关于HttpRuntime.Cache的丢失

.NET技术 > C# [问题点数:20分,结帖人oyiboy]
等级
本版专家分:893
结帖率 100%
等级
本版专家分:1352
求解HttpRuntime.Cache偶尔缓存丢失的问题

当用户登入的时候,我把该用户的权限放到缓存中(用的是HttpRuntime.Cache),用户的每次操作都会验证权限。现在的问题是,在验证权限的方法中,我会先判断一下是否存在了权限cache,如果不存在,则处理之;存在,则...

ASP.NET HttpRuntime.Cache缓存类使用总结

在Web开发中,我们经常能够使用到缓存对象(Cache),在ASP.NET中提供了两种缓存对象,HttpContext.Current.CacheHttpRuntime.Cache,那么他们有什么区别呢?下面简单描述一下:  (1):HttpContext.Current.Cache 为...

Asp.Net framework 类库 自带的缓存 HttpRuntime.Cache HttpContext.Cache

有HttpContext.Current.Cache以及HttpRuntime.CacheHttpRuntime.Cache是应用程序级别的,而HttpContext.Current.Cache是针对当前WEB上下文定义的。HttpRuntime下的除了WEB中可以使用外,非WEB程序也可以使用。 ...

.Net Cache及(HttpRuntime.Cache与HttpContext.Current.Cache的区别)

因为程序中用到 在当前会话上下文中...除了System.Web.Caching下的Cache外,我们还可以用到HttpContext.Current.Cache以及HttpRuntime.Cache那么,HttpContext.Current.Cache以及HttpRuntime.Cache有什么区别呢?从M...

细说 ASP.NET Cache 及其高级用法

而我今天所说的Cache是专指ASP.NET的Cache,我们可以使用HttpRuntime.Cache访问到的那个Cache,而不是其它的缓存技术。 以前我在【我心目中的Asp.net核心对象】 这篇博客中简单地提过它,今天我打算为它写篇...

HttpContext.Current.Cache 过期时间

为了更快的读取数据,我们一般会把常用到的数据加载到Cache中 在.NET中,Cache的存在可以依赖多中方式,主要用到HttpContext.Current.Cache类 在这里,我主要写几种依赖方式 1:不依赖任何条件 HttpContext.Current....

IIS应用程序池_缓存回收

原文:IIS应用程序池_缓存回收本人最近由于公司业务,需要把问卷的问题和答案存入缓存中已提高...HttpRuntime.Cache.Insert(key, value, new CacheDependency(dependencyFile), Cache.NoAbsoluteExpiration, slidin...

web.config 中SessionState的配置(转)

web Form 网页是基于HTTP的,它们没有状态, 这意味着它们不知道所有的请求是否来自 同一台客户端计算机,网页是受到了破坏,以及是否得到了刷新,这样就可能造成信息的 丢失。 于是, 状态管理就成了开发...

webmvc中使用异步,出现HttpContext.Current为null的情况解决

原因:子线程不能够得到主线程的HttpContext.Current数据 解决方案 采用缓存 共享数据 再异步方法之前  ... HttpRuntime.Cache.Insert("context", context);     异步方法中调用 ...

cache用法

Cache的基本用途提到Cache,不得不说说它的主要功能:改善程序性能。ASP.NET是一种动态页面技术,用ASP.NET技术做出来的网页几乎都是动态的,所谓动态是指:页面的内容会随着不同的用户或者持续更新的数据, 而呈现...

asp.net 数据缓存System.Web.Caching.Cache 实例运用

public interface ICache  {  ///  /// 获取当前应用程序指定CacheKey的Cache值  ///  ///  ///  object GetCache(string CacheKey);   ///

.net中Cache的应用

.net中Cache的应用

细说 ASP NET Cache 及其高级用法

细说 ASP NET Cache 及其高级用法

案例分析:session丢失及appdomain回收

原文地址:... 案例分析:session丢失及appdomain回收在进入细节之前,先看两个问题 appdomain回收时发生了什么?app

缓存处理类(MemoryCache结合文件缓存)

想提升站点的性能,于是增加了缓存,但是站点不会太大,于是...原先使用System.Web.Caching.Cache,但是asp.net会在System.Web.Caching.Cache缓存页面等数据,于是替换了System.Web.Caching.Cache为MemoryCache。...

CacheDemo缓存技术

前台: <asp:Button ID="Button1" runat="server" Text="存" OnClick="Button1_Click" /> <asp:Button ID="Button2" runat="server" Text="取" OnClick="Button2_Click" /> <...

C# 数据缓存操作Cache

转载自:http://blog.csdn.net/crazykiller/article/details/4557317 1 操作类 public class CacheClass  {  ///  /// 获取当前应用程序指定CacheKey的Cache值  ///  ///  ///

ASP.NET多线程下使用HttpContext.Current为null解决方案

问题一:多线程下获取文件绝对路径  当我们使用HttpContext.Current.Server.MapPath(strPath)获取绝对路径时HttpContext.Current为null,解决办法如下:   ///   /// 获得当前绝对路径  ///  ...

Activiti 工作流入门到大神

什么是流程、工作流作用、Activiti背景简介、Activiti流程设计器安装、Activity环境搭建、通过HelloWorld掌握 Activiti操作流程的步奏、常见API使用、流程部署管理(发布流程、查看流程定义、删除流程、查看流程附件)、流程实例管理(启动流程、查看任务、认领任务、办理任务、查看流程状态) 什么是流程、工作流作用、Activiti背景简介、Activiti流程设计器安装、Activity环境搭建、通过HelloWorld掌握 Activiti操作流程的步奏、常见API使用、流程部署管理(发布流程、查看流程定义、删除流程、查看流程附件)、流程实例管理(启动流程、查看任务、认领任务、办理任务、查看流程状态) QQ:362969068

Java Web酒店管理系统源码 +mysql 数据库

酒店管理系统分为前台和后台两个部分,其中后台供管理员管理系统之用,包括客房类型设置模块、客房设置模块以及操作员设置三个子模块,具体的功能模块如下。 客房类型设置模块:该模块用来管理酒店的所有客房类型,包括新增客房类型、编辑已有客房类型、删除客房类型等功能。 客房设置模块:该模块用来管理酒店的所有客房信息,包括新增客房、编辑已有客房、删除客房等功能。 操作员设置模块:该模块用来管理酒店的操作员信息,包括新增操作员、编辑已有操作员信息、删除操作信息等功能。 系统前台供酒店所有工作人员使用,包括入住登记模块、结账模块、预定模块、客户管理模块以及业务统计五个模块。具体的功能模块如下。 入住登记模块:该模块用来登记客户的入住信息,其中入住信息包括登记信息、客人信息以及费用信息三部分。 结账模块:该模块用来处理客户的退房信息,只需要知道客户所住的房间号码,就能进行退房结账。 预定模块:该模块用来处理客户的预定信息,除了可以新增预定信息外,还可以对已有的预定信息进行管理。 客户管理模块:该模块用来管理客户的登记信息,包括新增客户信息、编译已有客户信息、删除客户信息等功能。 业务统计模块:该模块用来统计酒店的客房出租率,并且已图形报表的形式来显示出租率信息。 本系统的开发工具具体如下。 系统开发平台:MyEclipse 6.5。 数据库管理系统软件:MySQL 5.0。 java开发包:JDK 5.0以上。 Web服务器:Tomcat 6.0。 本系统采用MVC架构模式开发,具体技术如下。 AJAX框架:使用ExtJS技术开发 显示层:使用JSP技术开发 数据访问层:使用DAO模式开发 持久层:使用Hibernate框架开发 首页访问地址 :http://localhost:8080/JavaPrj_9/首页配置 页面 修改 打开web.xml 修改 即可 /WEB-INF/pages/userLogin.jsp 复制代码 数据库配置 为hotel-hibernate.xml 文件 测试了将近2个小时 系统跑的还不错 一下小细节 bug 大家可以自己去调整下

计算机设计大赛作品开发文档

参加的是2020年的计算机设计大赛,软件应用与开发赛道。我们的开发文档仅供参考。(20页)

OpenGL

课程涵盖了OpenGL开发的方方面面,对开发中经常用到的开发知识点进行讲解,从实战的角度进行编码设计. 第1章-环境建立 第2章-基础图元 第3章-三维世界 第4章-纹理多彩世界 第5章-显存的分配-优化 第6章-场景控制 第7章-光照-真实世界 第8章-模型 第9章-UI制作 第10章-场景编辑器制作 第11章-地形 第12章-脚本引入-lua 教程从最最本的固定管线开始,一节课一个知识点,从实战的角度出发,结合项目开发中经常用到的知识点作深入的讲解,以面向对象的编成方式对知识点进行封装,可以直接引入到项目中使用.通过课程的学习,掌握OpenGL图形编程技巧,并能学以致用.

Hibernate4视频教程_全面来袭

本Java视频教程基于 Hibernate4.x 录制。内容涵盖安装 Hibernatetools 插件、Session 核心方法、持久化对象生命周期、对象关系映射(1-n、1-1、n-n、继承映射)、检索策略、检索方式(对象导航图、OID 检索、HQL、QBC、本地SQL)、Hibernate 一\二级缓存、管理 Session、批量处理等 Hibernate 企业级开发的核心技术。 本Java视频教程将帮助掌握学习者编写出具有合理的软件架构,以及好的运行性能和并发性能的实用 Hibernate 应用。Java视频教程内容注重理论与实践相结合,列举大量具典型性和实用价值的 Hibernate应用实例,并提供详细的开发和部署步骤。

2021华中杯A第一问配套思路.rar

2021华中杯第一问配套思路,内涵第一问处理后的可读数据,输出结果,可视化图片,RGB转换函数。(R语言代码) 声明:只可自己使用,不可商用。违者必究。 具体思路见:https://tjxwz.blog.csdn.net/article/details/116310441

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

go语言就业指南

授人予鱼不如授人予渔,本课程不但包含go语言从业者所的技能,而且还包含开发人员在开发中的学习技巧。掌握这些技巧和技能可以让你在面试中游刃有余。学习过程中任何问题联系: 4223665 1、掌握go语言基础 2、掌握go语言网络编程 3、掌握go语言并发编程 4、掌握go语言调试技巧 5、掌握go语言反射基础 6、掌握Cgo基本开发 7、掌握通过文档查阅所需资料的能力

VSCode launch.json配置详细教程

主要介绍了vscode 的node.js debugger 的 launch.json 配置详情,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

Erdas遥感影像处理入门实战教程(GIS思维)

《Erdas遥感影像处理入门实战教程》以Erdas2010版本经典界面进行实战教学,设计12章内容,正式教学内容总共45课时,15个小时时长。从软件界面开始,到后的应用,适合入门级、初级、中级的人员学习、工作、教师教学参考。课程根据作者实际工作经验,以及采访学员需求,开展课程设计,实用加实战,会是你学习路上的好帮手。 《Erdas遥感影像处理入门实战教程》以Erdas2010版本经典界面进行实战教学,让学员轻松入门学习,从入门的掌握到实战。 课程采用Erdas2010(经典版)进行录制,适用于Erdas所有系列(如,erdas9.2、erdas2011 erdas2013、erdas2014等等)

ASP.NET 开发课程 MVC5 入门篇

MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用一种业务逻辑、数据、界面显示分离的方法组织代码,将业务逻辑聚集到一个部件里面,在改进和个性化定制界面及用户交互的同时,不需要重新编写业务逻辑。 主讲内容 第一讲 MVC5简介 第二讲 MVC 控制器 第三讲 视图 第四讲 模型 等课程 学会MVC5基本使用

SQLServer数据库实战视频课程

1.数据库的系统需求分析原理及方法详解,数据库的范式讲解; 2.数据库子查询 3.数据库编程变量的定义,条件语句,循环语句等编程基础; 4.索引的作用,索引的分类,创建索引的原则,索引的管理,如何优化数据库; 5.视图的作用,视图分类,创建视图,视图的限制,视图的应用; 8.事务处理; 9.存储过程的创建,修改,删除及使用 10.触发器的作用,触发器的类型,触发器的管理 数据库的系统需求分析原理及方法详解,数据库的范式讲解,数据库高级查询,函数与索引,视图,数据库编程,游标,事务处理,存储过程,触发器

相关热词 c# 负数补码 c# 读取json c# 画图超出画布判断 c#在注册表下创建个文件 c#中的数组添加元素 c#逆向 c#输出xml文件中元素 c#获取系统盘符 c# 微信发送图片消息 c# 对时间