocations. Methods should not provide behavior but should only be used to set up the data members, e.g., constructor, destructor, Initialize(), Reset(), Validate(). If more functionality is required, a class is more appropriate. If in doubt, make it a class. For consistency with STL, you can use struct instead of class for functors and traits. Note that member variables in structs and classes have different naming rules. Inheritance link ▶Composition is often more appropriate than inheritance. When using inheritance, make it public. Definition: When a sub-class inherits from a base class, it includes the definitions of all the data and operations that the parent base class defines. In practice, inheritance is used in two major ways in C++: implementation inheritance, in which actual code is inherited by the child, and interface inheritance, in which only method names are inherited. Pros: Implementation inheritance reduces code size by re-using the base class code as it specializes an existing type. Because inheritance is a compile-time declaration, you and the compiler can understand the operation and detect errors. Interface inheritance can be used to programmatically enforce that a class expose a particular API. Again, the compiler can detect errors, in this case, when a class does not define a necessary method of the API. Cons: For implementation inheritance, because the code implementing a sub-class is spread between the base and the sub-class, it can be more difficult to understand an implementation. The sub-class cannot override functions that are not virtual, so the sub-class cannot change implementation. The base class may also define some data members, so that specifies physical layout of the base class. Decision: All inheritance should be public. If you want to do private inheritance, you should be including an instance of the base class as a member instead. Do not overuse implementation inheritance. Composition is often more appropriate. Try to restrict use of inheritance to the "is-a" case: Bar subclasses Foo if it can reasonably be said that Bar "is a kind of" Foo. Make your destructor virtual if necessary. If your class has virtual methods, its destructor should be virtual. Limit the use of protected to those member functions that might need to be accessed from subclasses. Note that data members should be private. When redefining an inherited virtual function, explicitly declare it virtual in the declaration of the derived class. Rationale: If virtual is omitted, the reader has to check all ancestors of the class in question to determine if the function is virtual or not. Multiple Inheritance link ▶Only very rarely is multiple implementation inheritance actually useful. We allow multiple inheritance only when at most one of the base classes has an implementation; all other base classes must be pure interface classes tagged with the Interface suffix. Definition: Multiple inheritance allows a sub-class to have more than one base class. We distinguish between base classes that are pure interfaces and those that have an implementation. Pros: Multiple implementation inheritance may let you re-use even more code than single inheritance (see Inheritance). Cons: Only very rarely is multiple implementation inheritance actually useful. When multiple implementation inheritance seems like the solution, you can usually find a different, more explicit, and cleaner solution. Decision: Multiple inheritance is allowed only when all superclasses, with the possible exception of the first one, are pure interfaces. In order to ensure that they remain pure interfaces, they must end with the Interface suffix. Note: There is an exception to this rule on Windows. Interfaces link ▶Classes that satisfy certain conditions are allowed, but not required, to end with an Interface suffix. Definition: A class is a pure interface if it meets the following requirements: It has only public pure virtual ("= 0") methods and static methods (but see below for destructor). It may not have non-static data members. It need not have any constructors defined. If a constructor is provided, it must take no arguments and it must be protected. If it is a subclass, it may only be derived from classes that satisfy these conditions and are tagged with the Interface suffix. An interface class can never be directly instantiated because of the pure virtual method(s) it declares. To make sure all implementations of the interface can be destroyed correctly, they must also declare a virtual destructor (in an exception to the first rule, this should not be pure). See Stroustrup, The C++ Programming Language, 3rd edition, section 12.4 for details. Pros: Tagging a class with the Interface suffix lets others know that they must not add implemented methods or non static data members. This is particularly important in the case of multiple inheritance. Additionally, the interface concept is already well-understood by Java programmers. Cons: The Interface suffix lengthens the class name, which can make it harder to read and understand. Also, the interface property may be considered an implementation detail that shouldn't be exposed to clients. Decision: A class may end with Interface only if it meets the above requirements. We do not require the converse, however: classes that meet the above requirements are not required to end with Interface. Operator Overloading link ▶Do not overload operators except in rare, special circumstances. Definition: A class can define that operators such as + and / operate on the class as if it were a built-in type. Pros: Can make code appear more intuitive because a class will behave in the same way as built-in types (such as int). Overloaded operators are more playful names for functions that are less-colorfully named, such as Equals() or Add(). For some template functions to work correctly, you may need to define operators. Cons: While operator overloading can make code more intuitive, it has several drawbacks: It can fool our intuition into thinking that expensive operations are cheap, built-in operations. It is much harder to find the call sites for overloaded operators. Searching for Equals() is much easier than searching for relevant invocations of ==. Some operators work on pointers too, making it easy to introduce bugs. Foo + 4 may do one thing, while &Foo + 4 does something totally different. The compiler does not complain for either of these, making this very hard to debug. Overloading also has surprising ramifications. For instance, if a class overloads unary operator&, it cannot safely be forward-declared. Decision: In general, do not overload operators. The assignment operator (operator=), in particular, is insidious and should be avoided. You can define functions like Equals() and CopyFrom() if you need them. Likewise, avoid the dangerous unary operator& at all costs, if there's any possibility the class might be forward-declared. However, there may be rare cases where you need to overload an operator to interoperate with templates or "standard" C++ classes (such as operator<<(ostream&, const T&) for logging). These are acceptable if fully justified, but you should try to avoid these whenever possible. In particular, do not overload operator== or operator< just so that your class can be used as a key in an STL container; instead, you should create equality and comparison functor types when declaring the container. Some of the STL algorithms do require you to overload operator==, and you may do so in these cases, provided you document why. See also Copy Constructors and Function Overloading. Access Control link ▶Make data members private, and provide access to them through accessor functions as needed (for technical reasons, we allow data members of a test fixture class to be protected when using Google Test). Typically a variable would be called foo_ and the accessor function foo(). You may also want a mutator function set_foo(). Exception: static const data members (typically called kFoo) need not be private. The definitions of accessors are usually inlined in the header file. See also Inheritance and Function Names. Declaration Order link ▶Use the specified order of declarations within a class: public: before private:, methods before data members (variables), etc. Your class definition should start with its public: section, followed by its protected: section and then its private: section. If any of these sections are empty, omit them. Within each section, the declarations generally should be in the following order: Typedefs and Enums Constants (static const data members) Constructors Destructor Methods, including static methods Data Members (except static const data members) Friend declarations should always be in the private section, and the DISALLOW_COPY_AND_ASSIGN macro invocation should be at the end of the private: section. It should be the last thing in the class. See Copy Constructors. Method definitions in the corresponding .cc file should be the same as the declaration order, as much as possible. Do not put large method definitions inline in the class definition. Usually, only trivial or performance-critical, and very short, methods may be defined inline. See Inline Functions for more details. Write Short Functions link ▶Prefer small and focused functions. We recognize that long functions are sometimes appropriate, so no hard limit is placed on functions length. If a function exceeds about 40 lines, think about whether it can be broken up without harming the structure of the program. Even if your long function works perfectly now, someone modifying it in a few months may add new behavior. This could result in bugs that are hard to find. Keeping your functions short and simple makes it easier for other people to read and modify your code. You could find long and complicated functions when working with some code. Do not be intimidated by modifying existing code: if working with such a function proves to be difficult, you find that errors are hard to debug, or you want to use a piece of it in several different contexts, consider breaking up the function into smaller and more manageable pieces. Google-Specific Magic There are various tricks and utilities that we use to make C++ code more robust, and various ways we use C++ that may differ from what you see elsewhere. Smart Pointers link ▶If you actually need pointer semantics, scoped_ptr is great. You should only use std::tr1::shared_ptr under very specific conditions, such as when objects need to be held by STL containers. You should never use auto_ptr. "Smart" pointers are objects that act like pointers but have added semantics. When a scoped_ptr is destroyed, for instance, it deletes the object it's pointing to. shared_ptr is the same way, but implements reference-counting so only the last pointer to an object deletes it. Generally speaking, we prefer that we design code with clear object ownership. The clearest object ownership is obtained by using an object directly as a field or local variable, without using pointers at all. On the other extreme, by their very definition, reference counted pointers are owned by nobody. The problem with this design is that it is easy to create circular references or other strange conditions that cause an object to never be deleted. It is also slow to perform atomic operations every time a value is copied or assigned. Although they are not recommended, reference counted pointers are sometimes the simplest and most elegant way to solve a problem. cpplint link ▶Use cpplint.py to detect style errors. cpplint.py is a tool that reads a source file and identifies many style errors. It is not perfect, and has both false positives and false negatives, but it is still a valuable tool. False positives can be ignored by putting // NOLINT at the end of the line. Some projects have instructions on how to run cpplint.py from their project tools. If the project you are contributing to does not, you can download cpplint.py separately. Other C++ Features Reference Arguments link ▶All parameters passed by reference must be labeled const. Definition: In C, if a function needs to modify a variable, the parameter must use a pointer, eg int foo(int *pval). In C++, the function can alternatively declare a reference parameter: int foo(int &val). Pros: Defining a parameter as reference avoids ugly code like (*pval)++. Necessary for some applications like copy constructors. Makes it clear, unlike with pointers, that NULL is not a possible value. Cons: References can be confusing, as they have value syntax but pointer semantics. Decision: Within function parameter lists all references must be const: void Foo(const string &in, string *out); In fact it is a very strong convention in Google code that input arguments are values or const references while output arguments are pointers. Input parameters may be const pointers, but we never allow non-const reference parameters. One case when you might want an input parameter to be a const pointer is if you want to emphasize that the argument is not copied, so it must exist for the lifetime of the object; it is usually best to document this in comments as well. STL adapters such as bind2nd and mem_fun do not permit reference parameters, so you must declare functions with pointer parameters in these cases, too. Function Overloading link ▶Use overloaded functions (including constructors) only if a reader looking at a call site can get a good idea of what is happening without having to first figure out exactly which overload is being called. Definition: You may write a function that takes a const string& and overload it with another that takes const char*. class MyClass { public: void Analyze(const string &text); void Analyze(const char *text, size_t textlen); }; Pros: Overloading can make code more intuitive by allowing an identically-named function to take different arguments. It may be necessary for templatized code, and it can be convenient for Visitors. Cons: If a function is overloaded by the argument types alone, a reader may have to understand C++'s complex matching rules in order to tell what's going on. Also many people are confused by the semantics of inheritance if a derived class overrides only some of the variants of a function. Decision: If you want to overload a function, consider qualifying the name with some information about the arguments, e.g., AppendString(), AppendInt() rather than just Append(). Default Arguments link ▶We do not allow default function parameters, except in a few uncommon situations explained below. Pros: Often you have a function that uses lots of default values, but occasionally you want to override the defaults. Default parameters allow an easy way to do this without having to define many functions for the rare exceptions. Cons: People often figure out how to use an API by looking at existing code that uses it. Default parameters are more difficult to maintain because copy-and-paste from previous code may not reveal all the parameters. Copy-and-pasting of code segments can cause major problems when the default arguments are not appropriate for the new code. Decision: Except as described below, we require all arguments to be explicitly specified, to force programmers to consider the API and the values they are passing for each argument rather than silently accepting defaults they may not be aware of. One specific exception is when default arguments are used to simulate variable-length argument lists. // Support up to 4 params by using a default empty AlphaNum. string StrCat(const AlphaNum &a, const AlphaNum &b = gEmptyAlphaNum, const AlphaNum &c = gEmptyAlphaNum, const AlphaNum &d = gEmptyAlphaNum); Variable-Length Arrays and alloca() link ▶We do not allow variable-length arrays or alloca(). Pros: Variable-length arrays have natural-looking syntax. Both variable-length arrays and alloca() are very efficient. Cons: Variable-length arrays and alloca are not part of Standard C++. More importantly, they allocate a data-dependent amount of stack space that can trigger difficult-to-find memory overwriting bugs: "It ran fine on my machine, but dies mysteriously in production". Decision: Use a safe allocator instead, such as scoped_ptr/scoped_array. Friends link ▶We allow use of friend classes and functions, within reason. Friends should usually be defined in the same file so that the reader does not have to look in another file to find uses of the private members of a class. A common use of friend is to have a FooBuilder class be a friend of Foo so that it can construct the inner state of Foo correctly, without exposing this state to the world. In some cases it may be useful to make a unittest class a friend of the class it tests. Friends extend, but do not break, the encapsulation boundary of a class. In some cases this is better than making a member public when you want to give only one other class access to it. However, most classes should interact with other classes solely through their public members. Exceptions link ▶We do not use C++ exceptions. Pros: Exceptions allow higher levels of an application to decide how to handle "can't happen" failures in deeply nested functions, without the obscuring and error-prone bookkeeping of error codes. Exceptions are used by most other modern languages. Using them in C++ would make it more consistent with Python, Java, and the C++ that others are familiar with. Some third-party C++ libraries use exceptions, and turning them off internally makes it harder to integrate with those libraries. Exceptions are the only way for a constructor to fail. We can simulate this with a factory function or an Init() method, but these require heap allocation or a new "invalid" state, respectively. Exceptions are really handy in testing frameworks. Cons: When you add a throw statement to an existing function, you must examine all of its transitive callers. Either they must make at least the basic exception safety guarantee, or they must never catch the exception and be happy with the program terminating as a result. For instance, if f() calls g() calls h(), and h throws an exception that f catches, g has to be careful or it may not clean up properly. More generally, exceptions make the control flow of programs difficult to evaluate by looking at code: functions may return in places you don't expect. This causes maintainability and debugging difficulties. You can minimize this cost via some rules on how and where exceptions can be used, but at the cost of more that a developer needs to know and understand. Exception safety requires both RAII and different coding practices. Lots of supporting machinery is needed to make writing correct exception-safe code easy. Further, to avoid requiring readers to understand the entire call graph, exception-safe code must isolate logic that writes to persistent state into a "commit" phase. This will have both benefits and costs (perhaps where you're forced to obfuscate code to isolate the commit). Allowing exceptions would force us to always pay those costs even when they're not worth it. Turning on exceptions adds data to each binary produced, increasing compile time (probably slightly) and possibly increasing address space pressure. The availability of exceptions may encourage developers to throw them when they are not appropriate or recover from them when it's not safe to do so. For example, invalid user input should not cause exceptions to be thrown. We would need to make the style guide even longer to document these restrictions! Decision: On their face, the benefits of using exceptions outweigh the costs, especially in new projects. However, for existing code, the introduction of exceptions has implications on all dependent code. If exceptions can be propagated beyond a new project, it also becomes problematic to integrate the new project into existing exception-free code. Because most existing C++ code at Google is not prepared to deal with exceptions, it is comparatively difficult to adopt new code that generates exceptions. Given that Google's existing code is not exception-tolerant, the costs of using exceptions are somewhat greater than the costs in a new project. The conversion process would be slow and error-prone. We don't believe that the available alternatives to exceptions, such as error codes and assertions, introduce a significant burden. Our advice against using exceptions is not predicated on philosophical or moral grounds, but practical ones. Because we'd like to use our open-source projects at Google and it's difficult to do so if those projects use exceptions, we need to advise against exceptions in Google open-source projects as well. Things would probably be different if we had to do it all over again from scratch. There is an exception to this rule (no pun intended) for Windows code. Run-Time Type Information (RTTI) link ▶We do not use Run Time Type Information (RTTI). Definition: RTTI allows a programmer to query the C++ class of an object at run time. Pros: It is useful in some unittests. For example, it is useful in tests of factory classes where the test has to verify that a newly created object has the expected dynamic type. In rare circumstances, it is useful even outside of tests. Cons: A query of type during run-time typically means a design problem. If you need to know the type of an object at runtime, that is often an indication that you should reconsider the design of your class. Decision: Do not use RTTI, except in unittests. If you find yourself in need of writing code that behaves differently based on the class of an object, consider one of the alternatives to querying the type. Virtual methods are the preferred way of executing different code paths depending on a specific subclass type. This puts the work within the object itself. If the work belongs outside the object and instead in some processing code, consider a double-dispatch solution, such as the Visitor design pattern. This allows a facility outside the object itself to determine the type of class using the built-in type system. If you think you truly cannot use those ideas, you may use RTTI. But think twice about it. :-) Then think twice again. Do not hand-implement an RTTI-like workaround. The arguments against RTTI apply just as much to workarounds like class hierarchies with type tags. Casting link ▶Use C++ casts like static_cast(). Do not use other cast formats like int y = (int)x; or int y = int(x);. Definition: C++ introduced a different cast system from C that distinguishes the types of cast operations. Pros: The problem with C casts is the ambiguity of the operation; sometimes you are doing a conversion (e.g., (int)3.5) and sometimes you are doing a cast (e.g., (int)"hello"); C++ casts avoid this. Additionally C++ casts are more visible when searching for them. Cons: The syntax is nasty. Decision: Do not use C-style casts. Instead, use these C++-style casts. Use static_cast as the equivalent of a C-style cast that does value conversion, or when you need to explicitly up-cast a pointer from a class to its superclass. Use const_cast to remove the const qualifier (see const). Use reinterpret_cast to do unsafe conversions of pointer types to and from integer and other pointer types. Use this only if you know what you are doing and you understand the aliasing issues. Do not use dynamic_cast except in test code. If you need to know type information at runtime in this way outside of a unittest, you probably have a design flaw. Streams link ▶Use streams only for logging. Definition: Streams are a replacement for printf() and scanf(). Pros: With streams, you do not need to know the type of the object you are printing. You do not have problems with format strings not matching the argument list. (Though with gcc, you do not have that problem with printf either.) Streams have automatic constructors and destructors that open and close the relevant files. Cons: Streams make it difficult to do functionality like pread(). Some formatting (particularly the common format string idiom %.*s) is difficult if not impossible to do efficiently using streams without using printf-like hacks. Streams do not support operator reordering (the %1s directive), which is helpful for internationalization. Decision: Do not use streams, except where required by a logging interface. Use printf-like routines instead. There are various pros and cons to using streams, but in this case, as in many other cases, consistency trumps the debate. Do not use streams in your code. Extended Discussion There has been debate on this issue, so this explains the reasoning in greater depth. Recall the Only One Way guiding principle: we want to make sure that whenever we do a certain type of I/O, the code looks the same in all those places. Because of this, we do not want to allow users to decide between using streams or using printf plus Read/Write/etc. Instead, we should settle on one or the other. We made an exception for logging because it is a pretty specialized application, and for historical reasons. Proponents of streams have argued that streams are the obvious choice of the two, but the issue is not actually so clear. For every advantage of streams they point out, there is an equivalent disadvantage. The biggest advantage is that you do not need to know the type of the object to be printing. This is a fair point. But, there is a downside: you can easily use the wrong type, and the compiler will not warn you. It is easy to make this kind of mistake without knowing when using streams. cout << this; // Prints the address cout << *this; // Prints the contents The compiler does not generate an error because << has been overloaded. We discourage overloading for just this reason. Some say printf formatting is ugly and hard to read, but streams are often no better. Consider the following two fragments, both with the same typo. Which is easier to discover? cerr << "Error connecting to '" hostname.first << ":" hostname.second << ": " hostname.first, foo->bar()->hostname.second, strerror(errno)); And so on and so forth for any issue you might bring up. (You could argue, "Things would be better with the right wrappers," but if it is true for one scheme, is it not also true for the other? Also, remember the goal is to make the language smaller, not add yet more machinery that someone has to learn.) Either path would yield different advantages and disadvantages, and there is not a clearly superior solution. The simplicity doctrine mandates we settle on one of them though, and the majority decision was on printf + read/write. Preincrement and Predecrement link ▶Use prefix form (++i) of the increment and decrement operators with iterators and other template objects. Definition: When a variable is incremented (++i or i++) or decremented (--i or i--) and the value of the expression is not used, one must decide whether to preincrement (decrement) or postincrement (decrement). Pros: When the return value is ignored, the "pre" form (++i) is never less efficient than the "post" form (i++), and is often more efficient. This is because post-increment (or decrement) requires a copy of i to be made, which is the value of the expression. If i is an iterator or other non-scalar type, copying i could be expensive. Since the two types of increment behave the same when the value is ignored, why not just always pre-increment? Cons: The tradition developed, in C, of using post-increment when the expression value is not used, especially in for loops. Some find post-increment easier to read, since the "subject" (i) precedes the "verb" (++), just like in English. Decision: For simple scalar (non-object) values there is no reason to prefer one form and we allow either. For iterators and other template types, use pre-increment. Use of const link ▶We strongly recommend that you use const whenever it makes sense to do so. Definition: Declared variables and parameters can be preceded by the keyword const to indicate the variables are not changed (e.g., const int foo). Class functions can have the const qualifier to indicate the function does not change the state of the class member variables (e.g., class Foo { int Bar(char c) const; };). Pros: Easier for people to understand how variables are being used. Allows the compiler to do better type checking, and, conceivably, generate better code. Helps people convince themselves of program correctness because they know the functions they call are limited in how they can modify your variables. Helps people know what functions are safe to use without locks in multi-threaded programs. Cons: const is viral: if you pass a const variable to a function, that function must have const in its prototype (or the variable will need a const_cast). This can be a particular problem when calling library functions. Decision: const variables, data members, methods and arguments add a level of compile-time type checking; it is better to detect errors as soon as possible. Therefore we strongly recommend that you use const whenever it makes sense to do so: If a function does not modify an argument passed by reference or by pointer, that argument should be const. Declare methods to be const whenever possible. Accessors should almost always be const. Other methods should be const if they do not modify any data members, do not call any non-const methods, and do not return a non-const pointer or non-const reference to a data member. Consider making data members const whenever they do not need to be modified after construction. However, do not go crazy with const. Something like const int * const * const x; is likely overkill, even if it accurately describes how const x is. Focus on what's really useful to know: in this case, const int** x is probably sufficient. The mutable keyword is allowed but is unsafe when used with threads, so thread safety should be carefully considered first. Where to put the const Some people favor the form int const *foo to const int* foo. They argue that this is more readable because it's more consistent: it keeps the rule that const always follows the object it's describing. However, this consistency argument doesn't apply in this case, because the "don't go crazy" dictum eliminates most of the uses you'd have to be consistent with. Putting the const first is arguably more readable, since it follows English in putting the "adjective" (const) before the "noun" (int). That said, while we encourage putting const first, we do not require it. But be consistent with the code around you! Integer Types link ▶Of the built-in C++ integer types, the only one used is int. If a program needs a variable of a different size, use a precise-width integer type from , such as int16_t. Definition: C++ does not specify the sizes of its integer types. Typically people assume that short is 16 bits, int is 32 bits, long is 32 bits and long long is 64 bits. Pros: Uniformity of declaration. Cons: The sizes of integral types in C++ can vary based on compiler and architecture. Decision: defines types like int16_t, uint32_t, int64_t, etc. You should always use those in preference to short, unsigned long long and the like, when you need a guarantee on the size of an integer. Of the C integer types, only int should be used. When appropriate, you are welcome to use standard types like size_t and ptrdiff_t. We use int very often, for integers we know are not going to be too big, e.g., loop counters. Use plain old int for such things. You should assume that an int is at least 32 bits, but don't assume that it has more than 32 bits. If you need a 64-bit integer type, use int64_t or uint64_t. For integers we know can be "big", use int64_t. You should not use the unsigned integer types such as uint32_t, unless the quantity you are representing is really a bit pattern rather than a number, or unless you need defined twos-complement overflow. In particular, do not use unsigned types to say a number will never be negative. Instead, use assertions for this. On Unsigned Integers Some people, including some textbook authors, recommend using unsigned types to represent numbers that are never negative. This is intended as a form of self-documentation. However, in C, the advantages of such documentation are outweighed by the real bugs it can introduce. Consider: for (unsigned int i = foo.Length()-1; i >= 0; --i) ... This code will never terminate! Sometimes gcc will notice this bug and warn you, but often it will not. Equally bad bugs can occur when comparing signed and unsigned variables. Basically, C's type-promotion scheme causes unsigned types to behave differently than one might expect. So, document that a variable is non-negative using assertions. Don't use an unsigned type. 64-bit Portability link ▶Code should be 64-bit and 32-bit friendly. Bear in mind problems of printing, comparisons, and structure alignment. printf() specifiers for some types are not cleanly portable between 32-bit and 64-bit systems. C99 defines some portable format specifiers. Unfortunately, MSVC 7.1 does not understand some of these specifiers and the standard is missing a few, so we have to define our own ugly versions in some cases (in the style of the standard include file inttypes.h): // printf macros for size_t, in the style of inttypes.h #ifdef _LP64 #define __PRIS_PREFIX "z" #else #define __PRIS_PREFIX #endif // Use these macros after a % in a printf format string // to get correct 32/64 bit behavior, like this: // size_t size = records.size(); // printf("%"PRIuS"\n", size); #define PRIdS __PRIS_PREFIX "d" #define PRIxS __PRIS_PREFIX "x" #define PRIuS __PRIS_PREFIX "u" #define PRIXS __PRIS_PREFIX "X" #define PRIoS __PRIS_PREFIX "o" Type DO NOT use DO use Notes void * (or any pointer) %lx %p int64_t %qd, %lld %"PRId64" uint64_t %qu, %llu, %llx %"PRIu64", %"PRIx64" size_t %u %"PRIuS", %"PRIxS" C99 specifies %zu ptrdiff_t %d %"PRIdS" C99 specifies %zd Note that the PRI* macros expand to independent strings which are concatenated by the compiler. Hence if you are using a non-constant format string, you need to insert the value of the macro into the format, rather than the name. It is still possible, as usual, to include length specifiers, etc., after the % when using the PRI* macros. So, e.g. printf("x = %30"PRIuS"\n", x) would expand on 32-bit Linux to printf("x = %30" "u" "\n", x), which the compiler will treat as printf("x = %30u\n", x). Remember that sizeof(void *) != sizeof(int). Use intptr_t if you want a pointer-sized integer. You may need to be careful with structure alignments, particularly for structures being stored on disk. Any class/structure with a int64_t/uint64_t member will by default end up being 8-byte aligned on a 64-bit system. If you have such structures being shared on disk between 32-bit and 64-bit code, you will need to ensure that they are packed the same on both architectures. Most compilers offer a way to alter structure alignment. For gcc, you can use __attribute__((packed)). MSVC offers #pragma pack() and __declspec(align()). Use the LL or ULL suffixes a
[PHP] ;;;;;;;;;;;;;;;;;;; ; About php.ini ; ;;;;;;;;;;;;;;;;;;; ; PHP's initialization file, generally called php.ini, is responsible for ; configuring many of the aspects of PHP's behavior. ; PHP attempts to find and load this configuration from a number of locations. ; The following is a summary of its search order: ; 1. SAPI module specific location. ; 2. The PHPRC environment variable. (As of PHP 5.2.0) ; 3. A number of predefined registry keys on Windows (As of PHP 5.2.0) ; 4. Current working directory (except CLI) ; 5. The web server's directory (for SAPI modules), or directory of PHP ; (otherwise in Windows) ; 6. The directory from the --with-config-file-path compile time option, or the ; Windows directory (C:\windows or C:\winnt) ; See the PHP docs for more specific information. ; http://php.net/configuration.file ; The syntax of the file is extremely simple. Whitespace and lines ; beginning with a semicolon are silently ignored (as you probably guessed). ; Section headers (e.g. [Foo]) are also silently ignored, even though ; they might mean something in the future. ; Directives following the section heading [PATH=/www/mysite] only ; apply to PHP files in the /www/mysite directory. Directives ; following the section heading [HOST=www.example.com] only apply to ; PHP files served from www.example.com. Directives set in these ; special sections cannot be overridden by user-defined INI files or ; at runtime. Currently, [PATH=] and [HOST=] sections only work under ; CGI/FastCGI. ; http://php.net/ini.sections ; Directives are specified using the following syntax: ; directive = value ; Directive names are *case sensitive* - foo=bar is different from FOO=bar. ; Directives are variables used to configure PHP or PHP extensions. ; There is no name validation. If PHP can't find an expected ; directive because it is not set or is mistyped, a default value will be used. ; The value can be a string, a number, a PHP constant (e.g. E_ALL or M_PI), one ; of the INI constants (On, Off, True, False, Yes, No and None) or an expression ; (e.g. E_ALL & ~E_NOTICE), a quoted string ("bar"), or a reference to a ; previously set variable or directive (e.g. ${foo}) ; Expressions in the INI file are limited to bitwise operators and parentheses: ; | bitwise OR ; ^ bitwise XOR ; & bitwise AND ; ~ bitwise NOT ; ! boolean NOT ; Boolean flags can be turned on using the values 1, On, True or Yes. ; They can be turned off using the values 0, Off, False or No. ; An empty string can be denoted by simply not writing anything after the equal ; sign, or by using the None keyword: ; foo = ; sets foo to an empty string ; foo = None ; sets foo to an empty string ; foo = "None" ; sets foo to the string 'None' ; If you use constants in your value, and these constants belong to a ; dynamically loaded extension (either a PHP extension or a Zend extension), ; you may only use these constants *after* the line that loads the extension. ;;;;;;;;;;;;;;;;;;; ; About this file ; ;;;;;;;;;;;;;;;;;;; ; PHP comes packaged with two INI files. One that is recommended to be used ; in production environments and one that is recommended to be used in ; development environments. ; php.ini-production contains settings which hold security, performance and ; best practices at its core. But please be aware, these settings may break ; compatibility with older or less security conscience applications. We ; recommending using the production ini in production and testing environments. ; php.ini-development is very similar to its production variant, except it's ; much more verbose when it comes to errors. We recommending using the ; development version only in development environments as errors shown to ; application users can inadvertently leak otherwise secure information. ; This is php.ini-development INI file. ;;;;;;;;;;;;;;;;;;; ; Quick Reference ; ;;;;;;;;;;;;;;;;;;; ; The following are all the settings which are different in either the production ; or development versions of the INIs with respect to PHP's default behavior. ; Please see the actual settings later in the document for more details as to why ; we recommend these changes in PHP's behavior. ; display_errors ; Default Value: On ; Development Value: On ; Production Value: Off ; display_startup_errors ; Default Value: Off ; Development Value: On ; Production Value: Off ; error_reporting ; Default Value: E_ALL & ~E_NOTICE & ~E_STRICT & ~E_DEPRECATED ; Development Value: E_ALL ; Production Value: E_ALL & ~E_DEPRECATED & ~E_STRICT ; html_errors ; Default Value: On ; Development Value: On ; Production value: On ; log_errors ; Default Value: Off ; Development Value: On ; Production Value: On ; max_input_time ; Default Value: -1 (Unlimited) ; Development Value: 60 (60 seconds) ; Production Value: 60 (60 seconds) ; output_buffering ; Default Value: Off ; Development Value: 4096 ; Production Value: 4096 ; register_argc_argv ; Default Value: On ; Development Value: Off ; Production Value: Off ; request_order ; Default Value: None ; Development Value: "GP" ; Production Value: "GP" ; session.gc_divisor ; Default Value: 100 ; Development Value: 1000 ; Production Value: 1000 ; session.hash_bits_per_character ; Default Value: 4 ; Development Value: 5 ; Production Value: 5 ; short_open_tag ; Default Value: On ; Development Value: Off ; Production Value: Off ; track_errors ; Default Value: Off ; Development Value: On ; Production Value: Off ; url_rewriter.tags ; Default Value: "a=href,area=href,frame=src,form=,fieldset=" ; Development Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; Production Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; variables_order ; Default Value: "EGPCS" ; Development Value: "GPCS" ; Production Value: "GPCS" ;;;;;;;;;;;;;;;;;;;; ; php.ini Options ; ;;;;;;;;;;;;;;;;;;;; ; Name for user-defined php.ini (.htaccess) files. Default is ".user.ini" ;user_ini.filename = ".user.ini" ; To disable this feature set this option to empty value ;user_ini.filename = ; TTL for user-defined php.ini files (time-to-live) in seconds. Default is 300 seconds (5 minutes) ;user_ini.cache_ttl = 300 ;;;;;;;;;;;;;;;;;;;; ; Language Options ; ;;;;;;;;;;;;;;;;;;;; ; Enable the PHP scripting language engine under Apache. ; http://php.net/engine engine = On ; This directive determines whether or not PHP will recognize code between ; tags as PHP source which should be processed as such. It is ; generally recommended that should be used and that this feature ; should be disabled, as enabling it may result in issues when generating XML ; documents, however this remains supported for backward compatibility reasons. ; Note that this directive does not control the tags. ; http://php.net/asp-tags asp_tags = Off ; The number of significant digits displayed in floating point numbers. ; http://php.net/precision precision = 14 ; Output buffering is a mechanism for controlling how much output data ; (excluding headers and cookies) PHP should keep internally before pushing that ; data to the client. If your application's output exceeds this setting, PHP ; will send that data in chunks of roughly the size you specify. ; Turning on this setting and managing its maximum buffer size can yield some ; interesting side-effects depending on your application and web server. ; You may be able to send headers and cookies after you've already sent output ; through print or echo. You also may see performance benefits if your server is ; emitting less packets due to buffered output versus PHP streaming the output ; as it gets it. On production servers, 4096 bytes is a good setting for performance ; reasons. ; Note: Output buffering can also be controlled via Output Buffering Control ; functions. ; Possible Values: ; On = Enabled and buffer is unlimited. (Use with caution) ; Off = Disabled ; Integer = Enables the buffer and sets its maximum size in bytes. ; Note: This directive is hardcoded to Off for the CLI SAPI ; Default Value: Off ; Development Value: 4096 ; Production Value: 4096 ; http://php.net/output-buffering output_buffering = 4096 ; You can redirect all of the output of your scripts to a function. For ; example, if you set output_handler to "mb_output_handler", character ; encoding will be transparently converted to the specified encoding. ; Setting any output handler automatically turns on output buffering. ; Note: People who wrote portable scripts should not depend on this ini ; directive. Instead, explicitly set the output handler using ob_start(). ; Using this ini directive may cause problems unless you know what script ; is doing. ; Note: You cannot use both "mb_output_handler" with "ob_iconv_handler" ; and you cannot use both "ob_gzhandler" and "zlib.output_compression". ; Note: output_handler must be empty if this is set 'On' !!!! ; Instead you must use zlib.output_handler. ; http://php.net/output-handler ;output_handler = ; Transparent output compression using the zlib library ; Valid values for this option are 'off', 'on', or a specific buffer size ; to be used for compression (default is 4KB) ; Note: Resulting chunk size may vary due to nature of compression. PHP ; outputs chunks that are few hundreds bytes each as a result of ; compression. If you prefer a larger chunk size for better ; performance, enable output_buffering in addition. ; Note: You need to use zlib.output_handler instead of the standard ; output_handler, or otherwise the output will be corrupted. ; http://php.net/zlib.output-compression zlib.output_compression = Off ; http://php.net/zlib.output-compression-level ;zlib.output_compression_level = -1 ; You cannot specify additional output handlers if zlib.output_compression ; is activated here. This setting does the same as output_handler but in ; a different order. ; http://php.net/zlib.output-handler ;zlib.output_handler = ; Implicit flush tells PHP to tell the output layer to flush itself ; automatically after every output block. This is equivalent to calling the ; PHP function flush() after each and every call to print() or echo() and each ; and every HTML block. Turning this option on has serious performance ; implications and is generally recommended for debugging purposes only. ; http://php.net/implicit-flush ; Note: This directive is hardcoded to On for the CLI SAPI implicit_flush = Off ; The unserialize callback function will be called (with the undefined class' ; name as parameter), if the unserializer finds an undefined class ; which should be instantiated. A warning appears if the specified function is ; not defined, or if the function doesn't include/implement the missing class. ; So only set this entry, if you really want to implement such a ; callback-function. unserialize_callback_func = ; When floats & doubles are serialized store serialize_precision significant ; digits after the floating point. The default value ensures that when floats ; are decoded with unserialize, the data will remain the same. serialize_precision = 17 ; open_basedir, if set, limits all file operations to the defined directory ; and below. This directive makes most sense if used in a per-directory ; or per-virtualhost web server configuration file. This directive is ; *NOT* affected by whether Safe Mode is turned On or Off. ; http://php.net/open-basedir ;open_basedir = ; This directive allows you to disable certain functions for security reasons. ; It receives a comma-delimited list of function names. This directive is ; *NOT* affected by whether Safe Mode is turned On or Off. ; http://php.net/disable-functions disable_functions = ; This directive allows you to disable certain classes for security reasons. ; It receives a comma-delimited list of class names. This directive is ; *NOT* affected by whether Safe Mode is turned On or Off. ; http://php.net/disable-classes disable_classes = ; Colors for Syntax Highlighting mode. Anything that's acceptable in ; would work. ; http://php.net/syntax-highlighting ;highlight.string = #DD0000 ;highlight.comment = #FF9900 ;highlight.keyword = #007700 ;highlight.default = #0000BB ;highlight.html = #000000 ; If enabled, the request will be allowed to complete even if the user aborts ; the request. Consider enabling it if executing long requests, which may end up ; being interrupted by the user or a browser timing out. PHP's default behavior ; is to disable this feature. ; http://php.net/ignore-user-abort ;ignore_user_abort = On ; Determines the size of the realpath cache to be used by PHP. This value should ; be increased on systems where PHP opens many files to reflect the quantity of ; the file operations performed. ; http://php.net/realpath-cache-size ;realpath_cache_size = 16k ; Duration of time, in seconds for which to cache realpath information for a given ; file or directory. For systems with rarely changing files, consider increasing this ; value. ; http://php.net/realpath-cache-ttl ;realpath_cache_ttl = 120 ; Enables or disables the circular reference collector. ; http://php.net/zend.enable-gc zend.enable_gc = On ; If enabled, scripts may be written in encodings that are incompatible with ; the scanner. CP936, Big5, CP949 and Shift_JIS are the examples of such ; encodings. To use this feature, mbstring extension must be enabled. ; Default: Off ;zend.multibyte = Off ; Allows to set the default encoding for the scripts. This value will be used ; unless "declare(encoding=...)" directive appears at the top of the script. ; Only affects if zend.multibyte is set. ; Default: "" ;zend.script_encoding = ;;;;;;;;;;;;;;;;; ; Miscellaneous ; ;;;;;;;;;;;;;;;;; ; Decides whether PHP may expose the fact that it is installed on the server ; (e.g. by adding its signature to the Web server header). It is no security ; threat in any way, but it makes it possible to determine whether you use PHP ; on your server or not. ; http://php.net/expose-php expose_php = On ;;;;;;;;;;;;;;;;;;; ; Resource Limits ; ;;;;;;;;;;;;;;;;;;; ; Maximum execution time of each script, in seconds ; http://php.net/max-execution-time ; Note: This directive is hardcoded to 0 for the CLI SAPI max_execution_time = 30 ; Maximum amount of time each script may spend parsing request data. It's a good ; idea to limit this time on productions servers in order to eliminate unexpectedly ; long running scripts. ; Note: This directive is hardcoded to -1 for the CLI SAPI ; Default Value: -1 (Unlimited) ; Development Value: 60 (60 seconds) ; Production Value: 60 (60 seconds) ; http://php.net/max-input-time max_input_time = 60 ; Maximum input variable nesting level ; http://php.net/max-input-nesting-level ;max_input_nesting_level = 64 ; How many GET/POST/COOKIE input variables may be accepted ; max_input_vars = 1000 ; Maximum amount of memory a script may consume (128MB) ; http://php.net/memory-limit memory_limit = 128M ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Error handling and logging ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; This directive informs PHP of which errors, warnings and notices you would like ; it to take action for. The recommended way of setting values for this ; directive is through the use of the error level constants and bitwise ; operators. The error level constants are below here for convenience as well as ; some common settings and their meanings. ; By default, PHP is set to take action on all errors, notices and warnings EXCEPT ; those related to E_NOTICE and E_STRICT, which together cover best practices and ; recommended coding standards in PHP. For performance reasons, this is the ; recommend error reporting setting. Your production server shouldn't be wasting ; resources complaining about best practices and coding standards. That's what ; development servers and development settings are for. ; Note: The php.ini-development file has this setting as E_ALL. This ; means it pretty much reports everything which is exactly what you want during ; development and early testing. ; ; Error Level Constants: ; E_ALL - All errors and warnings (includes E_STRICT as of PHP 5.4.0) ; E_ERROR - fatal run-time errors ; E_RECOVERABLE_ERROR - almost fatal run-time errors ; E_WARNING - run-time warnings (non-fatal errors) ; E_PARSE - compile-time parse errors ; E_NOTICE - run-time notices (these are warnings which often result ; from a bug in your code, but it's possible that it was ; intentional (e.g., using an uninitialized variable and ; relying on the fact it's automatically initialized to an ; empty string) ; E_STRICT - run-time notices, enable to have PHP suggest changes ; to your code which will ensure the best interoperability ; and forward compatibility of your code ; E_CORE_ERROR - fatal errors that occur during PHP's initial startup ; E_CORE_WARNING - warnings (non-fatal errors) that occur during PHP's ; initial startup ; E_COMPILE_ERROR - fatal compile-time errors ; E_COMPILE_WARNING - compile-time warnings (non-fatal errors) ; E_USER_ERROR - user-generated error message ; E_USER_WARNING - user-generated warning message ; E_USER_NOTICE - user-generated notice message ; E_DEPRECATED - warn about code that will not work in future versions ; of PHP ; E_USER_DEPRECATED - user-generated deprecation warnings ; ; Common Values: ; E_ALL (Show all errors, warnings and notices including coding standards.) ; E_ALL & ~E_NOTICE (Show all errors, except for notices) ; E_ALL & ~E_NOTICE & ~E_STRICT (Show all errors, except for notices and coding standards warnings.) ; E_COMPILE_ERROR|E_RECOVERABLE_ERROR|E_ERROR|E_CORE_ERROR (Show only errors) ; Default Value: E_ALL & ~E_NOTICE & ~E_STRICT & ~E_DEPRECATED ; Development Value: E_ALL ; Production Value: E_ALL & ~E_DEPRECATED & ~E_STRICT ; http://php.net/error-reporting error_reporting = E_ALL ; This directive controls whether or not and where PHP will output errors, ; notices and warnings too. Error output is very useful during development, but ; it could be very dangerous in production environments. Depending on the code ; which is triggering the error, sensitive information could potentially leak ; out of your application such as database usernames and passwords or worse. ; It's recommended that errors be logged on production servers rather than ; having the errors sent to STDOUT. ; Possible Values: ; Off = Do not display any errors ; stderr = Display errors to STDERR (affects only CGI/CLI binaries!) ; On or stdout = Display errors to STDOUT ; Default Value: On ; Development Value: On ; Production Value: Off ; http://php.net/display-errors display_errors = On ; The display of errors which occur during PHP's startup sequence are handled ; separately from display_errors. PHP's default behavior is to suppress those ; errors from clients. Turning the display of startup errors on can be useful in ; debugging configuration problems. But, it's strongly recommended that you ; leave this setting off on production servers. ; Default Value: Off ; Development Value: On ; Production Value: Off ; http://php.net/display-startup-errors display_startup_errors = On ; Besides displaying errors, PHP can also log errors to locations such as a ; server-specific log, STDERR, or a location specified by the error_log ; directive found below. While errors should not be displayed on productions ; servers they should still be monitored and logging is a great way to do that. ; Default Value: Off ; Development Value: On ; Production Value: On ; http://php.net/log-errors log_errors = On ; Set maximum length of log_errors. In error_log information about the source is ; added. The default is 1024 and 0 allows to not apply any maximum length at all. ; http://php.net/log-errors-max-len log_errors_max_len = 1024 ; Do not log repeated messages. Repeated errors must occur in same file on same ; line unless ignore_repeated_source is set true. ; http://php.net/ignore-repeated-errors ignore_repeated_errors = Off ; Ignore source of message when ignoring repeated messages. When this setting ; is On you will not log errors with repeated messages from different files or ; source lines. ; http://php.net/ignore-repeated-source ignore_repeated_source = Off ; If this parameter is set to Off, then memory leaks will not be shown (on ; stdout or in the log). This has only effect in a debug compile, and if ; error reporting includes E_WARNING in the allowed list ; http://php.net/report-memleaks report_memleaks = On ; This setting is on by default. ;report_zend_debug = 0 ; Store the last error/warning message in $php_errormsg (boolean). Setting this value ; to On can assist in debugging and is appropriate for development servers. It should ; however be disabled on production servers. ; Default Value: Off ; Development Value: On ; Production Value: Off ; http://php.net/track-errors track_errors = On ; Turn off normal error reporting and emit XML-RPC error XML ; http://php.net/xmlrpc-errors ;xmlrpc_errors = 0 ; An XML-RPC faultCode ;xmlrpc_error_number = 0 ; When PHP displays or logs an error, it has the capability of formatting the ; error message as HTML for easier reading. This directive controls whether ; the error message is formatted as HTML or not. ; Note: This directive is hardcoded to Off for the CLI SAPI ; Default Value: On ; Development Value: On ; Production value: On ; http://php.net/html-errors html_errors = On ; If html_errors is set to On *and* docref_root is not empty, then PHP ; produces clickable error messages that direct to a page describing the error ; or function causing the error in detail. ; You can download a copy of the PHP manual from http://php.net/docs ; and change docref_root to the base URL of your local copy including the ; leading '/'. You must also specify the file extension being used including ; the dot. PHP's default behavior is to leave these settings empty, in which ; case no links to documentation are generated. ; Note: Never use this feature for production boxes. ; http://php.net/docref-root ; Examples ;docref_root = "/phpmanual/" ; http://php.net/docref-ext ;docref_ext = .html ; String to output before an error message. PHP's default behavior is to leave ; this setting blank. ; http://php.net/error-prepend-string ; Example: ;error_prepend_string = "" ; String to output after an error message. PHP's default behavior is to leave ; this setting blank. ; http://php.net/error-append-string ; Example: ;error_append_string = "" ; Log errors to specified file. PHP's default behavior is to leave this value ; empty. ; http://php.net/error-log ; Example: ;error_log = php_errors.log ; Log errors to syslog (Event Log on Windows). ;error_log = syslog ;windows.show_crt_warning ; Default value: 0 ; Development value: 0 ; Production value: 0 ;;;;;;;;;;;;;;;;; ; Data Handling ; ;;;;;;;;;;;;;;;;; ; The separator used in PHP generated URLs to separate arguments. ; PHP's default setting is "&". ; http://php.net/arg-separator.output ; Example: ;arg_separator.output = "&" ; List of separator(s) used by PHP to parse input URLs into variables. ; PHP's default setting is "&". ; NOTE: Every character in this directive is considered as separator! ; http://php.net/arg-separator.input ; Example: ;arg_separator.input = ";&" ; This directive determines which super global arrays are registered when PHP ; starts up. G,P,C,E & S are abbreviations for the following respective super ; globals: GET, POST, COOKIE, ENV and SERVER. There is a performance penalty ; paid for the registration of these arrays and because ENV is not as commonly ; used as the others, ENV is not recommended on productions servers. You ; can still get access to the environment variables through getenv() should you ; need to. ; Default Value: "EGPCS" ; Development Value: "GPCS" ; Production Value: "GPCS"; ; http://php.net/variables-order variables_order = "GPCS" ; This directive determines which super global data (G,P,C,E & S) should ; be registered into the super global array REQUEST. If so, it also determines ; the order in which that data is registered. The values for this directive are ; specified in the same manner as the variables_order directive, EXCEPT one. ; Leaving this value empty will cause PHP to use the value set in the ; variables_order directive. It does not mean it will leave the super globals ; array REQUEST empty. ; Default Value: None ; Development Value: "GP" ; Production Value: "GP" ; http://php.net/request-order request_order = "GP" ; This directive determines whether PHP registers $argv & $argc each time it ; runs. $argv contains an array of all the arguments passed to PHP when a script ; is invoked. $argc contains an integer representing the number of arguments ; that were passed when the script was invoked. These arrays are extremely ; useful when running scripts from the command line. When this directive is ; enabled, registering these variables consumes CPU cycles and memory each time ; a script is executed. For performance reasons, this feature should be disabled ; on production servers. ; Note: This directive is hardcoded to On for the CLI SAPI ; Default Value: On ; Development Value: Off ; Production Value: Off ; http://php.net/register-argc-argv register_argc_argv = Off ; When enabled, the ENV, REQUEST and SERVER variables are created when they're ; first used (Just In Time) instead of when the script starts. If these ; variables are not used within a script, having this directive on will result ; in a performance gain. The PHP directive register_argc_argv must be disabled ; for this directive to have any affect. ; http://php.net/auto-globals-jit auto_globals_jit = On ; Whether PHP will read the POST data. ; This option is enabled by default. ; Most likely, you won't want to disable this option globally. It causes $_POST ; and $_FILES to always be empty; the only way you will be able to read the ; POST data will be through the php://input stream wrapper. This can be useful ; to proxy requests or to process the POST data in a memory efficient fashion. ; http://php.net/enable-post-data-reading ;enable_post_data_reading = Off ; Maximum size of POST data that PHP will accept. ; Its value may be 0 to disable the limit. It is ignored if POST data reading ; is disabled through enable_post_data_reading. ; http://php.net/post-max-size post_max_size = 8M ; Automatically add files before PHP document. ; http://php.net/auto-prepend-file auto_prepend_file = ; Automatically add files after PHP document. ; http://php.net/auto-append-file auto_append_file = ; By default, PHP will output a character encoding using ; the Content-type: header. To disable sending of the charset, simply ; set it to be empty. ; ; PHP's built-in default is text/html ; http://php.net/default-mimetype default_mimetype = "text/html" ; PHP's default character set is set to empty. ; http://php.net/default-charset ;default_charset = "UTF-8" ; Always populate the $HTTP_RAW_POST_DATA variable. PHP's default behavior is ; to disable this feature. If post reading is disabled through ; enable_post_data_reading, $HTTP_RAW_POST_DATA is *NOT* populated. ; http://php.net/always-populate-raw-post-data ;always_populate_raw_post_data = On ;;;;;;;;;;;;;;;;;;;;;;;;; ; Paths and Directories ; ;;;;;;;;;;;;;;;;;;;;;;;;; ; UNIX: "/path1:/path2" ;include_path = ".:/php/includes" ; ; Windows: "\path1;\path2" ;include_path = ".;c:\php\includes" ; ; PHP's default setting for include_path is ".;/path/to/php/pear" ; http://php.net/include-path ; The root of the PHP pages, used only if nonempty. ; if PHP was not compiled with FORCE_REDIRECT, you SHOULD set doc_root ; if you are running php as a CGI under any web server (other than IIS) ; see documentation for security issues. The alternate is to use the ; cgi.force_redirect configuration below ; http://php.net/doc-root doc_root = ; The directory under which PHP opens the script using /~username used only ; if nonempty. ; http://php.net/user-dir user_dir = ; Directory in which the loadable extensions (modules) reside. ; http://php.net/extension-dir ; extension_dir = "./" ; On windows: ; extension_dir = "ext" ; Whether or not to enable the dl() function. The dl() function does NOT work ; properly in multithreaded servers, such as IIS or Zeus, and is automatically ; disabled on them. ; http://php.net/enable-dl enable_dl = Off ; cgi.force_redirect is necessary to provide security running PHP as a CGI under ; most web servers. Left undefined, PHP turns this on by default. You can ; turn it off here AT YOUR OWN RISK ; **You CAN safely turn this off for IIS, in fact, you MUST.** ; http://php.net/cgi.force-redirect ;cgi.force_redirect = 1 ; if cgi.nph is enabled it will force cgi to always sent Status: 200 with ; every request. PHP's default behavior is to disable this feature. ;cgi.nph = 1 ; if cgi.force_redirect is turned on, and you are not running under Apache or Netscape ; (iPlanet) web servers, you MAY need to set an environment variable name that PHP ; will look for to know it is OK to continue execution. Setting this variable MAY ; cause security issues, KNOW WHAT YOU ARE DOING FIRST. ; http://php.net/cgi.redirect-status-env ;cgi.redirect_status_env = ; cgi.fix_pathinfo provides *real* PATH_INFO/PATH_TRANSLATED support for CGI. PHP's ; previous behaviour was to set PATH_TRANSLATED to SCRIPT_FILENAME, and to not grok ; what PATH_INFO is. For more information on PATH_INFO, see the cgi specs. Setting ; this to 1 will cause PHP CGI to fix its paths to conform to the spec. A setting ; of zero causes PHP to behave as before. Default is 1. You should fix your scripts ; to use SCRIPT_FILENAME rather than PATH_TRANSLATED. ; http://php.net/cgi.fix-pathinfo ;cgi.fix_pathinfo=1 ; FastCGI under IIS (on WINNT based OS) supports the ability to impersonate ; security tokens of the calling client. This allows IIS to define the ; security context that the request runs under. mod_fastcgi under Apache ; does not currently support this feature (03/17/2002) ; Set to 1 if running under IIS. Default is zero. ; http://php.net/fastcgi.impersonate ;fastcgi.impersonate = 1 ; Disable logging through FastCGI connection. PHP's default behavior is to enable ; this feature. ;fastcgi.logging = 0 ; cgi.rfc2616_headers configuration option tells PHP what type of headers to ; use when sending HTTP response code. If it's set 0 PHP sends Status: header that ; is supported by Apache. When this option is set to 1 PHP will send ; RFC2616 compliant header. ; Default is zero. ; http://php.net/cgi.rfc2616-headers ;cgi.rfc2616_headers = 0 ;;;;;;;;;;;;;;;; ; File Uploads ; ;;;;;;;;;;;;;;;; ; Whether to allow HTTP file uploads. ; http://php.net/file-uploads file_uploads = On ; Temporary directory for HTTP uploaded files (will use system default if not ; specified). ; http://php.net/upload-tmp-dir ;upload_tmp_dir = ; Maximum allowed size for uploaded files. ; http://php.net/upload-max-filesize upload_max_filesize = 2M ; Maximum number of files that can be uploaded via a single request max_file_uploads = 20 ;;;;;;;;;;;;;;;;;; ; Fopen wrappers ; ;;;;;;;;;;;;;;;;;; ; Whether to allow the treatment of URLs (like http:// or ftp://) as files. ; http://php.net/allow-url-fopen allow_url_fopen = On ; Whether to allow include/require to open URLs (like http:// or ftp://) as files. ; http://php.net/allow-url-include allow_url_include = Off ; Define the anonymous ftp password (your email address). PHP's default setting ; for this is empty. ; http://php.net/from ;from="john@doe.com" ; Define the User-Agent string. PHP's default setting for this is empty. ; http://php.net/user-agent ;user_agent="PHP" ; Default timeout for socket based streams (seconds) ; http://php.net/default-socket-timeout default_socket_timeout = 60 ; If your scripts have to deal with files from Macintosh systems, ; or you are running on a Mac and need to deal with files from ; unix or win32 systems, setting this flag will cause PHP to ; automatically detect the EOL character in those files so that ; fgets() and file() will work regardless of the source of the file. ; http://php.net/auto-detect-line-endings ;auto_detect_line_endings = Off ;;;;;;;;;;;;;;;;;;;;;; ; Dynamic Extensions ; ;;;;;;;;;;;;;;;;;;;;;; ; If you wish to have an extension loaded automatically, use the following ; syntax: ; ; extension=modulename.extension ; ; For example, on Windows: ; ; extension=msql.dll ; ; ... or under UNIX: ; ; extension=msql.so ; ; ... or with a path: ; ; extension=/path/to/extension/msql.so ; ; If you only provide the name of the extension, PHP will look for it in its ; default extension directory. ; ; Windows Extensions ; Note that ODBC support is built in, so no dll is needed for it. ; Note that many DLL files are located in the extensions/ (PHP 4) ext/ (PHP 5) ; extension folders as well as the separate PECL DLL download (PHP 5). ; Be sure to appropriately set the extension_dir directive. ; ;extension=php_bz2.dll ;extension=php_curl.dll ;extension=php_fileinfo.dll ;extension=php_gd2.dll ;extension=php_gettext.dll ;extension=php_gmp.dll ;extension=php_intl.dll ;extension=php_imap.dll ;extension=php_interbase.dll ;extension=php_ldap.dll ;extension=php_mbstring.dll ;extension=php_exif.dll ; Must be after mbstring as it depends on it ;extension=php_mysql.dll ;extension=php_mysqli.dll ;extension=php_oci8.dll ; Use with Oracle 10gR2 Instant Client ;extension=php_oci8_11g.dll ; Use with Oracle 11gR2 Instant Client ;extension=php_openssl.dll ;extension=php_pdo_firebird.dll ;extension=php_pdo_mysql.dll ;extension=php_pdo_oci.dll ;extension=php_pdo_odbc.dll ;extension=php_pdo_pgsql.dll ;extension=php_pdo_sqlite.dll ;extension=php_pgsql.dll ;extension=php_pspell.dll ;extension=php_shmop.dll ; The MIBS data available in the PHP distribution must be installed. ; See http://www.php.net/manual/en/snmp.installation.php ;extension=php_snmp.dll ;extension=php_soap.dll ;extension=php_sockets.dll ;extension=php_sqlite3.dll ;extension=php_sybase_ct.dll ;extension=php_tidy.dll ;extension=php_xmlrpc.dll ;extension=php_xsl.dll ;;;;;;;;;;;;;;;;;;; ; Module Settings ; ;;;;;;;;;;;;;;;;;;; [CLI Server] ; Whether the CLI web server uses ANSI color coding in its terminal output. cli_server.color = On [Date] ; Defines the default timezone used by the date functions ; http://php.net/date.timezone ;date.timezone = ; http://php.net/date.default-latitude ;date.default_latitude = 31.7667 ; http://php.net/date.default-longitude ;date.default_longitude = 35.2333 ; http://php.net/date.sunrise-zenith ;date.sunrise_zenith = 90.583333 ; http://php.net/date.sunset-zenith ;date.sunset_zenith = 90.583333 [filter] ; http://php.net/filter.default ;filter.default = unsafe_raw ; http://php.net/filter.default-flags ;filter.default_flags = [iconv] ;iconv.input_encoding = ISO-8859-1 ;iconv.internal_encoding = ISO-8859-1 ;iconv.output_encoding = ISO-8859-1 [intl] ;intl.default_locale = ; This directive allows you to produce PHP errors when some error ; happens within intl functions. The value is the level of the error produced. ; Default is 0, which does not produce any errors. ;intl.error_level = E_WARNING [sqlite] ; http://php.net/sqlite.assoc-case ;sqlite.assoc_case = 0 [sqlite3] ;sqlite3.extension_dir = [Pcre] ;PCRE library backtracking limit. ; http://php.net/pcre.backtrack-limit ;pcre.backtrack_limit=100000 ;PCRE library recursion limit. ;Please note that if you set this value to a high number you may consume all ;the available process stack and eventually crash PHP (due to reaching the ;stack size limit imposed by the Operating System). ; http://php.net/pcre.recursion-limit ;pcre.recursion_limit=100000 [Pdo] ; Whether to pool ODBC connections. Can be one of "strict", "relaxed" or "off" ; http://php.net/pdo-odbc.connection-pooling ;pdo_odbc.connection_pooling=strict ;pdo_odbc.db2_instance_name [Pdo_mysql] ; If mysqlnd is used: Number of cache slots for the internal result set cache ; http://php.net/pdo_mysql.cache_size pdo_mysql.cache_size = 2000 ; Default socket name for local MySQL connects. If empty, uses the built-in ; MySQL defaults. ; http://php.net/pdo_mysql.default-socket pdo_mysql.default_socket= [Phar] ; http://php.net/phar.readonly ;phar.readonly = On ; http://php.net/phar.require-hash ;phar.require_hash = On ;phar.cache_list = [mail function] ; For Win32 only. ; http://php.net/smtp SMTP = localhost ; http://php.net/smtp-port smtp_port = 25 ; For Win32 only. ; http://php.net/sendmail-from ;sendmail_from = me@example.com ; For Unix only. You may supply arguments as well (default: "sendmail -t -i"). ; http://php.net/sendmail-path ;sendmail_path = ; Force the addition of the specified parameters to be passed as extra parameters ; to the sendmail binary. These parameters will always replace the value of ; the 5th parameter to mail(), even in safe mode. ;mail.force_extra_parameters = ; Add X-PHP-Originating-Script: that will include uid of the script followed by the filename mail.add_x_header = On ; The path to a log file that will log all mail() calls. Log entries include ; the full path of the script, line number, To address and headers. ;mail.log = ; Log mail to syslog (Event Log on Windows). ;mail.log = syslog [SQL] ; http://php.net/sql.safe-mode sql.safe_mode = Off [ODBC] ; http://php.net/odbc.default-db ;odbc.default_db = Not yet implemented ; http://php.net/odbc.default-user ;odbc.default_user = Not yet implemented ; http://php.net/odbc.default-pw ;odbc.default_pw = Not yet implemented ; Controls the ODBC cursor model. ; Default: SQL_CURSOR_STATIC (default). ;odbc.default_cursortype ; Allow or prevent persistent links. ; http://php.net/odbc.allow-persistent odbc.allow_persistent = On ; Check that a connection is still valid before reuse. ; http://php.net/odbc.check-persistent odbc.check_persistent = On ; Maximum number of persistent links. -1 means no limit. ; http://php.net/odbc.max-persistent odbc.max_persistent = -1 ; Maximum number of links (persistent + non-persistent). -1 means no limit. ; http://php.net/odbc.max-links odbc.max_links = -1 ; Handling of LONG fields. Returns number of bytes to variables. 0 means ; passthru. ; http://php.net/odbc.defaultlrl odbc.defaultlrl = 4096 ; Handling of binary data. 0 means passthru, 1 return as is, 2 convert to char. ; See the documentation on odbc_binmode and odbc_longreadlen for an explanation ; of odbc.defaultlrl and odbc.defaultbinmode ; http://php.net/odbc.defaultbinmode odbc.defaultbinmode = 1 ;birdstep.max_links = -1 [Interbase] ; Allow or prevent persistent links. ibase.allow_persistent = 1 ; Maximum number of persistent links. -1 means no limit. ibase.max_persistent = -1 ; Maximum number of links (persistent + non-persistent). -1 means no limit. ibase.max_links = -1 ; Default database name for ibase_connect(). ;ibase.default_db = ; Default username for ibase_connect(). ;ibase.default_user = ; Default password for ibase_connect(). ;ibase.default_password = ; Default charset for ibase_connect(). ;ibase.default_charset = ; Default timestamp format. ibase.timestampformat = "%Y-%m-%d %H:%M:%S" ; Default date format. ibase.dateformat = "%Y-%m-%d" ; Default time format. ibase.timeformat = "%H:%M:%S" [MySQL] ; Allow accessing, from PHP's perspective, local files with LOAD DATA statements ; http://php.net/mysql.allow_local_infile mysql.allow_local_infile = On ; Allow or prevent persistent links. ; http://php.net/mysql.allow-persistent mysql.allow_persistent = On ; If mysqlnd is used: Number of cache slots for the internal result set cache ; http://php.net/mysql.cache_size mysql.cache_size = 2000 ; Maximum number of persistent links. -1 means no limit. ; http://php.net/mysql.max-persistent mysql.max_persistent = -1 ; Maximum number of links (persistent + non-persistent). -1 means no limit. ; http://php.net/mysql.max-links mysql.max_links = -1 ; Default port number for mysql_connect(). If unset, mysql_connect() will use ; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the ; compile-time value defined MYSQL_PORT (in that order). Win32 will only look ; at MYSQL_PORT. ; http://php.net/mysql.default-port mysql.default_port = ; Default socket name for local MySQL connects. If empty, uses the built-in ; MySQL defaults. ; http://php.net/mysql.default-socket mysql.default_socket = ; Default host for mysql_connect() (doesn't apply in safe mode). ; http://php.net/mysql.default-host mysql.default_host = ; Default user for mysql_connect() (doesn't apply in safe mode). ; http://php.net/mysql.default-user mysql.default_user = ; Default password for mysql_connect() (doesn't apply in safe mode). ; Note that this is generally a *bad* idea to store passwords in this file. ; *Any* user with PHP access can run 'echo get_cfg_var("mysql.default_password") ; and reveal this password! And of course, any users with read access to this ; file will be able to reveal the password as well. ; http://php.net/mysql.default-password mysql.default_password = ; Maximum time (in seconds) for connect timeout. -1 means no limit ; http://php.net/mysql.connect-timeout mysql.connect_timeout = 60 ; Trace mode. When trace_mode is active (=On), warnings for table/index scans and ; SQL-Errors will be displayed. ; http://php.net/mysql.trace-mode mysql.trace_mode = Off [MySQLi] ; Maximum number of persistent links. -1 means no limit. ; http://php.net/mysqli.max-persistent mysqli.max_persistent = -1 ; Allow accessing, from PHP's perspective, local files with LOAD DATA statements ; http://php.net/mysqli.allow_local_infile ;mysqli.allow_local_infile = On ; Allow or prevent persistent links. ; http://php.net/mysqli.allow-persistent mysqli.allow_persistent = On ; Maximum number of links. -1 means no limit. ; http://php.net/mysqli.max-links mysqli.max_links = -1 ; If mysqlnd is used: Number of cache slots for the internal result set cache ; http://php.net/mysqli.cache_size mysqli.cache_size = 2000 ; Default port number for mysqli_connect(). If unset, mysqli_connect() will use ; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the ; compile-time value defined MYSQL_PORT (in that order). Win32 will only look ; at MYSQL_PORT. ; http://php.net/mysqli.default-port mysqli.default_port = 3306 ; Default socket name for local MySQL connects. If empty, uses the built-in ; MySQL defaults. ; http://php.net/mysqli.default-socket mysqli.default_socket = ; Default host for mysql_connect() (doesn't apply in safe mode). ; http://php.net/mysqli.default-host mysqli.default_host = ; Default user for mysql_connect() (doesn't apply in safe mode). ; http://php.net/mysqli.default-user mysqli.default_user = ; Default password for mysqli_connect() (doesn't apply in safe mode). ; Note that this is generally a *bad* idea to store passwords in this file. ; *Any* user with PHP access can run 'echo get_cfg_var("mysqli.default_pw") ; and reveal this password! And of course, any users with read access to this ; file will be able to reveal the password as well. ; http://php.net/mysqli.default-pw mysqli.default_pw = ; Allow or prevent reconnect mysqli.reconnect = Off [mysqlnd] ; Enable / Disable collection of general statistics by mysqlnd which can be ; used to tune and monitor MySQL operations. ; http://php.net/mysqlnd.collect_statistics mysqlnd.collect_statistics = On ; Enable / Disable collection of memory usage statistics by mysqlnd which can be ; used to tune and monitor MySQL operations. ; http://php.net/mysqlnd.collect_memory_statistics mysqlnd.collect_memory_statistics = On ; Size of a pre-allocated buffer used when sending commands to MySQL in bytes. ; http://php.net/mysqlnd.net_cmd_buffer_size ;mysqlnd.net_cmd_buffer_size = 2048 ; Size of a pre-allocated buffer used for reading data sent by the server in ; bytes. ; http://php.net/mysqlnd.net_read_buffer_size ;mysqlnd.net_read_buffer_size = 32768 [OCI8] ; Connection: Enables privileged connections using external ; credentials (OCI_SYSOPER, OCI_SYSDBA) ; http://php.net/oci8.privileged-connect ;oci8.privileged_connect = Off ; Connection: The maximum number of persistent OCI8 connections per ; process. Using -1 means no limit. ; http://php.net/oci8.max-persistent ;oci8.max_persistent = -1 ; Connection: The maximum number of seconds a process is allowed to ; maintain an idle persistent connection. Using -1 means idle ; persistent connections will be maintained forever. ; http://php.net/oci8.persistent-timeout ;oci8.persistent_timeout = -1 ; Connection: The number of seconds that must pass before issuing a ; ping during oci_pconnect() to check the connection validity. When ; set to 0, each oci_pconnect() will cause a ping. Using -1 disables ; pings completely. ; http://php.net/oci8.ping-interval ;oci8.ping_interval = 60 ; Connection: Set this to a user chosen connection class to be used ; for all pooled server requests with Oracle 11g Database Resident ; Connection Pooling (DRCP). To use DRCP, this value should be set to ; the same string for all web servers running the same application, ; the database pool must be configured, and the connection string must ; specify to use a pooled server. ;oci8.connection_class = ; High Availability: Using On lets PHP receive Fast Application ; Notification (FAN) events generated when a database node fails. The ; database must also be configured to post FAN events. ;oci8.events = Off ; Tuning: This option enables statement caching, and specifies how ; many statements to cache. Using 0 disables statement caching. ; http://php.net/oci8.statement-cache-size ;oci8.statement_cache_size = 20 ; Tuning: Enables statement prefetching and sets the default number of ; rows that will be fetched automatically after statement execution. ; http://php.net/oci8.default-prefetch ;oci8.default_prefetch = 100 ; Compatibility. Using On means oci_close() will not close ; oci_connect() and oci_new_connect() connections. ; http://php.net/oci8.old-oci-close-semantics ;oci8.old_oci_close_semantics = Off [PostgreSQL] ; Allow or prevent persistent links. ; http://php.net/pgsql.allow-persistent pgsql.allow_persistent = On ; Detect broken persistent links always with pg_pconnect(). ; Auto reset feature requires a little overheads. ; http://php.net/pgsql.auto-reset-persistent pgsql.auto_reset_persistent = Off ; Maximum number of persistent links. -1 means no limit. ; http://php.net/pgsql.max-persistent pgsql.max_persistent = -1 ; Maximum number of links (persistent+non persistent). -1 means no limit. ; http://php.net/pgsql.max-links pgsql.max_links = -1 ; Ignore PostgreSQL backends Notice message or not. ; Notice message logging require a little overheads. ; http://php.net/pgsql.ignore-notice pgsql.ignore_notice = 0 ; Log PostgreSQL backends Notice message or not. ; Unless pgsql.ignore_notice=0, module cannot log notice message. ; http://php.net/pgsql.log-notice pgsql.log_notice = 0 [Sybase-CT] ; Allow or prevent persistent links. ; http://php.net/sybct.allow-persistent sybct.allow_persistent = On ; Maximum number of persistent links. -1 means no limit. ; http://php.net/sybct.max-persistent sybct.max_persistent = -1 ; Maximum number of links (persistent + non-persistent). -1 means no limit. ; http://php.net/sybct.max-links sybct.max_links = -1 ; Minimum server message severity to display. ; http://php.net/sybct.min-server-severity sybct.min_server_severity = 10 ; Minimum client message severity to display. ; http://php.net/sybct.min-client-severity sybct.min_client_severity = 10 ; Set per-context timeout ; http://php.net/sybct.timeout ;sybct.timeout= ;sybct.packet_size ; The maximum time in seconds to wait for a connection attempt to succeed before returning failure. ; Default: one minute ;sybct.login_timeout= ; The name of the host you claim to be connecting from, for display by sp_who. ; Default: none ;sybct.hostname= ; Allows you to define how often deadlocks are to be retried. -1 means "forever". ; Default: 0 ;sybct.deadlock_retry_count= [bcmath] ; Number of decimal digits for all bcmath functions. ; http://php.net/bcmath.scale bcmath.scale = 0 [browscap] ; http://php.net/browscap ;browscap = extra/browscap.ini [Session] ; Handler used to store/retrieve data. ; http://php.net/session.save-handler session.save_handler = files ; Argument passed to save_handler. In the case of files, this is the path ; where data files are stored. Note: Windows users have to change this ; variable in order to use PHP's session functions. ; ; The path can be defined as: ; ; session.save_path = "N;/path" ; ; where N is an integer. Instead of storing all the session files in ; /path, what this will do is use subdirectories N-levels deep, and ; store the session data in those directories. This is useful if you ; or your OS have problems with lots of files in one directory, and is ; a more efficient layout for servers that handle lots of sessions. ; ; NOTE 1: PHP will not create this directory structure automatically. ; You can use the script in the ext/session dir for that purpose. ; NOTE 2: See the section on garbage collection below if you choose to ; use subdirectories for session storage ; ; The file storage module creates files using mode 600 by default. ; You can change that by using ; ; session.save_path = "N;MODE;/path" ; ; where MODE is the octal representation of the mode. Note that this ; does not overwrite the process's umask. ; http://php.net/session.save-path ;session.save_path = "/tmp" ; Whether to use cookies. ; http://php.net/session.use-cookies session.use_cookies = 1 ; http://php.net/session.cookie-secure ;session.cookie_secure = ; This option forces PHP to fetch and use a cookie for storing and maintaining ; the session id. We encourage this operation as it's very helpful in combating ; session hijacking when not specifying and managing your own session id. It is ; not the end all be all of session hijacking defense, but it's a good start. ; http://php.net/session.use-only-cookies session.use_only_cookies = 1 ; Name of the session (used as cookie name). ; http://php.net/session.name session.name = PHPSESSID ; Initialize session on request startup. ; http://php.net/session.auto-start session.auto_start = 0 ; Lifetime in seconds of cookie or, if 0, until browser is restarted. ; http://php.net/session.cookie-lifetime session.cookie_lifetime = 0 ; The path for which the cookie is valid. ; http://php.net/session.cookie-path session.cookie_path = / ; The domain for which the cookie is valid. ; http://php.net/session.cookie-domain session.cookie_domain = ; Whether or not to add the httpOnly flag to the cookie, which makes it inaccessible to browser scripting languages such as JavaScript. ; http://php.net/session.cookie-httponly session.cookie_httponly = ; Handler used to serialize data. php is the standard serializer of PHP. ; http://php.net/session.serialize-handler session.serialize_handler = php ; Defines the probability that the 'garbage collection' process is started ; on every session initialization. The probability is calculated by using ; gc_probability/gc_divisor. Where session.gc_probability is the numerator ; and gc_divisor is the denominator in the equation. Setting this value to 1 ; when the session.gc_divisor value is 100 will give you approximately a 1% chance ; the gc will run on any give request. ; Default Value: 1 ; Development Value: 1 ; Production Value: 1 ; http://php.net/session.gc-probability session.gc_probability = 1 ; Defines the probability that the 'garbage collection' process is started on every ; session initialization. The probability is calculated by using the following equation: ; gc_probability/gc_divisor. Where session.gc_probability is the numerator and ; session.gc_divisor is the denominator in the equation. Setting this value to 1 ; when the session.gc_divisor value is 100 will give you approximately a 1% chance ; the gc will run on any give request. Increasing this value to 1000 will give you ; a 0.1% chance the gc will run on any give request. For high volume production servers, ; this is a more efficient approach. ; Default Value: 100 ; Development Value: 1000 ; Production Value: 1000 ; http://php.net/session.gc-divisor session.gc_divisor = 1000 ; After this number of seconds, stored data will be seen as 'garbage' and ; cleaned up by the garbage collection process. ; http://php.net/session.gc-maxlifetime session.gc_maxlifetime = 1440 ; NOTE: If you are using the subdirectory option for storing session files ; (see session.save_path above), then garbage collection does *not* ; happen automatically. You will need to do your own garbage ; collection through a shell script, cron entry, or some other method. ; For example, the following script would is the equivalent of ; setting session.gc_maxlifetime to 1440 (1440 seconds = 24 minutes): ; find /path/to/sessions -cmin +24 -type f | xargs rm ; Check HTTP Referer to invalidate externally stored URLs containing ids. ; HTTP_REFERER has to contain this substring for the session to be ; considered as valid. ; http://php.net/session.referer-check session.referer_check = ; How many bytes to read from the file. ; http://php.net/session.entropy-length ;session.entropy_length = 32 ; Specified here to create the session id. ; http://php.net/session.entropy-file ; Defaults to /dev/urandom ; On systems that don't have /dev/urandom but do have /dev/arandom, this will default to /dev/arandom ; If neither are found at compile time, the default is no entropy file. ; On windows, setting the entropy_length setting will activate the ; Windows random source (using the CryptoAPI) ;session.entropy_file = /dev/urandom ; Set to {nocache,private,public,} to determine HTTP caching aspects ; or leave this empty to avoid sending anti-caching headers. ; http://php.net/session.cache-limiter session.cache_limiter = nocache ; Document expires after n minutes. ; http://php.net/session.cache-expire session.cache_expire = 180 ; trans sid support is disabled by default. ; Use of trans sid may risk your users security. ; Use this option with caution. ; - User may send URL contains active session ID ; to other person via. email/irc/etc. ; - URL that contains active session ID may be stored ; in publicly accessible computer. ; - User may access your site with the same session ID ; always using URL stored in browser's history or bookmarks. ; http://php.net/session.use-trans-sid session.use_trans_sid = 0 ; Select a hash function for use in generating session ids. ; Possible Values ; 0 (MD5 128 bits) ; 1 (SHA-1 160 bits) ; This option may also be set to the name of any hash function supported by ; the hash extension. A list of available hashes is returned by the hash_algos() ; function. ; http://php.net/session.hash-function session.hash_function = 0 ; Define how many bits are stored in each character when converting ; the binary hash data to something readable. ; Possible values: ; 4 (4 bits: 0-9, a-f) ; 5 (5 bits: 0-9, a-v) ; 6 (6 bits: 0-9, a-z, A-Z, "-", ",") ; Default Value: 4 ; Development Value: 5 ; Production Value: 5 ; http://php.net/session.hash-bits-per-character session.hash_bits_per_character = 5 ; The URL rewriter will look for URLs in a defined set of HTML tags. ; form/fieldset are special; if you include them here, the rewriter will ; add a hidden field with the info which is otherwise appended ; to URLs. If you want XHTML conformity, remove the form entry. ; Note that all valid entries require a "=", even if no value follows. ; Default Value: "a=href,area=href,frame=src,form=,fieldset=" ; Development Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; Production Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; http://php.net/url-rewriter.tags url_rewriter.tags = "a=href,area=href,frame=src,input=src,form=fakeentry" ; Enable upload progress tracking in $_SESSION ; Default Value: On ; Development Value: On ; Production Value: On ; http://php.net/session.upload-progress.enabled ;session.upload_progress.enabled = On ; Cleanup the progress information as soon as all POST data has been read ; (i.e. upload completed). ; Default Value: On ; Development Value: On ; Production Value: On ; http://php.net/session.upload-progress.cleanup ;session.upload_progress.cleanup = On ; A prefix used for the upload progress key in $_SESSION ; Default Value: "upload_progress_" ; Development Value: "upload_progress_" ; Production Value: "upload_progress_" ; http://php.net/session.upload-progress.prefix ;session.upload_progress.prefix = "upload_progress_" ; The index name (concatenated with the prefix) in $_SESSION ; containing the upload progress information ; Default Value: "PHP_SESSION_UPLOAD_PROGRESS" ; Development Value: "PHP_SESSION_UPLOAD_PROGRESS" ; Production Value: "PHP_SESSION_UPLOAD_PROGRESS" ; http://php.net/session.upload-progress.name ;session.upload_progress.name = "PHP_SESSION_UPLOAD_PROGRESS" ; How frequently the upload progress should be updated. ; Given either in percentages (per-file), or in bytes ; Default Value: "1%" ; Development Value: "1%" ; Production Value: "1%" ; http://php.net/session.upload-progress.freq ;session.upload_progress.freq = "1%" ; The minimum delay between updates, in seconds ; Default Value: 1 ; Development Value: 1 ; Production Value: 1 ; http://php.net/session.upload-progress.min-freq ;session.upload_progress.min_freq = "1" [MSSQL] ; Allow or prevent persistent links. mssql.allow_persistent = On ; Maximum number of persistent links. -1 means no limit. mssql.max_persistent = -1 ; Maximum number of links (persistent+non persistent). -1 means no limit. mssql.max_links = -1 ; Minimum error severity to display. mssql.min_error_severity = 10 ; Minimum message severity to display. mssql.min_message_severity = 10 ; Compatibility mode with old versions of PHP 3.0. mssql.compatability_mode = Off ; Connect timeout ;mssql.connect_timeout = 5 ; Query timeout ;mssql.timeout = 60 ; Valid range 0 - 2147483647. Default = 4096. ;mssql.textlimit = 4096 ; Valid range 0 - 2147483647. Default = 4096. ;mssql.textsize = 4096 ; Limits the number of records in each batch. 0 = all records in one batch. ;mssql.batchsize = 0 ; Specify how datetime and datetim4 columns are returned ; On => Returns data converted to SQL server settings ; Off => Returns values as YYYY-MM-DD hh:mm:ss ;mssql.datetimeconvert = On ; Use NT authentication when connecting to the server mssql.secure_connection = Off ; Specify max number of processes. -1 = library default ; msdlib defaults to 25 ; FreeTDS defaults to 4096 ;mssql.max_procs = -1 ; Specify client character set. ; If empty or not set the client charset from freetds.conf is used ; This is only used when compiled with FreeTDS ;mssql.charset = "ISO-8859-1" [Assertion] ; Assert(expr); active by default. ; http://php.net/assert.active ;assert.active = On ; Issue a PHP warning for each failed assertion. ; http://php.net/assert.warning ;assert.warning = On ; Don't bail out by default. ; http://php.net/assert.bail ;assert.bail = Off ; User-function to be called if an assertion fails. ; http://php.net/assert.callback ;assert.callback = 0 ; Eval the expression with current error_reporting(). Set to true if you want ; error_reporting(0) around the eval(). ; http://php.net/assert.quiet-eval ;assert.quiet_eval = 0 [COM] ; path to a file containing GUIDs, IIDs or filenames of files with TypeLibs ; http://php.net/com.typelib-file ;com.typelib_file = ; allow Distributed-COM calls ; http://php.net/com.allow-dcom ;com.allow_dcom = true ; autoregister constants of a components typlib on com_load() ; http://php.net/com.autoregister-typelib ;com.autoregister_typelib = true ; register constants casesensitive ; http://php.net/com.autoregister-casesensitive ;com.autoregister_casesensitive = false ; show warnings on duplicate constant registrations ; http://php.net/com.autoregister-verbose ;com.autoregister_verbose = true ; The default character set code-page to use when passing strings to and from COM objects. ; Default: system ANSI code page ;com.code_page= [mbstring] ; language for internal character representation. ; http://php.net/mbstring.language ;mbstring.language = Japanese ; internal/script encoding. ; Some encoding cannot work as internal encoding. ; (e.g. SJIS, BIG5, ISO-2022-*) ; http://php.net/mbstring.internal-encoding ;mbstring.internal_encoding = EUC-JP ; http input encoding. ; http://php.net/mbstring.http-input ;mbstring.http_input = auto ; http output encoding. mb_output_handler must be ; registered as output buffer to function ; http://php.net/mbstring.http-output ;mbstring.http_output = SJIS ; enable automatic encoding translation according to ; mbstring.internal_encoding setting. Input chars are ; converted to internal encoding by setting this to On. ; Note: Do _not_ use automatic encoding translation for ; portable libs/applications. ; http://php.net/mbstring.encoding-translation ;mbstring.encoding_translation = Off ; automatic encoding detection order. ; auto means ; http://php.net/mbstring.detect-order ;mbstring.detect_order = auto ; substitute_character used when character cannot be converted ; one from another ; http://php.net/mbstring.substitute-character ;mbstring.substitute_character = none; ; overload(replace) single byte functions by mbstring functions. ; mail(), ereg(), etc are overloaded by mb_send_mail(), mb_ereg(), ; etc. Possible values are 0,1,2,4 or combination of them. ; For example, 7 for overload everything. ; 0: No overload ; 1: Overload mail() function ; 2: Overload str*() functions ; 4: Overload ereg*() functions ; http://php.net/mbstring.func-overload ;mbstring.func_overload = 0 ; enable strict encoding detection. ;mbstring.strict_detection = Off ; This directive specifies the regex pattern of content types for which mb_output_handler() ; is activated. ; Default: mbstring.http_output_conv_mimetype=^(text/|application/xhtml\+xml) ;mbstring.http_output_conv_mimetype= [gd] ; Tell the jpeg decode to ignore warnings and try to create ; a gd image. The warning will then be displayed as notices ; disabled by default ; http://php.net/gd.jpeg-ignore-warning ;gd.jpeg_ignore_warning = 0 [exif] ; Exif UNICODE user comments are handled as UCS-2BE/UCS-2LE and JIS as JIS. ; With mbstring support this will automatically be converted into the encoding ; given by corresponding encode setting. When empty mbstring.internal_encoding ; is used. For the decode settings you can distinguish between motorola and ; intel byte order. A decode setting cannot be empty. ; http://php.net/exif.encode-unicode ;exif.encode_unicode = ISO-8859-15 ; http://php.net/exif.decode-unicode-motorola ;exif.decode_unicode_motorola = UCS-2BE ; http://php.net/exif.decode-unicode-intel ;exif.decode_unicode_intel = UCS-2LE ; http://php.net/exif.encode-jis ;exif.encode_jis = ; http://php.net/exif.decode-jis-motorola ;exif.decode_jis_motorola = JIS ; http://php.net/exif.decode-jis-intel ;exif.decode_jis_intel = JIS [Tidy] ; The path to a default tidy configuration file to use when using tidy ; http://php.net/tidy.default-config ;tidy.default_config = /usr/local/lib/php/default.tcfg ; Should tidy clean and repair output automatically? ; WARNING: Do not use this option if you are generating non-html content ; such as dynamic images ; http://php.net/tidy.clean-output tidy.clean_output = Off [soap] ; Enables or disables WSDL caching feature. ; http://php.net/soap.wsdl-cache-enabled soap.wsdl_cache_enabled=1 ; Sets the directory name where SOAP extension will put cache files. ; http://php.net/soap.wsdl-cache-dir soap.wsdl_cache_dir="/tmp" ; (time to live) Sets the number of second while cached file will be used ; instead of original one. ; http://php.net/soap.wsdl-cache-ttl soap.wsdl_cache_ttl=86400 ; Sets the size of the cache limit. (Max. number of WSDL files to cache) soap.wsdl_cache_limit = 5 [sysvshm] ; A default size of the shared memory segment ;sysvshm.init_mem = 10000 [ldap] ; Sets the maximum number of open links or -1 for unlimited. ldap.max_links = -1 [mcrypt] ; For more information about mcrypt settings see http://php.net/mcrypt-module-open ; Directory where to load mcrypt algorithms ; Default: Compiled in into libmcrypt (usually /usr/local/lib/libmcrypt) ;mcrypt.algorithms_dir= ; Directory where to load mcrypt modes ; Default: Compiled in into libmcrypt (usually /usr/local/lib/libmcrypt) ;mcrypt.modes_dir= [dba] ;dba.default_handler= [curl] ; A default value for the CURLOPT_CAINFO option. This is required to be an ; absolute path. ;curl.cainfo = ; Local Variables: ; tab-width: 4 ; End:
The Way to Go,: A Thorough Introduction to the Go Programming Language 英文书籍,已Cross the wall,从Google获得书中源代码,分享一下。喜欢请购买正版。 目录如下: Contents Preface................................................................................................................................. xix PART 1—WHY LEARN GO—GETTING STARTED Chapter 1—Origins, Context and Popularity of Go...............................................................1 1.1 Origins and evolution................................................................................................1 1.2 Main characteristics, context and reasons for developing a new language....................4 1.2.1 Languages that influenced Go.........................................................................4 1.2.2 Why a new language?......................................................................................5 1.2.3 Targets of the language....................................................................................5 1.2.4 Guiding design principles...............................................................................7 1.2.5 Characteristics of the language........................................................................7 1.2.6 Uses of the language........................................................................................8 1.2.7 Missing features?.............................................................................................9 1.2.8 Programming in Go......................................................................................10 1.2.9 Summary......................................................................................................10 Chapter 2—Installation and Runtime Environment............................................................11 2.1 Platforms and architectures.....................................................................................11 (1) The gc Go-compilers:...........................................................

1,079

社区成员

发帖
与我相关
我的任务
社区描述
PowerBuilder 相关问题讨论
社区管理员
  • 基础类社区
  • WorldMobile
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧