用中序遍历二叉树的兄弟节点的算法

openzpc 2009-12-28 12:06:47
哪位能给我一个完整的算法,要非递归的。兄弟节点或双亲节点
...全文
378 11 打赏 收藏 转发到动态 举报
写回复
用AI写文章
11 条回复
切换为时间正序
请发表友善的回复…
发表回复
openzpc 2010-01-07
  • 打赏
  • 举报
回复
[Quote=引用 5 楼 nosuchtracter 的回复:]
你的这个兄弟节点,在数据中已经组织好了吗?是一个二叉树?
如果输入数据的时候已经进行了排序,也就是已经是一个二叉树
那每个节点应该都有父节点吧?
找父节点的儿子,一个儿子是自己,另外一个肯定是兄弟节点了
[/Quote]
是啊,找到老子就好说了,我找老师问明白了,:-D
wd_tao 2009-12-31
  • 打赏
  • 举报
回复
void InOrderTraverse ( BTreeNode* T )
{ LinkStack *s; //定义栈指针
BTreeNode *p=T; //当前结点指向根结点
InitStack(s); //初始化空栈
do {
while ( p ) {
PushStock(s, p); //将当前子树根结点入栈
p = p→leftChild; //进入左子树
} //遍历左子树
if ( !Empty(s) ) { //栈非空
s=PopStock(s, p); //退栈
cout<< p→data; //访问根结点
p = p→rightChild; //进入其右一子树
}
} while ( p || !Empty(s) );
}
wd_tao 2009-12-31
  • 打赏
  • 举报
回复
void InOrderTraverse ( BTreeNode T )
{ LinkStack s; //定义栈指针
BTreeNode p=T; //当前结点指向根结点
InitStack(s); //初始化空栈
do {
while ( p ) {
PushStock(s, p); //将当前子树根结点入栈
p = p→leftChild; //进入左子树
} //遍历左子树
if ( !Empty(s) ) { //栈非空
s=PopStock(s, p); //退栈
cout<< p→data; //访问根结点
p = p→rightChild; //进入其右一子树
}
} while ( p || !Empty(s) );
}
pz0513 2009-12-31
  • 打赏
  • 举报
回复
我记得清华大学的严蔚敏版的数据结构那本书里有
javase7 2009-12-31
  • 打赏
  • 举报
回复
一般好像都是递归遍历吧
nosuchtracter 2009-12-29
  • 打赏
  • 举报
回复
你的这个兄弟节点,在数据中已经组织好了吗?是一个二叉树?
如果输入数据的时候已经进行了排序,也就是已经是一个二叉树
那每个节点应该都有父节点吧?
找父节点的儿子,一个儿子是自己,另外一个肯定是兄弟节点了
openzpc 2009-12-29
  • 打赏
  • 举报
回复
[Quote=引用 2 楼 hairetz 的回复:]
中序遍历二叉树的兄弟节点,不明白是啥意思?

就是要非递归中序遍历的话,可以给你。

C/C++ codevoid inorder_nonrecursive(tree root)

{

tree stack[100];int top=0;

tree p= root;while (NULL!= p|| top>0)

{while (NULL!= p)

{

stack[top++]= p;

p= p->left_child;

}



p= stack[--top];

printf("%d\t", p->data);

p= p->right_child;

}

}
[/Quote]


就是找一个节点的兄弟节点,不得遍历二叉树么?要不又其他方法?
  • 打赏
  • 举报
回复
就是找一个节点的兄弟节点,不得遍历二叉树么?要不又其他方法?


如果该2叉树只有子节点,没有父节点,那就只能通过遍历来找了.

有parent就好办咯.

cur->parent->rchild,就是左子的兄弟..
  • 打赏
  • 举报
回复
http://blog.csdn.net/hairetz/archive/2009/12/24/5069128.aspx

还有考虑不用栈实现的,蛮有意思的。
  • 打赏
  • 举报
回复
中序遍历二叉树的兄弟节点,不明白是啥意思?

就是要非递归中序遍历的话,可以给你。


void inorder_nonrecursive(tree root)

{

tree stack[100];

int top = 0;

tree p = root;

while (NULL != p || top > 0)

{

while (NULL != p)

{

stack[top++] = p;

p = p->left_child;

}



p = stack[--top];

printf("%d\t", p->data);

p = p->right_child;

}

}



colin_pxx 2009-12-28
  • 打赏
  • 举报
回复
这个只能去google或者找一本数据结构算法的书看看了
5.1 数的逻辑结构 5.1.1 1、树的定义 在树中常常将数据元素称为结点 (1)有且仅有一个特定的称为根的结点; (2)当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,•••Tm,其中每个集合又是一棵树,并称为这个节点的子树。 2、树的基本术语: 结点的度、树的度 叶子节点、分支结点 孩子节点、分支结点、兄弟节点 路径、路径长度 祖先、子孙 结点的层数、树的深度(高度) 层序编号 有序树、无序树 森林 5.1.2 树的抽象数据类型定义 5.1.3树的遍历操作 1、前序遍历 树的前序遍历操作定义为: 若树为空,则空操作返回;否则 (1)访问根结点 (2)按照从左向右的顺序前序遍历根结点的每一棵子树。 2、中序遍历 树的中序遍历操作定义为: 若树为空,则空操作返回;否则 (1)按照从左向右的顺序后序遍历根结点的每一棵子树; (2)访问根结点。 3、层序遍历 树的层序遍历也称作树的广泛遍历,其操作定义为树的第一层开始,自上而下逐层遍历,在同一层中,按从左向右的顺序对结点逐个访问。 5.2树的存储结构 5.2.1 双亲表示法 由树的定义可知,树中每个结点都有且仅有一个双亲结点。所以利用这一特性,可以用一维数组来存储各个结点,数组中一个元素对应一个结点,数组元素包括树中结点的数据信息以及该结点的双亲在数组中的下标。 其中: Data为数据域,存储树中结点的数据信息; Parent为指针即游标,存储该结点的双亲在数组中的小标。 5.2.2孩子表示法 1、多重链表表示法 (1)指针域的个数等于该结点的度。 (2)指针域的个数等于树的度。 2、孩子链表表示法 把孩子看成一个线性表,且以单链表存储,称为该结点的孩子链表。则n个结点有n个孩子链表。 孩子节点有两类:孩子节点、表头结点。 5.2.3 双亲孩子表示法 即将双亲表示法和孩子链表表示法相结合的存储方法。仍将各结点的孩子分别组成单链表,同时用一维数组顺序存储树中的各结点,数组元素除了包括结点的数据信息和该结点的孩子链表的头指针之外,还增设一个域存储该结点的双亲在数组的下标。 5.2.4孩子兄弟表示法 又称二链表表示法,其方法是链表中每个结点除数据域外,还设置了两个指针分别指向该结点的第一个孩子和右兄弟链表的结构: Firstchild data rightsib 指针域,存储第一个孩子结点的存储地址 数据域,存储该结点的数据信息 指针域,存储该结点右兄弟结点的存储地址 5.3二叉树的逻辑结构 最简单的树结构,特别适合计算机处理,而且任何数都可以简单的转换为二叉树。(重点内容) 5.3.1二叉树的定义 二叉树是n(n>=0)个结点的有限集合,该集合或者为空集,或者有一个根节点和两棵互不相交的、分别称为根节点的左子树和右子树的二叉树组成。 二叉树具有五种基本形态: 1、空二叉树; 2、只有一个根结点; 3、根结点只有左子树; 4、根结点只有右子树; 5、根结点既有左子树又有右子树 特殊二叉树: 1、斜树; 2、满二叉树; 3、完全二叉树; 5.3.2二叉树的基本性质 性质5-1 二叉树的第i层上最多有2^(i-1)个结点(i>=1)。 性质5-2 在一棵深度为k的二叉树中,最多有2^k-1个结点,最少有k个结点。 性质5-3 在一棵二叉树中,如果叶子结点的个数为n0,度为2的结点个数为n2,则n0=n2+1. 性质5-4 具有n个结点的完全二叉树的深度为【log2^n】+1。 性质5-5 对一棵具有n个结点的完全二叉树中的结点从一开始按层序编号,则对于任意的编号为i(1<=i<=n)的结点,有: (1)如果i>1,则结点i的双亲的编号为【i/2】;否则结点i是根结点,无双亲。 (2)如果2i<=n,则 结点i的左孩子的编号为2i;否则结点i无左孩子。 (3)如果2i+1<=n,则结点i的右孩子的编号为2i+1,否则结点i无右孩子。 5.3.3 二叉树的抽象数据类型定义 同树类似,在不同的应用中,二叉树的基本操作不尽相同。 5.3.4 二叉树的遍历操作 二叉树的遍历是指从根节点出发,按照某种次序访问二叉树是所有结点,使得每个结点被访问一次且仅被访问一次。由于二叉树中每个结点都可能有两个子树,因此需要寻找一条合适的搜索路径。 1、前序遍历 前序遍历二叉树操作定义为: 若树为空,则空操作返回;否则 (1)访问根结点 (2)前序遍历根结点的左子树 (3)前序遍历根结点的右子树 2、中序遍历 中序遍历二叉树操作定义为: 若树为空,则空操作返回;否则 (1)中序遍历根结点的左子树 (2)访问根结点 (3)中序遍历根结点的右子树 3、后序遍历 后序遍历根结点的左子树 后序遍历根结点的右子树 访问根结点 4、层序遍历 二叉树的层序遍历是指从二叉树的第一层开始,从上之下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。 5.4 二叉树存储结构及实现 5.4.1 顺序存储结构 具体步骤: (1)将二叉树按完全二叉树编号。 (2)将二叉树中的结点一编号顺序存储到一维数组中。 5.4.2 二叉链表 基本思想: 令二叉树的每个结点对应一个链表结点,链表结点除了存放于二叉树结点有关的数据信息外,还要设置指示左右孩子的指针。 5.4.3 三叉链表 在二叉链表存储方式下,从某个结点出发可以直接访问它的孩子结点,但要找到它的双亲结点,则需要从根节点开始搜索,最坏的情况下,需要遍历整个二叉链表。此时采用三叉树链表储存二叉树。 其中,data,lchild,rchild三个域的含义同二叉树,parent域为指向该结点的双亲结点指针。 5.4.4 线索链表 按照某种遍历次序对二叉树进行遍历,可以把二叉树中所有结点排成一个线性序列。在集体应用中,有时需要访问二叉树中的结点在某种遍历序列中前驱和后继,此时,在存储结构中应该保存结点在某种遍历序列中的前驱和后继信息。 前驱和后继结点的指针称为线索,加上线索的二叉树称为线索二叉树,加上线索的二叉链表称为线索链表。 5.5 二叉树遍历的非递归算法 5.5.1 前序遍历非递归算法 关键:在前序遍历过某个左子树后,如何找到该结点的右子树的根指针。 一般的前序遍历执行过程中,设要遍历二叉树的根指针为bt,可能出现两种情况: (1)若bt!=NULL,则表明当前二叉树不为空,此时,应输入根结点bt的值并将bt保存到栈中,准备继续遍历bt的左子树。 (2)若bt=NULL,则表明以bt为根指针的二叉树遍历完毕,并且bt是栈顶指针所指结点的左子树,若栈不空,则应根据栈顶指针所指结点找到待遍历右子树的根指针并赋予bt,以继续遍历下去;若栈空,则表明整个二叉树遍历完毕。 5.5.2 中序遍历非递归算法算法只是需要将前序遍历的非递归算法中输出的语句cout<data移到bt=s[top--]之后即可。 5.5.3 后序遍历非递归算法 后序遍历的不同在于:结点要出入两次栈,出两次栈,这种情况的含义和处理方法为: (1)第一次出栈:只遍历晚左子树,右子树尚未遍历,则该结点不出栈,利用栈顶结点找到它的右子树,准备遍历它的右子树。 (2)第二次出栈:遍历完右子树,该结点出栈,并访问它。 设根指针为bt,则可能有以下两种情况: (1)若bt!=NULL,则bt及标志flag入栈,遍历其左子树。 (2)若bt=NULL,此时栈空,则整个遍历结束;若栈不空,则表明栈顶结点的左子树或右子树已遍历结束。若栈顶点的标志flag=1,则表明栈结点的左子树已遍历完毕,将flag修改为2,修改为2,并遍历栈定点的右子树;若栈顶结点的标志flag=2,则表明栈结点的右子树也遍历完毕,输出栈顶结点。 5.6 树、森林与二叉树的转换 1.树转换为二叉树 将一棵树转换为二叉树的方法为: (1)加线——树中所有相邻的兄弟结点之间加一条线; (2)去线——对树中的每个节点,只保留它与第一个孩子结点之间的连线,删去它与其他孩子结点之间的连线。 (3)层次调节——以根结点为轴心,将树顺时针转动一定角度,使之层次分明。 2.森林转换成二叉树 (1)将森林中的每一棵二叉树转化成二叉树; (2)从第二课二叉树开始,依次把后一棵二叉树的根结点作为一棵二叉树节点的右孩子,当所有二叉树连起来后,此时所得到的二叉树就是由森林转换得到的二叉树。 3、二叉树转换为树或森林 (1)加线——若某个结点x是其双亲y的左孩子,则把结点x的右孩子、右孩子的右孩子、……,都与结点y用线连起来; (2)去线——删去原二叉树中所有的双亲结点与右孩子结点的连线; (3)层次调整——整理由(1)、(2)两步所得到的树或森林,使之层次分明。 (4)森林的遍历 两种遍历方法;前序遍历后续遍历。 5.7 应用举例 5.7.1 二叉树的应用举例——哈夫曼及哈夫曼编码 1、哈夫曼树也称最优二叉树,在实际中有着广泛的应用。 叶子节点的权值 是对叶子结点赋予的一个有意义的数值量。 二叉树的带权路径长度 设二叉树具有n个带权值的叶子节点,从根节点到叶子节点的路径长度与相应的叶子节点权值的乘积之和叫做二叉树的带权路径长度,记为: WPL=EWkLk 哈夫曼树 给定一组具有确定权值的叶子结点,可以构造出不同的二叉树,将其中带权值路径长度最小的二叉树称为哈夫曼树。 哈夫曼算法基本思想: (1)初始化:由给定的n个权值构造n棵只有一个根结点的二叉树,从而得到一个二叉树集合。 (2)选取与合并:在F中选取根结点的权值最小的两棵二叉树分别作为左、右子树构造一棵新的二叉树,这棵新的二叉树的根结点的权值为其左右子树根结点的权值之和。 (3)删除与加入:在F中删除作为左、右子树的两棵二叉树,并将新建的二叉树加入到F中。 (4)重复(2)(3)两步的操作,当集合F只剩下一棵二叉树时这棵二叉树便是哈夫曼树。 2、哈夫曼编码 在进行程序设计时,通常给每一个字符记一个单独的代码来表示一组字符,我们称之为编码。
数据结构算法实现(严蔚敏版配套实现程序) 1.1 数组和字符串 2 1.1.1 一维数组的倒置 2 范例1-1 一维数组的倒置 2 ∷相关函数:fun函数 1.1.2 一维数组应用 3 范例1-2 一维数组应用 3 1.1.3 一维数组的高级应用 5 范例1-3 一维数组的高级应用 5 1.1.4 显示杨辉三角 7 范例1-4 显示杨辉三角 7 ∷相关函数:c函数 8 1.1.5 魔方阵 9 范例1-5 魔方阵 9 1.1.6 三维数组的表示 14 范例1-6 三维数组的表示 14 ∷相关函数:InitArray函数 1.1.7 多项式的数组表示 17 范例1-7 多项式数组的表示 17 1.1.8 查找矩阵的马鞍点 19 范例1-8 查找矩阵的马鞍点 19 ∷相关函数:Get_Saddle函数 1.1.9 对角矩阵建立 21 范例1-9 对角矩阵建立 21 ∷相关函数:Store函数 1.1.10 三对角矩阵的建立 22 范例1-10 三对角矩阵的建立 22 ∷相关函数:Store函数 1.1.11 三角矩阵建立 24 范例1-11 三角矩阵建立 24 ∷相关函数:Store函数 1.1.12 对称矩阵的建立 25 范例1-12 对称矩阵的建立 25 ∷相关函数:store函数 1.1.13 字符串长度的计算 28 范例1-13 字符串长度的计算 28 ∷相关函数:strlen函数 1.1.14 字符串的复制 29 范例1-14 字符串的复制 29 ∷相关函数:strcpy函数 1.1.15 字符串的替换 31 范例1-15 字符串的替换 31 ∷相关函数:strrep函数 1.1.16 字符串的删除 33 范例1-16 字符串的删除 33 ∷相关函数:strdel函数 1.1.17 字符串的比较 35 范例1-17 字符串的比较 35 ∷相关函数:strcmp函数 1.1.18 字符串的抽取 36 范例1-18 字符串的抽取 36 ∷相关函数:substr函数 1.1.19 字符串的分割 38 范例1-19 字符串的分割 38 ∷相关函数:partition函数 1.1.20 字符串的插入 40 范例1-20 字符串的插入 40 ∷相关函数:insert函数 1.1.21 字符串的匹配 42 范例1-21 字符串的匹配 42 ∷相关函数:nfind函数 1.1.22 字符串的合并 43 范例1-22 字符串的合并 43 ∷相关函数:catstr函数 1.1.23 文本编辑 45 范例1-23 文本编辑 45 ∷相关函数:StrAssign函数 1.2 栈和队列 54 1.2.1 用数组仿真堆栈 54 范例1-24 用数组仿真堆栈 54 ∷相关函数:push函数 pop函数 1.2.2 用链表仿真堆栈 57 范例1-25 用链表仿真堆栈 57 ∷相关函数:push函数 pop函数 1.2.3 顺序栈公用 59 范例1-26 顺序栈公用 59 ∷相关函数:push函数 pop函数 1.2.4 进制转换问题 61 范例1-27 进制转换问题 61 ∷相关函数:MultiBaseOutput函数 1.2.5 顺序队列操作 64 范例1-28 顺序队列操作 64 ∷相关函数:push函数 pop函数 1.2.6 循环队列 66 范例1-29 循环队列 66 ∷相关函数:EnQueue函数 DeQueue函数 1.2.7 链队列的入队、出队 69 范例1-30 链队列入队、出队 69 ∷相关函数:push函数 pop函数 1.2.8 舞伴问题 71 范例1-31 舞伴问题 71 ∷相关函数:EnQueue函数 DeQueue函数 DancePartner函数 1.3 链表 75 1.3.1 头插法建立单链表 75 范例1-32 头插法建立单链表 75 ∷相关函数:createlist函数 1.3.2 限制链表长度建立单链表 77 范例1-33 限制链表长度建立长单链表 77 ∷相关函数:createlist函数 1.3.3 尾插法建立单链表 79 范例1-34 尾插法建立单链表 79 ∷相关函数:createlist函数 1.3.4 按序号查找单链表 80 范例1-35 按序号查找单链表 80 ∷相关函数:getnode函数 1.3.5 按值查找单链表 82 范例1-36 按值查找单链表 82 ∷相关函数:locatenode函数 1.3.6 链表的插入 84 范例1-37 链表的插入 84 ∷相关函数:insertnode函数 1.3.7 链表的删除 86 范例1-38 链表的删除 86 ∷相关函数:deletelist函数 1.3.8 归并两个单链表 88 范例1-39 归并两个单链表 88 ∷相关函数:concatenate函数
1.1 数组和字符串 2 1.1.1 一维数组的倒置 2 范例1-1 一维数组的倒置 2 ∷相关函数:fun函数 1.1.2 一维数组应用 3 范例1-2 一维数组应用 3 1.1.3 一维数组的高级应用 5 范例1-3 一维数组的高级应用 5 1.1.4 显示杨辉三角 7 范例1-4 显示杨辉三角 7 ∷相关函数:c函数 8 1.1.5 魔方阵 9 范例1-5 魔方阵 9 1.1.6 三维数组的表示 14 范例1-6 三维数组的表示 14 ∷相关函数:InitArray函数 1.1.7 多项式的数组表示 17 范例1-7 多项式数组的表示 17 1.1.8 查找矩阵的马鞍点 19 范例1-8 查找矩阵的马鞍点 19 ∷相关函数:Get_Saddle函数 1.1.9 对角矩阵建立 21 范例1-9 对角矩阵建立 21 ∷相关函数:Store函数 1.1.10 三对角矩阵的建立 22 范例1-10 三对角矩阵的建立 22 ∷相关函数:Store函数 1.1.11 三角矩阵建立 24 范例1-11 三角矩阵建立 24 ∷相关函数:Store函数 1.1.12 对称矩阵的建立 25 范例1-12 对称矩阵的建立 25 ∷相关函数:store函数 1.1.13 字符串长度的计算 28 范例1-13 字符串长度的计算 28 ∷相关函数:strlen函数 1.1.14 字符串的复制 29 范例1-14 字符串的复制 29 ∷相关函数:strcpy函数 1.1.15 字符串的替换 31 范例1-15 字符串的替换 31 ∷相关函数:strrep函数 1.1.16 字符串的删除 33 范例1-16 字符串的删除 33 ∷相关函数:strdel函数 1.1.17 字符串的比较 35 范例1-17 字符串的比较 35 ∷相关函数:strcmp函数 1.1.18 字符串的抽取 36 范例1-18 字符串的抽取 36 ∷相关函数:substr函数 1.1.19 字符串的分割 38 范例1-19 字符串的分割 38 ∷相关函数:partition函数 1.1.20 字符串的插入 40 范例1-20 字符串的插入 40 ∷相关函数:insert函数 1.1.21 字符串的匹配 42 范例1-21 字符串的匹配 42 ∷相关函数:nfind函数 1.1.22 字符串的合并 43 范例1-22 字符串的合并 43 ∷相关函数:catstr函数 1.1.23 文本编辑 45 范例1-23 文本编辑 45 ∷相关函数:StrAssign函数 1.2 栈和队列 54 1.2.1 用数组仿真堆栈 54 范例1-24 用数组仿真堆栈 54 ∷相关函数:push函数 pop函数 1.2.2 用链表仿真堆栈 57 范例1-25 用链表仿真堆栈 57 ∷相关函数:push函数 pop函数 1.2.3 顺序栈公用 59 范例1-26 顺序栈公用 59 ∷相关函数:push函数 pop函数 1.2.4 进制转换问题 61 范例1-27 进制转换问题 61 ∷相关函数:MultiBaseOutput函数 1.2.5 顺序队列操作 64 范例1-28 顺序队列操作 64 ∷相关函数:push函数 pop函数 1.2.6 循环队列 66 范例1-29 循环队列 66 ∷相关函数:EnQueue函数 DeQueue函数 1.2.7 链队列的入队、出队 69 范例1-30 链队列入队、出队 69 ∷相关函数:push函数 pop函数 1.2.8 舞伴问题 71 范例1-31 舞伴问题 71 ∷相关函数:EnQueue函数 DeQueue函数 DancePartner函数 1.3 链表 75 1.3.1 头插法建立单链表 75 范例1-32 头插法建立单链表 75 ∷相关函数:createlist函数 1.3.2 限制链表长度建立单链表 77 范例1-33 限制链表长度建立长单链表 77 ∷相关函数:createlist函数 1.3.3 尾插法建立单链表 79 范例1-34 尾插法建立单链表 79 ∷相关函数:createlist函数 1.3.4 按序号查找单链表 80 范例1-35 按序号查找单链表 80 ∷相关函数:getnode函数 1.3.5 按值查找单链表 82 范例1-36 按值查找单链表 82 ∷相关函数:locatenode函数 1.3.6 链表的插入 84 范例1-37 链表的插入 84 ∷相关函数:insertnode函数 1.3.7 链表的删除 86 范例1-38 链表的删除 86 ∷相关函数:deletelist函数 1.3.8 归并两个单链表 88 范例1-39 归并两个单链表 88 ∷相关函数:concatenate函数 1.3.9 动态堆栈 90 范例1-40 动态堆栈 90 ∷相关函数:push函数 Pop函数 1.3.10 动态队列 93 范例1-41 动态队列 93 ∷相关函数:Enqueue函数 1.3.11 初始化单循环链表 95 范例1-42 初始化单循环链表 95 ∷相关函数:ListLength_CL函数 1.3.12 查询元素的前驱和后继 98 范例1-43 查询元素的前驱和后继 98 ∷相关函数:PriorElem_CL函数 NextElem_CL函数 1.3.13 单循环链表中元素的删除 101 范例1-44 单循环链表中元素的删除 101 ∷相关函数:ListDelete_CL函数 1.3.14 单循环链表的清除和销毁 107 范例1-45 单循环链表的清除和销毁 107 ∷相关函数:DestroyList函数 1.3.15 仅设表尾指针循环链表的合并 110 范例1-46 仅设表尾指针循环链表的合并 110 ∷相关函数:MergeList_CL函数 1.3.16 正序输出双向链表 113 范例1-47 正序输出双向链表 113 ∷相关函数:ListInsert函数 ListTraverse函数 1.3.17 逆向输出双向链表 116 范例1-48 三角矩阵建立 116 ∷相关函数:ListTraverseBack函数 1.3.18 删除双向链表中的节点 121 范例1-49 删除双向链表中的节点 121 ∷相关函数:ListDelete函数 1.3.19 双向链表的元素个数 124 范例1-50 双向链表的元素个数 124 ∷相关函数:ListLength函数 1.3.20 判断双向链表是否为空 126 范例1-51 判断双向链表是否为空 126 ∷相关函数:ListEmpty函数 1.3.21 双向链表元素值的查询 129 范例1-52 双向链表元素值的查询 129 ∷相关函数:GetElemP函数 1.3.22 稀疏矩阵的建立 136 范例1-53 稀疏矩阵的建立 136 ∷相关函数:Create函数 1.3.23 稀疏矩阵的删除 138 范例1-54 稀疏矩阵的删除 138 ∷相关函数:erase函数 1.4 树和二叉树 141 1.4.1 获得二叉树的深度和根(顺序结构) 141 范例1-55 获得二叉树的深度和根 141 ∷相关函数:BiTreeDepth函数 Root函数 1.4.2 获得二叉树的深度和根(链表结构) 144 范例1-56 获得二叉树的深度和根 144 ∷相关函数:BiTreeDepth函数 Root函数 1.4.3 树的插入(顺序结构) 147 范例1-57 树的插入 147 ∷相关函数:InsertChild函数 1.4.4 节点的修改(顺序结构) 150 范例1-58 节点的修改 150 ∷相关函数:Assign函数 1.4.5 节点的修改(链式结构) 154 范例1-59 节点的修改 154 ∷相关函数:Assign函数 1.4.6 双亲、孩子和兄弟节点的查询(顺序结构) 158 范例1-60 双亲、孩子和兄弟节点的查询 158 ∷相关函数:Parent函数 LeftChild函数 RightChild函数 LeftSibling函数 RightSibling函数 1.4.7 双亲、孩子和兄弟节点的查询(链式结构) 162 范例1-61 双亲、孩子和兄弟节点的查询 162 ∷相关函数:Parent函数 LeftChild函数 RightChild函数 LeftSibling函数 RightSibling函数 1.4.8 中序遍历二叉树(顺序结构) 169 范例1-62 中序遍历二叉树 169 ∷相关函数:InOrderTraverse函数 1.4.9 中序遍历二叉树(链式结构) 171 范例1-63 中序遍历二叉树 171 ∷相关函数:InOrderTraverse函数 1.4.10 中序非递归遍历二叉树(链式结构)(1) 174 范例1-64 中序非递归遍历二叉树 174 ∷相关函数:InOrderTraverse函数 1.4.11 中序非递归遍历二叉树(链式结构)(2) 177 范例1-65 中序非递归遍历二叉树 177 ∷相关函数:InOrderTraverse2函数 1.4.12 后序遍历二叉树(顺序结构) 180 范例1-66 后序遍历二叉树 180 ∷相关函数:PostOrderTraverse函数 1.4.13 后序遍历二叉树(链式结构) 183 范例1-67 后序遍历二叉树 183 ∷相关函数:PostOrderTraverse函数 1.4.14 层次遍历二叉树(顺序结构) 186 范例1-68 层次遍历二叉树 186 ∷相关函数:LevelOrderTraverse函数 1.4.15 层次遍历二叉树(链式结构) 188 范例1-68 层次遍历二叉树 188 ∷相关函数:LevelOrderTraverse函数 1.4.16 树的合并 191 范例1-70 树的合并 191 ∷相关函数:Find函数 Union函数 1.4.17 树的二叉链表存储的基本操作 193 范例1-71 树的二叉链表存储的基本操作 193 ∷相关函数:LevelOrderTraverse函数 1.4.18 二叉树的三叉链表存储的基本操作 201 范例1-72 二叉树的三叉链表存储表示 201 ∷相关函数:CreateBiTree函数 1.4.19 二叉树的二叉线索存储的基本操作 212 范例1-73 二叉树的二叉线索存储 212 ∷相关函数:CreateBiThrTree函数 1.4.20 树的双亲表存储的基本操作 215 范例1-74 树的双亲表存储的基本操作 215 ∷相关函数:CreateTree函数 1.4.21 哈夫曼编码(1) 223 范例1-75 哈夫曼编码(1) 223 ∷相关函数:HuffmanCoding函数 1.4.22 哈夫曼编码(2) 226 范例1-76 哈夫曼编码(2) 226 ∷相关函数:HuffmanCoding函数 1.5 排序 229 1.5.1 直接插入排序 229 范例1-77 直接插入排序 229 ∷相关函数:InsertSort函数 1.5.2 折半插入排序(顺序结构) 231 范例1-78 折半插入排序(顺序结构) 231 ∷相关函数:BInsertSort函数 1.5.3 2—路插入排序(顺序结构) 233 范例1-79 2—路插入排序(顺序结构) 233 ∷相关函数:P2_InsertSort函数 1.5.4 折半插入排序(链式结构) 235 范例1-80 折半插入排序(链式结构) 235 ∷相关函数:Arrange函数 1.5.5 2—路插入排序(链式结构) 238 范例1-81 2—路插入排序(链式结构) 238 ∷相关函数:Rearrange函数 1.5.6 希尔排序 241 范例1-82 希尔排序 241 ∷相关函数:ShellSort函数 1.5.7 冒泡排序 243 范例1-83 冒泡排序 243 ∷相关函数:bubble_sort函数 1.5.8 一趟快速排序 246 范例1-84 一趟快速排序 246 ∷相关函数:QSort函数 1.5.9 一趟快速排序的改进算法 248 范例1-85 一趟快速排序的改进算法 248 ∷相关函数:QuickSort函数 1.5.10 简单选择排序 250 范例1-86 简单选择排序 250 ∷相关函数:SelectSort函数 1.5.11 箱子排序 252 范例1-87 箱子排序 252 ∷相关函数:sort函数 1.5.12 树型选择排序 254 范例1-88 树型选择排序 254 ∷相关函数:TreeSort函数 1.5.13 堆排序 256 范例1-89 堆排序 256 ∷相关函数:HeapSort函数 1.5.14 归并排序 258 范例1-90 归并排序 258 ∷相关函数:MergeSort函数 1.5.15 多路平衡归并排序 260 范例1-91 多路平衡归并排序 260 ∷相关函数:K_Merge函数 1.5.16 置换—选择排序 265 范例1-92 置换—选择排序 265 ∷相关函数:Replace_Selection函数 1.5.17 文件的归并 269 范例1-93 文件的归并 269 ∷相关函数:K_Merge函数 1.6 查找 272 1.6.1 顺序表的查找 273 范例1-94 顺序表的查找 273 ∷相关函数:Search_Seq函数 1.6.2 静态树表的查找 276 范例1-95 静态树表的查找 276 ∷相关函数:Search_SOSTree函数 1.6.3 二叉排序树的基本操作 280 范例1-96 二叉排序树的基本操作 280 ∷相关函数:InsertBST函数 1.6.4 平衡二叉树的基本操作 285 范例1-97 平衡二叉树的基本操作 285 ∷相关函数:SearchBST函数 1.6.5 B树的基本操作 290 范例1-98 B树的基本操作 290 ∷相关函数:SearchBTree函数 1.6.6 按关键字符串的遍历双链键树 295 范例1-99 按关键字符串遍历双链键树 295 ∷相关函数:SearchDLTree函数 1.6.7 按关键字符串的遍历Trie树 301 范例1-100 按关键字符串遍历Trie树 301 ∷相关函数:SearchTrie函数 1.6.8 哈希表的基本操作 306 范例1-101 哈希表的基本操作 306 ∷相关函数:SearchHash函数 1.7 图 311 1.7.1 图的邻接矩阵存储表示 311 范例1-102 图的邻接矩阵存储表示 ∷相关函数:CreateFAG函数 CreateDG函数 1.7.2 图的邻接表存储表示 324 范例1-103 图的邻接表存储表示 324 ∷相关函数:CreateFAG函数 1.7.3 有向图的十字链表存储表示 335 范例1-104 有向图的十字链表存储表示 335 ∷相关函数:CreateDG函数 1.7.4 无向图的邻接多重表存储表示 344 范例1-105 无向图的邻接多重表存储表示 344 ∷相关函数:CreateGraph函数 1.7.5 最小生成树 355 范例1-106 最小生成树 355 ∷相关函数:MiniSpanTree_PRIM函数 1.7.6 关节点和重连通分量 359 范例1-107 关节点和重连通分量 359 ∷相关函数:FindArticul函数 1.7.7 拓扑排序 366 范例1-108 拓扑排序 366 ∷相关函数:TopologicalSort函数 1.7.8 关键路径 374 范例1-109 关键路径 374 ∷相关函数:CriticalPath函数 1.7.9 最短路径 383 范例1-110 最短路径 383 ∷相关函数:ShortestPath_DIJ函数 1.7.10 每一对顶点之间的最短路径 387 范例1-111 每一对顶点之间的最短路径 387 ∷相关函数:ShortestPath_FLOYD函数

33,007

社区成员

发帖
与我相关
我的任务
社区描述
数据结构与算法相关内容讨论专区
社区管理员
  • 数据结构与算法社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧