新问题啊, 很基本的C, 但却很晕的...

C++ Builder > 基础类 [问题点数:20分,结帖人alloutoflove]
等级
本版专家分:4021
结帖率 100%
等级
本版专家分:7829
等级
本版专家分:792
等级
本版专家分:792
等级
本版专家分:4021
alloutoflove

等级:

C语言中.h和.c文件解析

简单的说其实要理解C文件与头文件(即.h)有什么不同之处,首先需要弄明白编译器的工作过程,一般说来编译器会做以下几个过程:1.预处理阶段 2.词法与语法分析阶段 3.编译阶段,首先编译成纯汇编语句,再将之汇编成...

c语言中.c与.h文件详解

原文链接:http://blog.csdn.NET/yangtalent1206/article/details/6830051 很多人对C语言中的 “文件包含”都不陌生了,文件包含处理在程序开发中会给我们的模块化程序设计带来大的好处,通过文件包含的方法把...

C文件包含.h文件和包含.c文件总结

 很多人对C语言中的 “文件包含”都不陌生了,文件包含处理在程序开发中会给我们的模块化程序设计带来大的好处,通过文件包含的方法把程序中的各个功能模块联系起来是模块化程序设计中的一种非常有利的手段。...

Win10自动修复无法开机【完美解决】

Windows10操作系统于2015年7月29日正式发布,此后,win10也就成了上市的笔记本电脑或者台式机电脑的预装操作系统!win10系统给我们带了全新的体验,当然也带来了一定的烦恼!就拿win10自动修复这个功能来说,玩过...

Linux 0.12 sched.c代码理解

最近看看linux0.12,对自己理解内核有大帮助,但是有些东西也确实需要时间去认真分析,今天看看了sched.c的代码,和大家分享一下。先上代码 /* * linux/kernel/sched.c * * (C) 1991 Linus Torvalds */ /* ...

深入学习java源码之stream.peek()与stream.concat()

深入学习java源码之stream.peek()与stream.concat() Java8为集合类引入了另一个重要概念:流(stream)。一个流通常以一个集合类实例为其数据源,然后在其上定义各种操作。流的API设计使用了管道(pipelines)模式...

【0.3】 续--Tensorflow踩坑记之tf.metrics

【续】–Tensorflow踩坑记之tf.metrics 欠下的帐总归还是要还的,之前一直拖着,总是懒得写tf.metrics这个API的一些用法,今天总算是克服了懒癌,总结一下用tf....插一句闲话,这一次的博客基本上用的都是 Jupyt...

.c 文件和 .h 文件的区别 以及 链接出错的问题(一)

关于两者以前的关系,要从N年以前说起了~ ...那时的人们写了多的.c(.cpp)文件,渐渐地,人们发现在多.c(.cpp)文件中的声明语句就是相同的,他们不得不一个字一个字地重复地将这些内容敲入每个.c(.cpp)文件。

windows静态库动态库的原理以及是否需要.h文件

静态库的调用方法 第一种:项目设置中引用,在项目的属性中设置。 第二种:在代码中使用 #pragma comment(lib,"lib文件名") 第一种方法: 步骤一: 右键单击项目—>属性—>...在其中填入lib库的目录...

.c和.h文件的区别(头文件与之实现文件的的关系~ )

一个简单的问题:.c和.h文件的区别 学了几个月的C语言,反而觉得越来越不懂了。同样是子程序,可以定义在.c文件中,也可以定义在.h文件中,那这两个文件到底在用法上有什么区别呢? 2楼: 子程序不要定义在.h中...

c++ .h和.c文件理解

一个简单的问题:.c和.h文件的区别 学了几个月的C语言,反而觉得越来越不懂了。同样是子程序,可以定义在.c文件中,也可以定义在.h文件中,那这两个文件到底在用法上有什么区别呢? 2楼: 子程序不要定义在.h中...

.c和.h文件的区别

同样是子程序,可以定义在.c文件中,也可以定义在.h文件中,那这两个文件到底在用法上有什么区别呢? 2楼: 子程序不要定义在.h中。 函数定义要放在.c中,而.h只做声明.否则多引用几次,就会发生函数重复...

.c和.h文件的区别 .

一个简单的问题:.c和.h文件的区别 学了几个月的C语言,反而觉得越来越不懂了。同样是子程序,可以定义在.c文件中,也可以定义在.h文件中,那这两个文件到底在用法上有什么区别呢? 2楼: 子程序不要定义在.h...

three.js 源码注释(一)./Three.js

在Three.js文件中包含了THREE.js大部分的常量,主要分为以下几类CustomBlendingEquation,GLState,Materials,ShadowingTypes,Textures. 着色方式 绝大多数的3D物体是由多边形(polygon)所构成的,它们都必须经过某些...

.bat脚本基本命令语法

目录 批处理的常见命令(未列举的命令还比较多,请查阅帮助信息) 1、REM 和 :: 2、ECHO 和 @ 3、PAUSE 4、ERRORLEVEL 5、TITLE 6、COLOR 7、mode 配置系统设备 8、GOTO 和 : ... 11、assoc 和 ft...

详解C程序开发中 .c和.h文件的区别

一个简单的问题:.c和.h文件的区别 学了几个月的C语言,反而觉得越来越不懂了。同样是子程序,可以定义在.c文件中,也可以定义在.h文件中,那这两个文件到底在用法上有什么区别呢? 2楼: 子程序不要定义在...

C_文件包含.h文件和包含.c文件总结

很多人对C语言中的 “文件包含”都不陌生了,文件包含处理在程序开发中会给我们的模块化程序设计带来大的好处,通过文件包含的方法把程序中的各个功能模块联系起来是模块化程序设计中的一种非常有利的手段。...

c和.h文件的区别(头文件与之实现文件的的关系~ )

一个简单的问题:.c和.h文件的区别 学了几个月的C语言,反而觉得越来越不懂了。同样是子程序,可以定义在.c文件中,也可以定义在.h文件中,那这两个文件到底在用法上有什么区别呢? 2楼: 子程序不要定义在.h中。...

C语言指针专题——常见问题解答合集

从本文开始,给出指针常见的问题解答,并且会不时的更新!

.c与.h的区别

一个简单的问题:.c和.h文件的区别 学了几个月的C语言,反而觉得越来越不懂了。同样是子程序,可以定义在.c文件中,也可以定义在.h文件中,那这两个文件到底在用法上有什么区别呢? ===========================...

String类和常量池内存分析例子以及8种基本类型

当然如果JVM内存基本问题不太会可以看这里:JVM内存的基本问题 基本问题 String类和常量池内存分析 8种基本类型的包装类和常量池 String 类和常量池 1 String 对象的两种创建方式 String str1 = "abcd"; ...

个人简历模板

优质简历模板,目前最前全的模板收藏,需要换工作的小伙伴们可以试试

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

2020华为软件精英挑战赛初复赛赛题包.zip

2020华为软件精英挑战赛初复赛赛题包,不包含民间数据集,民间数据集在博客中给出大佬github地址。

C#高性能大容量SOCKET并发完成端口例子(有C#客户端)完整实例源码

例子主要包括SocketAsyncEventArgs通讯封装、服务端实现日志查看、SCOKET列表、上传、下载、远程文件流、吞吐量协议,用于测试SocketAsyncEventArgs的性能和压力,最大连接数支持65535个长连接,最高命令交互速度达到250MB/S(使用的是127.0.0.1的方式,相当于千兆网卡1Gb=125MB/S两倍的吞吐量)。服务端用C#编写,并使用log4net作为日志模块; 同时支持65536个连接,网络吞吐量可以达到400M。

2020简历模板合集.rar

2020简历模板合集

数据结构—成绩单生成器

该程序用于生成成绩单,需要用户输入各科成绩,程序将自动生成成绩单(总分、平均分、排名)

从零基础开始用Python处理Excel数据.pdf

首先学习Python的基础知识,然后使用Python来控制Excel,做数据处理。 Excel使用者、Python爱好者、数据处理人员、办公人员等 第1章 python基础 1.1 什么是python? 1.2 为什么要学习用Python处理Excel表格? 1.3 手把手教你安装python程序 1.3.1 下载python 1.3.2 安装python 1.3.3 验证是否安装成功 1.4 安装Python集成开发工具PyCharm 1.4.1 下载 1.4.2 安装 1.5 Python的输入与输出

jdk1.8 64位官方正式版 jdk-8u91-windows

jdk1.8 64位官方正式版 jdk-8u91-windows

C#入门必看实力程序100个

C#入门必看含有100个例字,每个例子都是针对C#的学习关键知识点设计的,是学习C#必须知道的一些程序例子,分享给大家,需要的可以下载

相关热词 c#代码调用地图 c#嵌入程序 c#手机号判断 c#中数组继承的是什么类 c# 串口发送工具 c# 后台解析json c# gdi+绘圆 c#窗体如何保存文本 c# cef js c# 设置服务登陆