搜索本版时发现有作弊的嫌疑,大家看看。版主,记得给我加分了。

hammer_shi 2002-05-08 03:51:16
http://www.csdn.net/expert/topic/653/653040.xml?temp=.7614405
...全文
33 5 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
5 条回复
切换为时间正序
请发表友善的回复…
发表回复
寂寞漂泊 2002-05-08
  • 打赏
  • 举报
回复
搞笑
s6283 2002-05-08
  • 打赏
  • 举报
回复
分又不能吃,要他干嘛?
tokens 2002-05-08
  • 打赏
  • 举报
回复
哈哈。。。作弊也太明显了吧。
qiuanhong 2002-05-08
  • 打赏
  • 举报
回复
hehe~~~~~~~~~
白驼山宋兵甲 2002-05-08
  • 打赏
  • 举报
回复
哈哈,有点意思
内容概要:本文详细介绍了名为MoSca的系统,该系统旨在从单目随意拍摄的视频中重建和合成动态场景的新视角。MoSca通过4D Motion Scaffolds(运动支架)将视频数据转化为紧凑平滑编码的Motion Scaffold表示,并将场景几何和外观与变形场解耦,通过高斯融合进行优化。系统还解决了相机焦距和姿态的问题,无需额外的姿态估计工具。文章不仅提供了系统的理论背景,还给出了基于PyTorch的简化实现代码,涵盖MotionScaffold、GaussianFusion、MoScaSystem等核心组件。此外,文中深入探讨了ARAP变形模型、2D先验到3D的提升、动态高斯表示、相机参数估计等关键技术,并提出了完整的训练流程和性能优化技巧。 适用人群:具备一定计算机视觉和深度学习基础的研究人员和工程师,特别是对动态场景重建和新视角合成感兴趣的从业者。 使用场景及目标:①从单目视频中重建动态场景的新视角;②研究和实现基于4D Motion Scaffolds的动态场景表示方法;③探索如何利用预训练视觉模型的先验知识提升3D重建质量;④开发高效的动态场景渲染和优化算法。 其他说明:本文提供了详细的代码实现,包括简化版和深入扩展的技术细节。阅读者可以通过代码实践加深对MoSca系统的理解,并根据具体应用场景调整和扩展各个模块。此外,文中还强调了物理启发的正则化项和多模态先验融合的重要性,帮助实现更合理的变形和更高质量的渲染效果。

16,548

社区成员

发帖
与我相关
我的任务
社区描述
VC/MFC相关问题讨论
社区管理员
  • 基础类社区
  • AIGC Browser
  • encoderlee
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告

        VC/MFC社区版块或许是CSDN最“古老”的版块了,记忆之中,与CSDN的年龄几乎差不多。随着时间的推移,MFC技术渐渐的偏离了开发主流,若干年之后的今天,当我们面对着微软的这个经典之笔,内心充满着敬意,那些曾经的记忆,可以说代表着二十年前曾经的辉煌……
        向经典致敬,或许是老一代程序员内心里面难以释怀的感受。互联网大行其道的今天,我们期待着MFC技术能够恢复其曾经的辉煌,或许这个期待会永远成为一种“梦想”,或许一切皆有可能……
        我们希望这个版块可以很好的适配Web时代,期待更好的互联网技术能够使得MFC技术框架得以重现活力,……

试试用AI创作助手写篇文章吧