const_cast的使用场合

vcgaoshou 2007-09-19 04:25:11
C++中四个强制类型转换
const_cast
static_cast
reinterpret_cast
dynamic_cast
分别在什么情况下使用
...全文
129 3 打赏 收藏 转发到动态 举报
写回复
用AI写文章
3 条回复
切换为时间正序
请发表友善的回复…
发表回复
ckt 2007-09-19
  • 打赏
  • 举报
回复
这个帖子有

http://topic.csdn.net/t/20041127/15/3593843.html
zyx040404 2007-09-19
  • 打赏
  • 举报
回复
看书
NKLoveRene 2007-09-19
  • 打赏
  • 举报
回复
关于显示转换直接看看c++primer吧
里面都比较了
主体:(一) 一、C++概述 (一) 发展历史 1980年,Bjarne Stroustrup博士开始着手创建一种模拟语言,能够具有面向对象的程序设计特色。在当时,面向对象编程还是一个比较新的理念,Stroustrup博士并不是从头开始设计新语言,而是在C语言的基础上进行创建。这就是C++语言。 1985年,C++开始在外面慢慢流行。经过多年的发展,C++已经有了多个版本。为次,ANSI和ISO的联合委员会于1989年着手为C++制定标准。1994年2月,该委员会出版了第一份非正式草案,1998年正式推出了C++的国际标准。 (二) C和C++ C++是C的超集,也可以说C是C++的子集,因为C先出现。按常理说,C++编译器能够编译任何C程序,但是C和C++还是有一些小差别。 例如C++增加了C不具有的关键字。这些关键字能作为函数和变量的标识符在C程序中使用,尽管C++包含了所有的C,但显然没有任何C++编译器能编译这样的C程序。 C程序员可以省略函数原型,而C++不可以,一个不带参数的C函数原型必须把void写出来。而C++可以使用空参数列表。 C++中new和delete是对内存分配的运算符,取代了C中的malloc和free。 标准C++中的字符串类取代了C标准C函数库头文件中的字符数组处理函数。 C++中用来做控制态输入输出的iostream类库替代了标准C中的stdio函数库。 C++中的try/catch/throw异常处理机制取代了标准C中的setjmp()和longjmp()函数。 二、关键字和变量 C++相对与C增加了一些关键字,如下: typename bool dynamic_cast mutable namespace static_cast using catch explicit new virtual operator false private template volatile const protected this wchar_t const_cast public throw friend true reinterpret_cast try bitor xor_e and_eq compl or_eq not_eq bitand 在C++中还增加了bool型变量和wchar_t型变量: 布尔型变量是有两种逻辑状态的变量,它包含两个值:真和假。如果在表达式中使用了布尔型变量,那么将根据变量值的真假而赋予整型值1或0。要把一个整型变量转换成布尔型变量,如果整型值为0,则其布尔型值为假;反之如果整型值为非0,则其布尔型值为真。布儿型变量在运行时通常用做标志,比如进行逻辑测试以改变程序流程。 #include iostream.h int main() { bool flag; flag=true; if(flag) cout<使用强制类型转换说明,格式如下: int* iptr=(int*) &table; 表达式的前缀(int*)就是传统C风格的强制类型转换说明(typecast),又可称为强制转换说明(cast)。强制转换说明告诉编译器把表达式转换成指定的类型。有些情况下强制转换是禁用的,例如不能把一个结构类型转换成其他任何类型。数字类型和数字类型、指针和指针之间可以相互转换。当然,数字类型和指针类型也可以相互转换,但通常认为这样做是不安全而且也是没必要的。强制类型转换可以避免编译器的警告。 long int el=123; short i=(int) el; float m=34.56; int i=(int) m; 上面两个都是C风格的强制类型转换,C++还增加了一种转换方式,比较一下上面和下面这个书写方式的不同: long int el=123; short i=int (el); float m=34.56; int i=int (m); 使用强制类型转换的最大好处就是:禁止编译器对你故意去做的事发出警告。但是,利用强制类型转换说明使得编译器的类型检查机制失效,这不是明智的选择。通常,是不提倡进行强制类型转换的。除非不可避免,如要调用malloc()函数时要用的void型指针转换成指定类型指针。 四、标准输入输出流 在C语言中,输入输出是使用语句scanf()和printf()来实现的,而C++中是使用类来实现的。 #include iostream.h main() //C++中main()函数默认为int型,而C语言中默认为void型。 { int a; cout<>a; /*输入一个数值*/ cout<a; cout<场合,其中有些函数不需要函数指针声明中的所有参数。看下面的例子: int fun(int x,int y) { return x*2; } 尽管这样的用法是正确的,但大多数C和C++的编译器都会给出一个警告,说参数y在程序中没有被用到。为了避免这样的警告,C++允许声明一个无名形参,以告诉编译器存在该参数,且调用者需要为其传递一个实际参数,但是函数不会用到这个参数。下面给出使用了无名参数的C++函数代码: int fun(int x,int) //注意不同点 { return x*2; } (二) 函数的默认参数 C++函数的原型中可以声明一个或多个带有默认值的参数。如果调用函数时,省略了相应的实际参数,那么编译器就会把默认值作为实际参数。可以这样来声明具有默认参数的C++函数原型: #include iostream.h void show(int=1,float=2.3,long=6); int main() { show(); show(2); show(4,5.6); show(8,12.34,50L); return 0; } void show(int first,float second,long third) { cout<a; for(int i=1;i<=10;i++) //C语言中,不允许在这里定义变量 { static int a=0; //C语言中,同一函数块,不允许有同名变量 a+=i; cout<<::a<< <size; int *array=new int[size]; for(int i=0;i使用的概念。引用型变量是其他变量的一个别名,我们可以认为他们只是名字不相同,其他都是相同的。 1.引用是一个别名 C++中的引用是其他变量的别名。声明一个引用型变量,需要给他一个初始化值,在变量的生存周期内,该值不会改变。& 运算符定义了一个引用型变量: int a; int& b=a; 先声明一个名为a的变量,它还有一个别名b。我们可以认为是一个人,有一个真名,一个外号,以后不管是喊他a还是b,都是叫他这个人。同样,作为变量,以后对这两个标识符操作都会产生相同的效果。 #include iostream.h int main() { int a=123; int& b=a; cout<const Date&,const char*); void swapper(Date&,Date&); struct Date { int month,day,year; }; int main() { static Date now={2,23,90}; static Date then={9,10,60}; display(now,Now: ); display(then,Then: ); swapper(now,then); display(now,Now: ); display(then,Then: ); return 0; } void swapper(Date& dt1,Date& dt2) { Date save; save=dt1; dt1=dt2; dt2=save; } void display(const Date& dt,const char *s) { cout<const Date& getdate(int n) { return birthdays[n-1]; } int main() { int dt=1; while(dt!=0) { cout<dt; if(dt>0 && dt<4) { const Date& bd=getdate(dt); cout<使用关键字inline。如: inline int Box::volume() { return height*width*depth; } 还有一种方法就是直接在类声明的内部定义函数体,而不是仅仅给出一个函数原型。我们把上面的函数简化一下: #include iostream.h class Box { private: int height,width,depth; public: Box(int ht,int wd,int dp) { height=ht; width=wd; depth=dp; } ~Box(); int volume() { return height*width*depth; } }; int main() { Box thisbox(3,4,5); //声明一个类对象并初始化 cout<使用默认参数的构造函数 当在声明类对象时,如果没有指定参数,则使用默认参数来初始化对象。 #include iostream.h class Box { private: int height,width,depth; public: Box(int ht=2,int wd=3,int dp=4) { height=ht; width=wd; depth=dp; } ~Box(); int volume() { return height*width*depth; } }; int main() { Box thisbox(3,4,5); //初始化 Box defaulbox; //使用默认参数 cout<使用默认值,即2,3,4。 但是这样的程序是不好的。它允许使用初始化过的和没有初始化过的Box对象,但它没有考虑当thisbox给otherbox赋值失败后,volume()该返回什么。较好的方法是,没有参数表的构造函数也把默认值赋值给对象。 class Box { int height,width,depth; public: Box() { height=0;width=0;depth=0; } Box(int ht,int wd,int dp) { height=ht;width=wd;depth=dp; } int volume() { return height*width*depth; } }; 这还不是最好的方法,更好的方法是使用默认参数,根本不需要不带参数的构造函数。 class Box { int height,width,depth; public: Box(int ht=0,int wd=0,int dp=0) { height=ht;width=wd;depth=dp; } int volume() { return height*width*depth; } }; 三、析构函数 当一个类的对象离开作用域时,析构函数将被调用(系统自动调用)。析构函数的名字和类名一样,不过要在前面加上 ~ 。对一个类来说,只能允许一个析构函数,析构函数不能有参数,并且也没有返回值。析构函数的作用是完成一个清理工作,如释放从堆中分配的内存。 我们也可以只给出析构函数的形式,而不给出起具体函数体,其效果是一样的,如上面的例子。但在有些情况下,析构函数又是必需的。如在类中从堆中分配了内存,则必须在析构函数中释放 主体:(三)类的转换 C++的内部数据类型遵循隐式类型转换规则。假设某个表达市中使用了一个短整型变量,而编译器根据上下文认为这儿需要是的长整型,则编译器就会根据类型转换规则自动把它转换成长整型,这种隐式转换出现在赋值、参数传递、返回值、初始化和表达式中。我们也可以为类提供相应的转换规则。 对一个类建立隐式转换规则需要构造一个转换函数,该函数作为类的成员,可以把该类的对象和其他数据类型的对象进行相互转换。声明了转换函数,就告诉了编译器,当根据句法判定需要类型转换时,就调用函数。 有两种转换函数。一种是转换构造函数;另一种是成员转换函数。需要采用哪种转换函数取决于转换的方向。 一、转换构造函数 当一个构造函数仅有一个参数,且该参数是不同于该类的一个数据类型,这样的构造函数就叫转换构造函数。转换构造函数把别的数据类型的对象转换为该类的一个对象。和其他构造函数一样,如果声明类的对象的初始化表同转换构造函数的参数表相匹配,该函数就会被调用。当在需要使用该类的地方使用了别的数据类型,便宜器就会调用转换构造函数进行转换。 #include iostream.h #include time.h #include stdio.h class Date { int mo, da, yr; public: Date(time_t); void display(); }; void Date::display() { char year[5]; if(yr<10) sprintf(year,0%d,yr); else sprintf(year,%d,yr); cout<tm_mon+1; yr=tim->tm_year; if(yr>=100) yr-=100; } int main() { time_t now=time(0); Date dt(now); dt.display(); return 0; } 本程序先调用time()函数来获取当前时间,并把它赋给time_t对象;然后程序通过调用Date类的转换构造函数来创建一个Date对象,该对象由time_t对象转换而来。time_t对象先传递给localtime()函数,然后返回一个指向tm结构(time.h文件中声明)的指针,然后构造函数把结构中的日月年的数值拷贝给Date对象的数据成员,这就完成了从time_t对象到Date对象的转换。 二、成员转换函数 成员转换函数把该类的对象转换为其他数据类型的对象。在成员转换函数的声明中要用到关键字operator。这样声明一个成员转换函数: operator aaa(); 在这个例子中,aaa就是要转换成的数据类型的说明符。这里的类型说明符可以是任何合法的C++类型,包括其他的类。如下来定义成员转换函数; Classname::operator aaa() 类名标识符是声明了该函数的类的类型说明符。上面定义的Date类并不能把该类的对象转换回time_t型变量,但可以把它转换成一个长整型值,计算从2000年1月1日到现在的天数。 #include iostream.h class Date { int mo,da,yr; public: Date(int m,int d,int y) {mo=m; da=d; yr=y;} operator int(); //声明 }; Date::operator int() //定义 { static int dys[]={31,28,31,30,31,30,31,31,30,31,30,31}; int days=yr-2000; days*=365; days+=(yr-2000)/4; for(int i=0;iconst CustomDate&); //转换构造函数 operator CustomDate(); //成员转换函数 void display() { cout<const CustomDate& jd) { yr=jd.yr; da=jd.da; for(mo=0;modys[mo]) da-=dys[mo]; else break; mo++; } Date::operator CustomDate() { CustomDate cd(0,yr); for(int i=0;i使用了下面的语句将导致一个错误: ts=jd; //error 这个错误说明,虽然Tester类中有一个以Date型变量为参数的构造函数,编译器却不会把它看作是从Date到Tester的转换构造函数,因为它的声明中包含了explicit修饰符。 七、表达式内部的转换 在表达式内部,如果发现某个类型和需要的不一致,就会发生错误。数字类型的转换是很简单,这里就不举例了。下面的程序是把Date对象转换成长整型值。 #include iostream.h class Date { int mo, da, yr; public: Date(int m,int d,int y) { mo=m; da=d; yr=y; } operator long(); }; Date::operator long() { static int dys[]={31,28,31,30,31,30,31,31,30,31,30,31}; long days=yr; days*=365; days+=(yr-1900)/4; //从1900年1月1日开始计算 for(int i=0;iconst long ott=123; long sum=ott+today; cout<使用 1.取值和赋值成员函数 面向对象的约定就是保证所有数据成员的私有性。一般我们都是通过公有成员函数来作为公共接口来读取私有数据成员的。某些时候,我们称这样的函数为取值和赋值函数。 取值函数的返回值和传递给赋值函数的参数不必一一匹配所有数据成员的类型。 #include iostream.h class Date { int mo, da, yr; public: Date(int m,int d,int y) { mo=m; da=d; yr=y; } int getyear() const { return yr; } void setyear(int y) { yr = y; } }; int main() { Date dt(4,1,89); cout<使用该类就不必修改他们的代码,仅需要重新编译程序即可。 2.常量成员函数 注意上面的程序中getyear()被声明为常量型,这样可以保证该成员函数不会修改调用他的对象。通过加上const修饰符,可以使访问对象数据的成员函数仅仅完成不会引起数据变动的那些操作。 如果程序声明某个Date对象为常量的话,那么该对象不得调用任何非常量型成员函数,不论这些函数是否真的试图修改对象的数据。只有把那些不会引起数据改变的函数都声明为常量型,才可以让常量对象来调用。 3.改进的成员转换函数 下面的程序改进了从Date对象到CustomDate对象的成员转换函数,用取值和赋值函数取代了使用公有数据成员的做法。(以前的程序代码在上一帖中) #include iostream.h class CustomDate { int da,yr; public: CustomDate() {} CustomDate(int d,int y) { da=d; yr=y; } void display() const {cout<const { return da; } void setday(int d) { da=d; } }; class Date { int mo,da,yr; public: Date(int m,int d,int y) { mo=m; da=d; yr=y; } operator CustomDate() const; }; Date::operator CustomDate() const { static int dys[] = {31,28,31,30,31,30,31,31,30,31,30,31}; CustomDate cd(0,yr); int day=da; for(int i=0;iconst {cout<使用了预引用后,就可以声明未定义的类的友元、指针和引用。但是不可以使用那些需要知道预引用的类的定义细节的语句,如声明该类的一个实例或者任何对该类成员的引用。 4.显式友元预引用 也可以不使用预引用,这只要在声明友元的时候加上关键自class就行了。 #include iostream.h class CustomDate { int da,yr; public: CustomDate(int d=0,int y=0) { da=d; yr=y; } void display() const {cout<const CustomDate&); void display() const {cout<const CustomDate&); }; Date::Date(const CustomDate& cd) { static int dys[] = {31,28,31,30,31,30,31,31,30,31,30,31}; yr=cd.yr; da=cd.da; for(mo=0;modys[mo]) da-=dys[mo]; else break; mo++; } int main() { Date dt(CustomDate(123, 89)); dt.display(); return 0; } 6.匿名对象 上面main()函数中Date对象调用CustomDate类的构造函数创建了一个匿名CustomDate对象,然后用该对象创建了一个Date对象。这种用法在C++中是经常出现的。 7.非类成员的友元函数 有时候友元函数未必是某个类的成员。这样的函数拥有类对象私有数据成员的读写权,但它并不是任何类的成员函数。这个特性在重载运算符时特别有用。 非类成员的友元函数通常被用来做为类之间的纽带。一个函数如果被两个类同时声明为友元,它就可以访问这两个类的私有成员。下面的程序说明了一个可以访问两个类私有数据成员的友元函数是如何将在两个类之间架起桥梁的。 #include iostream.h class Time; class Date { int mo,da,yr; public: Date(int m,int d,int y) { mo=m; da=d; yr=y;} friend void display(const Date&, const Time&); }; class Time { int hr,min,sec; public: Time(int h,int m,int s) { hr=h; min=m; sec=s;} friend void display(const Date&, const Time&); }; void display(const Date& dt, const Time& tm) { cout << dt.mo << '/' << dt.da << '/' << dt.yr; cout << ' '; cout << tm.hr << ':' << tm.min << ':' << tm.sec; } int main() { Date dt(2,16,97); Time tm(10,55,0); display(dt, tm); return 0; } 主体:(五)析构函数和this指针 一、析构函数 前面的一些例子都没有说明析构函数,这是因为所用到的类在结束时不需要做特别的清理工作。下面的程序给出了一新的Date类,其中包括一个字符串指针,用来表示月份。 #include iostream.h #include string.h class Date { int mo,da,yr; char *month; public: Date(int m=0, int d=0, int y=0); ~Date(); void display() const; }; Date::Date(int m,int d,int y) { static char *mos[] = { January,February,March,April,May,June, July,August,September,October,November,December }; mo=m; da=d; yr=y; if(m!=0) { month=new char[strlen(mos[m-1])+1]; strcpy(month, mos[m-1]); } else month = 0; } Date::~Date() { delete [] month; } void Date::display() const { if(month!=0) cout<const Date&) 后面我们回加以改进。目前,重载的运算符函数的返回类型为void。它是类总的成员函数,在本程序红,是Date类的成员函数。它的函数名始终是operator =,参数也始终是同一个类的对象的引用。参数表示的是源对象,即赋值数据的提供者。重载函数的运算符作为目标对象的成员函数来使用。 #include iostream.h #include string.h class Date { int mo,da,yr; char *month; public: Date(int m=0, int d=0, int y=0); ~Date(); void operator=(const Date&); void display() const; }; Date::Date(int m, int d, int y) { static char *mos[] = { January,February,March,April,May,June, July,August,September,October,November,December }; mo = m; da = d; yr = y; if (m != 0) { month = new char[strlen(mos[m-1])+1]; strcpy(month, mos[m-1]); } else month = 0; } Date::~Date() { delete [] month; } void Date::display() const { if (month!=0) cout<const Date& dt) { if (this != &dt) { mo = dt.mo; da = dt.da; yr = dt.yr; delete [] month; if (dt.month != 0) { month = new char [std::strlen(dt.month)+1]; std::strcpy(month, dt.month); } else month = 0; } } int main() { Date birthday(8,11,1979); birthday.display(); Date newday(12,29,2003); newday.display(); newday = birthday; newday.display(); return 0; } 除了为Date类加入了一个重载运算符函数,这个程序和上面的一个程序是相同的。赋值运算符函数首先取得所需的数据,然后用delete把原来的month指针所占用的内存返还给堆。接着,如果源对象的month指针已经初始化过,就用new运算符为对象重新分配内存,并把源对象的month字符串拷贝给接受方。 重载的Date类赋值运算符函数的第一个语句比较了源对象的地址和this指针。这个操作取保对象不会自己给自己赋值。 三、this指针 this指针是一个特殊的指针,当类的某个非静态的成员函数在执行时,就会存在this指针。它指向类的一个对象,且这个对象的某个成员函数正在被调用。 this指针的名字始终是this,而且总是作为隐含参数传递给每一个被声明的成员函数,例如: void Date::myFunc(Date* this); 实际编程时函数的声明不需要包含这个参数。 当程序中调用某个对象的成员函数时,编译器会把该对象的地址加入到参数列表中,感觉上就好象函数采用了上面所示的声明,并且是用如下方式来调用的: dt.myFunc(& dt); 静态成员函数不存在this指针。 当调用某个对象的成员函数时,编译器把对象的地址传递给this指针,然后再调用该函数。因此,成员函数你对任何成员的调用实际上都隐式地使用了this指针。 1.以this指针作为返回值 使用this指针可以允许成员函数返回调用对象给调用者。前面的程序中重载赋值运算符没有返回值,因此不能用如下的形式对字符串进行赋值: a=b=c; 为了使重载的类赋值机制也能这样方便,必须让赋值函数返回赋值的结果,在这里就是目标对象。当赋值函数执行时,其返回值也恰好是this指针所指的内容。 下面的程序对前面那个程序进行了修改,让重载赋值运算符返回了一个Date对象的引用。 #include iostream.h #include string.h class Date { int mo,da,yr; char *month; public: Date(int m=0, int d=0, int y=0); ~Date(); void operator=(const Date&); void display() const; }; Date::Date(int m, int d, int y) { static char *mos[] = { January,February,March,April,May,June, July,August,September,October,November,December }; mo = m; da = d; yr = y; if (m != 0) { month = new char[strlen(mos[m-1])+1]; strcpy(month, mos[m-1]); } else month = 0; } Date::~Date() { delete [] month; } void Date::display() const { if (month!=0) cout<const Date& dt) { if (this != &dt) { mo = dt.mo; da = dt.da; yr = dt.yr; delete [] month; if (dt.month != 0) { month = new char [std::strlen(dt.month)+1]; std::strcpy(month, dt.month); } else month = 0; } return *this; } int main() { Date birthday(8,11,1979); Date oldday,newday; oldday=newday=birthday; birthday.display(); oldday.display(); newday.display(); return 0; } 2.在链表中使用this指针 在应用程序中,如果数据结构里有指向自身类型的成员,那么使用this指针会提供更多的方便。下面的程序中建立了一个类ListEntry的链表。 #include iostream.h #include string.h class ListEntry { char* listvalue; ListEntry* preventry; public: ListEntry(char*); ~ListEntry() { delete [] listvalue; } ListEntry* PrevEntry() const { return preventry; }; void display() const { cout< name; if (strncmp(name, end, 3) == 0) break; ListEntry* list = new ListEntry(name); if (prev != 0) prev->AddEntry(*list); prev = list; } while (prev != 0) { prev->display(); ListEntry* hold = prev; prev = prev->PrevEntry(); delete hold; } return 0; } 程序运行时,会提示输入一串姓名,当输入完毕后,键入end,然后程序会逆序显示刚才输入的所有姓名。 程序中ListEntry类含有一个字符串和一个指向前一个表项的指针。构造函数从对中获取内存分配给字符串,并把字符串的内容拷贝到内存,然后置链接指针为NULL。析构函数将释放字符串所占用的内存。 成员函数PrevEntry()返回指向链表前一个表项的指针。另一个成员函数显示当前的表项内容。 成员函数AddEntry(),它把this指针拷贝给参数的preventry指针,即把当前表项的地址赋值给下一个表项的链接指针,从而构造了一个链表。它并没有改变调用它的listEntry对象的内容,只是把该对象的地址赋给函数的参数所引用的那个ListEntry对象的preventry指针,尽管该函数不会修改对象的数据,但它并不是常量型。这是因为,它拷贝对象的地址this指针的内容给一个非长常量对象,而编译器回认为这个非常量对象就有可能通过拷贝得到的地址去修改当前对象的数据,因此AddEntry()函数在声明时不需要用const。 主体:(六)类对象数组和静态成员 一、类对象数组 类的对象和C++其他数据类型一样,也可以为其建立数组,数组的表示方法和结构一样。 #include iostream.h class Date { int mo,da,yr; public: Date(int m=0,int d=0, int y=0) { mo=m; da=d; yr=y;} void display() const { cout<const { cout <constructor running<constructor running Date constructor running 12/31/2003 0/0/0 从输出中可以看出,Date()这个默认构造函数被调用了两次。 2.类对象数组和析构函数 当类对象离开作用域时,编译器会为每个对象数组元素调用析构函数。 #include iostream.h class Date { int mo,da,yr; public: Date(int m=0,int d=0,int y=0) { mo=m; da=d; yr=y;} ~Date() {cout<const {cout<使用它。成员函数能访问并且修改这个值。如果这个静态成员是公有的,那么类的作用域之内的所有代码(不论是在类的内部还是外部)都可以访问这个成员。下面的程序通过静态数据成员来记录链表首项和末项的地址。 #include iostream.h #include string.h class ListEntry { public: static ListEntry* firstentry; private: static ListEntry* lastentry; char* listvalue; ListEntry* nextentry; public: ListEntry(char*); ~ListEntry() { delete [] listvalue;} ListEntry* NextEntry() const { return nextentry; }; void display() const { cout<name

64,637

社区成员

发帖
与我相关
我的任务
社区描述
C++ 语言相关问题讨论,技术干货分享,前沿动态等
c++ 技术论坛(原bbs)
社区管理员
  • C++ 语言社区
  • encoderlee
  • paschen
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
  1. 请不要发布与C++技术无关的贴子
  2. 请不要发布与技术无关的招聘、广告的帖子
  3. 请尽可能的描述清楚你的问题,如果涉及到代码请尽可能的格式化一下

试试用AI创作助手写篇文章吧