高分求解Win2000Pro版的上网问题

Windows专区 > Windows Server [问题点数:0分]
等级
本版专家分:0
结帖率 100%
等级
本版专家分:941
等级
本版专家分:0
等级
本版专家分:0
等级
本版专家分:319
等级
本版专家分:0
等级
本版专家分:0
等级
本版专家分:0
等级
本版专家分:0
等级
本版专家分:0
等级
本版专家分:0
dead_lee

等级:

Thinkpad常见问题大全(转载联想工程师博客)

想要收藏本篇文章请下载Word Q:我想升级成VISTA,想问一下,升级之后一键恢复是恢复到XP还是VISTA?A:如果从隐含分区恢复出厂设置,那当然是恢复到出厂时预装的系统;如果是用R&amp

C语言/C++初学问题

本文原为本人在论坛所发若干帖,意在集中解决新手学习C/C++语言时将遭遇到的各类问题,网友反馈情况良好,集合修订后作为个人作品贴于此处。 本贴主要分析概念原理和解决方案,不讨论具体程序语法,立足于让初学者...

C语言/C++初学 问题

本文原为本人在论坛所发若干帖,意在集中解决新手学习C/C++语言时将遭遇到的各类问题,网友反馈情况良好,集合修订后作为个人作品贴于此处。 本贴主要分析概念原理和解决方案,不讨论具体程序语法,立足于让初学者...

多年收集的一些稀有软件4

QQ:365543212  Geovariances产品: Geovariances Isatis 2013 1CD(地质统计学软件) Geovariances.Isatis.2016.Win64 1CD Geovariances Minestis 2016 v2.0.0Win64 1CD ...3D-Sigma for WinALL-ISO 1CD(岩土体三维...

我在CSDN参与的3000个帖子

今日偶然翻到,感慨万千 1:申述:版主,是否扣了我的专家分? 2:100分急求,随机输出十个小写字母,但是,要求这十个字母不相同 3:求Sn=a+aa+aaa+…+aaa…a(n个a)之值 4:数组题 望高手帮忙!...

WEB开发文档2 总结

http://blog.donews.com/lvjiyong/archive/2006/06/29/931071.aspx怎样将后台生成的在内存中的图象显示到客户端Microsoft IE WebControls下载...显示数据下载中文名文件时保存文件名乱码问题关于用ASP.net绘图的问题...

数据库帖子收集

这样的数据列表在存储过程中应该怎么样选择得到? 请问造成SQL2000服务不能启动的原因有哪些? sql server中有無類似于if 的函數,即像這樣select if(cancel=1,'cancel','') from sales 这样怎么返回呀!...

MS-SQL Server 基础类 - SQL语句

600个问与答

http://faq.xunweb.org/itfaq/mfcbasic/  怎样彻底结束一个线程? (2006-06-04) v 怎么样以纯idispatch方式而不是引入类型库的方法调...

C和C++编程心得

编程及C/C++初学者,本文原为本人在论坛所发若干帖,意在集中解决新手学习C/C++语言时将遭遇到的各类问题,网友反馈情况良好,集合修订后作为个人作品贴于此处。本贴主要分析概念原理和解决方案,不讨论具体程序语法...

偶是一个邪恶的人

我是否算一个邪恶的人呀,我回答的问题中,结帖的总共有203个,其中197个我得分了,总共大概得到了6000分以上,平均算起来,每个结帖的帖子偶可以得到30分以上。 下面是关于已结帖子的一些数据和统计: 帖子分数 ...

编程及C/C++初学者FAQ

本文原为本人在论坛所发若干帖,意在集中解决新手学习C/C++语言时将遭遇到的各类问题,网友反馈情况良好,集合修订后作为个人作品贴于此处。 本贴主要分析概念原理和解决方案,不讨论具体程序语法,立足于让初学者...

编程及C/C++初学者 FAQ

本文原为本人在论坛所发若干帖,意在集中解决新手学习C/C++语言时将遭遇到的各类问题,网友反馈情况良好,集合修订后作为个人作品贴于此处。 本贴主要分析概念原理和解决方案,不讨论具体程序语法,立足于让初学者...

C++面试题

1.构造一个类MySingleton,使该类只能存在一个实例. 思路:  将构造函数写为private的,然后通过一个成员静态函数来调用构造函数即可:) 例: #include "iostream.h" class MySingleton ...~MyS

Windows Server 2016 部署服务

全网第一的 Windows 部署课程,体系化,全面化,场景化,自动化,结合企业实际的应用场景,从无到有,从有到优,为大家深入和详尽的介绍 Windows 10 平台之上,提供的各种不同部署工具的应用。结合讲师十年以上的项目经验,提取大量的企业应用场景和实际问题做为结合,详尽的分析和示例,让您一听就懂,一懂就会,学以致用。 学习和掌握 Windows 10 的企业部署,学会单机安装,系统升级,系统替换

MATLAB2019b

共三个文件,其中前两个为 MATLAB R2019b 软件安装包的分卷压缩文件,将两个压缩包下载至同一个文件目录下随意解压一个即可;第三个为软件jihuo所需要的文件。

OpenGL-Shader

共六章 1.基础章节,从Shader1.0版本到新的4.5版本,介绍每一个版本中特性的用法; 2.Tesslattion Shader应用/基础案例分析 3.Gemotry Shader应用/基础案例分析 4.Compute Shader应用/基础案例分析 5.通过大量案例讲解分析/结合新特性,介绍用法 6.性能调优,如果借助shader加速应用,让你的程序支撑百万级别的场景对象轻松应对 全面解析OpenGL Shader语言,从1.0到4.5版本,全面掌握shader编成,并能够熟练的应用

Android开发10个经典案例

10个android经典案例代码,适合初学者和中级学者。

Spring Boot 入门

Spring Boot 入门介绍,听完这些课程你可以了解到 Spring Boot 的优势,为什么需要使用 Spring Boot ,学会使用 Spring Boot 创建一个简单的 Hello World ,并写学会使用 Spring Boot 单元测试。 了解 Spring Boot 并掌握 Spring Boot 基础开发

tipdm_CarsAnalysis_src:泰迪杯C组题,数据分析答题原始码-源码

tipdm_C_CarsAnalysis_src 泰迪杯C组题答题原始代码 这个原始码为参赛者时做数据分析使用,由于其仅作为工具使用,并且加之时间缩短,所以没有做过多的性能优化。 日后会抽空改进算法,转化为效率。

Spring Boot之JPA实战视频课程

本套课程,以实际操作演示为主,代码实例详细讲解了在Spring Boot框架使用JPA的一些规则与常见套路。课程中涉及到JPA的使用规则、核心概念、实体关系使用规则和常见问题等内容。该套课程后,让你全面熟悉与掌握Spring Boot 中JPA的使用套路。Spring Boot中JPA模块主要使用Spring Data JPA一些规则,该套课程还会帮你掌握Spring Data JPA的常用规则。 帮助同学快速熟悉与掌握Spring Boot中使用JPA的常见套路与规则。 帮助同学快速掌握Spring Data JPA的常用使用规则

Spring Batch批量处理数据实战教程

本课程通过讲解Spring Batch的基础知识点以及一些实际的项目示例让大家熟悉如何使用Spring Batch进行大批量数据的同步、处理及转换等。 通过学习本课程大家可以快速的掌握如何使用及优化Spring Batch。

JAVA WEB开发实战

走进JSP、掌握JSP语法、JSP内置对象、Servlet技术、综合实验(一)——JSP使用Model2实现登录模块、EL表达式语言、JSTL核心标签库、综合实验(二)——结合JSTL与EL技术开发通讯录模块、JSP操作XML、JavaScript脚本语言、综合实验(三)——Ajax实现用户注册模块——可以轻松领会Java Web程序开发的精髓,提高开发技能。 快速提高自己的java web项目开发能力

轻松学Linux系列课程

从0开始,Linux云计算系列课程,包含Linux初级运维、运维、初级架构师、云计算运维及开发..... a:0:{}

垃圾分类数据集及代码

资源说明: 数据集主要包括6类图片:硬纸板、纸、塑料瓶、玻璃瓶、铜制品、不可回收垃圾 代码运行说明: 1、 安装运行项目所需的python模块,包括tensorflow | numpy | keras | cv2 2、 train.py用于训练垃圾分类模型,由于训练的数据量过于庞大,因此不一并上传 3、 predict.py用于预测垃圾的类别,首先运行predict.py,然后输入需要预测的文件路径,即可得到结果。

大唐杯资料+题库(移动通信)

大唐杯资料+题库(移动通信)

计算机设计大赛作品开发文档

参加的是2020年的计算机设计大赛,软件应用与开发赛道。我们的开发文档仅供参考。(20页)

Java初级从入门到精通

课程分为:J2SE 基础阶段,中级阶段,阶段; 课间会讲解一些小程序的开发:如:猜拳游戏,模拟银行柜员机程序,退休金结算程序等.

手把手做安卓应用开发

安豆是一个想学Android应用开发的小白,于是它找到自己的邻居-程序员大牛-熊哥帮忙。熊哥手把手带着安豆搭建程序的开发环境,实现应用的功能,美化应用界面,让安豆终于开发出了自己的第一个安卓应用-计算器。 学习的过程中,两个伙伴有问有答,学习的过程生动有趣。你一定不会睡着。 让从没有接触过安卓开发并且什么都不会的小白,变成一个能够开发出简单的计算器应用的菜鸟。 让小白对安卓开发有个整体的认识,初步形成安卓开发的概念,掌握安卓开发最最基础的知识。

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

相关热词 c#编程培训 c# 打开一个文件流 c#实现队列的操作 c# 遍历文件夹下的文件 c#控制键盘 c#opc编程 c# cs文件 c# 加锁 编程c# c# 计算字节单位