关于FILE_FLAG_NO_BUFFERING的问题

zentropy 2010-03-23 11:49:38
问一个问题:
想在CreateFile中设置FILE_FLAG_NO_BUFFERING来达到无缓存的目的
但是运行的时候发现原本文件是在system32目录下的时候并没有效果,而我把文件复制到其他地方之后就有效了
有谁知道这个为什么?
谢谢!
...全文
268 回复 打赏 收藏 转发到动态 举报
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
[PHP] ;;;;;;;;;;;;;;;;;;; ; About php.ini ; ;;;;;;;;;;;;;;;;;;; ; PHP's initialization file, generally called php.ini, is responsible for ; configuring many of the aspects of PHP's behavior. ; PHP attempts to find and load this configuration from a number of locations. ; The following is a summary of its search order: ; 1. SAPI module specific location. ; 2. The PHPRC environment variable. (As of PHP 5.2.0) ; 3. A number of predefined registry keys on Windows (As of PHP 5.2.0) ; 4. Current working directory (except CLI) ; 5. The web server's directory (for SAPI modules), or directory of PHP ; (otherwise in Windows) ; 6. The directory from the --with-config-file-path compile time option, or the ; Windows directory (C:\windows or C:\winnt) ; See the PHP docs for more specific information. ; http://php.net/configuration.file ; The syntax of the file is extremely simple. Whitespace and lines ; beginning with a semicolon are silently ignored (as you probably guessed). ; Section headers (e.g. [Foo]) are also silently ignored, even though ; they might mean something in the future. ; Directives following the section heading [PATH=/www/mysite] only ; apply to PHP files in the /www/mysite directory. Directives ; following the section heading [HOST=www.example.com] only apply to ; PHP files served from www.example.com. Directives set in these ; special sections cannot be overridden by user-defined INI files or ; at runtime. Currently, [PATH=] and [HOST=] sections only work under ; CGI/FastCGI. ; http://php.net/ini.sections ; Directives are specified using the following syntax: ; directive = value ; Directive names are *case sensitive* - foo=bar is different from FOO=bar. ; Directives are variables used to configure PHP or PHP extensions. ; There is no name validation. If PHP can't find an expected ; directive because it is not set or is mistyped, a default value will be used. ; The value can be a string, a number, a PHP constant (e.g. E_ALL or M_PI), one ; of the INI constants (On, Off, True, False, Yes, No and None) or an expression ; (e.g. E_ALL & ~E_NOTICE), a quoted string ("bar"), or a reference to a ; previously set variable or directive (e.g. ${foo}) ; Expressions in the INI file are limited to bitwise operators and parentheses: ; | bitwise OR ; ^ bitwise XOR ; & bitwise AND ; ~ bitwise NOT ; ! boolean NOT ; Boolean flags can be turned on using the values 1, On, True or Yes. ; They can be turned off using the values 0, Off, False or No. ; An empty string can be denoted by simply not writing anything after the equal ; sign, or by using the None keyword: ; foo = ; sets foo to an empty string ; foo = None ; sets foo to an empty string ; foo = "None" ; sets foo to the string 'None' ; If you use constants in your value, and these constants belong to a ; dynamically loaded extension (either a PHP extension or a Zend extension), ; you may only use these constants *after* the line that loads the extension. ;;;;;;;;;;;;;;;;;;; ; About this file ; ;;;;;;;;;;;;;;;;;;; ; PHP comes packaged with two INI files. One that is recommended to be used ; in production environments and one that is recommended to be used in ; development environments. ; php.ini-production contains settings which hold security, performance and ; best practices at its core. But please be aware, these settings may break ; compatibility with older or less security conscience applications. We ; recommending using the production ini in production and testing environments. ; php.ini-development is very similar to its production variant, except it's ; much more verbose when it comes to errors. We recommending using the ; development version only in development environments as errors shown to ; application users can inadvertently leak otherwise secure information. ; This is php.ini-development INI file. ;;;;;;;;;;;;;;;;;;; ; Quick Reference ; ;;;;;;;;;;;;;;;;;;; ; The following are all the settings which are different in either the production ; or development versions of the INIs with respect to PHP's default behavior. ; Please see the actual settings later in the document for more details as to why ; we recommend these changes in PHP's behavior. ; display_errors ; Default Value: On ; Development Value: On ; Production Value: Off ; display_startup_errors ; Default Value: Off ; Development Value: On ; Production Value: Off ; error_reporting ; Default Value: E_ALL & ~E_NOTICE & ~E_STRICT & ~E_DEPRECATED ; Development Value: E_ALL ; Production Value: E_ALL & ~E_DEPRECATED & ~E_STRICT ; html_errors ; Default Value: On ; Development Value: On ; Production value: On ; log_errors ; Default Value: Off ; Development Value: On ; Production Value: On ; max_input_time ; Default Value: -1 (Unlimited) ; Development Value: 60 (60 seconds) ; Production Value: 60 (60 seconds) ; output_buffering ; Default Value: Off ; Development Value: 4096 ; Production Value: 4096 ; register_argc_argv ; Default Value: On ; Development Value: Off ; Production Value: Off ; request_order ; Default Value: None ; Development Value: "GP" ; Production Value: "GP" ; session.gc_divisor ; Default Value: 100 ; Development Value: 1000 ; Production Value: 1000 ; session.hash_bits_per_character ; Default Value: 4 ; Development Value: 5 ; Production Value: 5 ; short_open_tag ; Default Value: On ; Development Value: Off ; Production Value: Off ; track_errors ; Default Value: Off ; Development Value: On ; Production Value: Off ; url_rewriter.tags ; Default Value: "a=href,area=href,frame=src,form=,fieldset=" ; Development Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; Production Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; variables_order ; Default Value: "EGPCS" ; Development Value: "GPCS" ; Production Value: "GPCS" ;;;;;;;;;;;;;;;;;;;; ; php.ini Options ; ;;;;;;;;;;;;;;;;;;;; ; Name for user-defined php.ini (.htaccess) files. Default is ".user.ini" ;user_ini.filename = ".user.ini" ; To disable this feature set this option to empty value ;user_ini.filename = ; TTL for user-defined php.ini files (time-to-live) in seconds. Default is 300 seconds (5 minutes) ;user_ini.cache_ttl = 300 ;;;;;;;;;;;;;;;;;;;; ; Language Options ; ;;;;;;;;;;;;;;;;;;;; ; Enable the PHP scripting language engine under Apache. ; http://php.net/engine engine = On ; This directive determines whether or not PHP will recognize code between ; tags as PHP source which should be processed as such. It is ; generally recommended that should be used and that this feature ; should be disabled, as enabling it may result in issues when generating XML ; documents, however this remains supported for backward compatibility reasons. ; Note that this directive does not control the tags. ; http://php.net/asp-tags asp_tags = Off ; The number of significant digits displayed in floating point numbers. ; http://php.net/precision precision = 14 ; Output buffering is a mechanism for controlling how much output data ; (excluding headers and cookies) PHP should keep internally before pushing that ; data to the client. If your application's output exceeds this setting, PHP ; will send that data in chunks of roughly the size you specify. ; Turning on this setting and managing its maximum buffer size can yield some ; interesting side-effects depending on your application and web server. ; You may be able to send headers and cookies after you've already sent output ; through print or echo. You also may see performance benefits if your server is ; emitting less packets due to buffered output versus PHP streaming the output ; as it gets it. On production servers, 4096 bytes is a good setting for performance ; reasons. ; Note: Output buffering can also be controlled via Output Buffering Control ; functions. ; Possible Values: ; On = Enabled and buffer is unlimited. (Use with caution) ; Off = Disabled ; Integer = Enables the buffer and sets its maximum size in bytes. ; Note: This directive is hardcoded to Off for the CLI SAPI ; Default Value: Off ; Development Value: 4096 ; Production Value: 4096 ; http://php.net/output-buffering output_buffering = 4096 ; You can redirect all of the output of your scripts to a function. For ; example, if you set output_handler to "mb_output_handler", character ; encoding will be transparently converted to the specified encoding. ; Setting any output handler automatically turns on output buffering. ; Note: People who wrote portable scripts should not depend on this ini ; directive. Instead, explicitly set the output handler using ob_start(). ; Using this ini directive may cause problems unless you know what script ; is doing. ; Note: You cannot use both "mb_output_handler" with "ob_iconv_handler" ; and you cannot use both "ob_gzhandler" and "zlib.output_compression". ; Note: output_handler must be empty if this is set 'On' !!!! ; Instead you must use zlib.output_handler. ; http://php.net/output-handler ;output_handler = ; Transparent output compression using the zlib library ; Valid values for this option are 'off', 'on', or a specific buffer size ; to be used for compression (default is 4KB) ; Note: Resulting chunk size may vary due to nature of compression. PHP ; outputs chunks that are few hundreds bytes each as a result of ; compression. If you prefer a larger chunk size for better ; performance, enable output_buffering in addition. ; Note: You need to use zlib.output_handler instead of the standard ; output_handler, or otherwise the output will be corrupted. ; http://php.net/zlib.output-compression zlib.output_compression = Off ; http://php.net/zlib.output-compression-level ;zlib.output_compression_level = -1 ; You cannot specify additional output handlers if zlib.output_compression ; is activated here. This setting does the same as output_handler but in ; a different order. ; http://php.net/zlib.output-handler ;zlib.output_handler = ; Implicit flush tells PHP to tell the output layer to flush itself ; automatically after every output block. This is equivalent to calling the ; PHP function flush() after each and every call to print() or echo() and each ; and every HTML block. Turning this option on has serious performance ; implications and is generally recommended for debugging purposes only. ; http://php.net/implicit-flush ; Note: This directive is hardcoded to On for the CLI SAPI implicit_flush = Off ; The unserialize callback function will be called (with the undefined class' ; name as parameter), if the unserializer finds an undefined class ; which should be instantiated. A warning appears if the specified function is ; not defined, or if the function doesn't include/implement the missing class. ; So only set this entry, if you really want to implement such a ; callback-function. unserialize_callback_func = ; When floats & doubles are serialized store serialize_precision significant ; digits after the floating point. The default value ensures that when floats ; are decoded with unserialize, the data will remain the same. serialize_precision = 17 ; open_basedir, if set, limits all file operations to the defined directory ; and below. This directive makes most sense if used in a per-directory ; or per-virtualhost web server configuration file. This directive is ; *NOT* affected by whether Safe Mode is turned On or Off. ; http://php.net/open-basedir ;open_basedir = ; This directive allows you to disable certain functions for security reasons. ; It receives a comma-delimited list of function names. This directive is ; *NOT* affected by whether Safe Mode is turned On or Off. ; http://php.net/disable-functions disable_functions = ; This directive allows you to disable certain classes for security reasons. ; It receives a comma-delimited list of class names. This directive is ; *NOT* affected by whether Safe Mode is turned On or Off. ; http://php.net/disable-classes disable_classes = ; Colors for Syntax Highlighting mode. Anything that's acceptable in ; would work. ; http://php.net/syntax-highlighting ;highlight.string = #DD0000 ;highlight.comment = #FF9900 ;highlight.keyword = #007700 ;highlight.default = #0000BB ;highlight.html = #000000 ; If enabled, the request will be allowed to complete even if the user aborts ; the request. Consider enabling it if executing long requests, which may end up ; being interrupted by the user or a browser timing out. PHP's default behavior ; is to disable this feature. ; http://php.net/ignore-user-abort ;ignore_user_abort = On ; Determines the size of the realpath cache to be used by PHP. This value should ; be increased on systems where PHP opens many files to reflect the quantity of ; the file operations performed. ; http://php.net/realpath-cache-size ;realpath_cache_size = 16k ; Duration of time, in seconds for which to cache realpath information for a given ; file or directory. For systems with rarely changing files, consider increasing this ; value. ; http://php.net/realpath-cache-ttl ;realpath_cache_ttl = 120 ; Enables or disables the circular reference collector. ; http://php.net/zend.enable-gc zend.enable_gc = On ; If enabled, scripts may be written in encodings that are incompatible with ; the scanner. CP936, Big5, CP949 and Shift_JIS are the examples of such ; encodings. To use this feature, mbstring extension must be enabled. ; Default: Off ;zend.multibyte = Off ; Allows to set the default encoding for the scripts. This value will be used ; unless "declare(encoding=...)" directive appears at the top of the script. ; Only affects if zend.multibyte is set. ; Default: "" ;zend.script_encoding = ;;;;;;;;;;;;;;;;; ; Miscellaneous ; ;;;;;;;;;;;;;;;;; ; Decides whether PHP may expose the fact that it is installed on the server ; (e.g. by adding its signature to the Web server header). It is no security ; threat in any way, but it makes it possible to determine whether you use PHP ; on your server or not. ; http://php.net/expose-php expose_php = On ;;;;;;;;;;;;;;;;;;; ; Resource Limits ; ;;;;;;;;;;;;;;;;;;; ; Maximum execution time of each script, in seconds ; http://php.net/max-execution-time ; Note: This directive is hardcoded to 0 for the CLI SAPI max_execution_time = 30 ; Maximum amount of time each script may spend parsing request data. It's a good ; idea to limit this time on productions servers in order to eliminate unexpectedly ; long running scripts. ; Note: This directive is hardcoded to -1 for the CLI SAPI ; Default Value: -1 (Unlimited) ; Development Value: 60 (60 seconds) ; Production Value: 60 (60 seconds) ; http://php.net/max-input-time max_input_time = 60 ; Maximum input variable nesting level ; http://php.net/max-input-nesting-level ;max_input_nesting_level = 64 ; How many GET/POST/COOKIE input variables may be accepted ; max_input_vars = 1000 ; Maximum amount of memory a script may consume (128MB) ; http://php.net/memory-limit memory_limit = 128M ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Error handling and logging ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; This directive informs PHP of which errors, warnings and notices you would like ; it to take action for. The recommended way of setting values for this ; directive is through the use of the error level constants and bitwise ; operators. The error level constants are below here for convenience as well as ; some common settings and their meanings. ; By default, PHP is set to take action on all errors, notices and warnings EXCEPT ; those related to E_NOTICE and E_STRICT, which together cover best practices and ; recommended coding standards in PHP. For performance reasons, this is the ; recommend error reporting setting. Your production server shouldn't be wasting ; resources complaining about best practices and coding standards. That's what ; development servers and development settings are for. ; Note: The php.ini-development file has this setting as E_ALL. This ; means it pretty much reports everything which is exactly what you want during ; development and early testing. ; ; Error Level Constants: ; E_ALL - All errors and warnings (includes E_STRICT as of PHP 5.4.0) ; E_ERROR - fatal run-time errors ; E_RECOVERABLE_ERROR - almost fatal run-time errors ; E_WARNING - run-time warnings (non-fatal errors) ; E_PARSE - compile-time parse errors ; E_NOTICE - run-time notices (these are warnings which often result ; from a bug in your code, but it's possible that it was ; intentional (e.g., using an uninitialized variable and ; relying on the fact it's automatically initialized to an ; empty string) ; E_STRICT - run-time notices, enable to have PHP suggest changes ; to your code which will ensure the best interoperability ; and forward compatibility of your code ; E_CORE_ERROR - fatal errors that occur during PHP's initial startup ; E_CORE_WARNING - warnings (non-fatal errors) that occur during PHP's ; initial startup ; E_COMPILE_ERROR - fatal compile-time errors ; E_COMPILE_WARNING - compile-time warnings (non-fatal errors) ; E_USER_ERROR - user-generated error message ; E_USER_WARNING - user-generated warning message ; E_USER_NOTICE - user-generated notice message ; E_DEPRECATED - warn about code that will not work in future versions ; of PHP ; E_USER_DEPRECATED - user-generated deprecation warnings ; ; Common Values: ; E_ALL (Show all errors, warnings and notices including coding standards.) ; E_ALL & ~E_NOTICE (Show all errors, except for notices) ; E_ALL & ~E_NOTICE & ~E_STRICT (Show all errors, except for notices and coding standards warnings.) ; E_COMPILE_ERROR|E_RECOVERABLE_ERROR|E_ERROR|E_CORE_ERROR (Show only errors) ; Default Value: E_ALL & ~E_NOTICE & ~E_STRICT & ~E_DEPRECATED ; Development Value: E_ALL ; Production Value: E_ALL & ~E_DEPRECATED & ~E_STRICT ; http://php.net/error-reporting error_reporting = E_ALL ; This directive controls whether or not and where PHP will output errors, ; notices and warnings too. Error output is very useful during development, but ; it could be very dangerous in production environments. Depending on the code ; which is triggering the error, sensitive information could potentially leak ; out of your application such as database usernames and passwords or worse. ; It's recommended that errors be logged on production servers rather than ; having the errors sent to STDOUT. ; Possible Values: ; Off = Do not display any errors ; stderr = Display errors to STDERR (affects only CGI/CLI binaries!) ; On or stdout = Display errors to STDOUT ; Default Value: On ; Development Value: On ; Production Value: Off ; http://php.net/display-errors display_errors = On ; The display of errors which occur during PHP's startup sequence are handled ; separately from display_errors. PHP's default behavior is to suppress those ; errors from clients. Turning the display of startup errors on can be useful in ; debugging configuration problems. But, it's strongly recommended that you ; leave this setting off on production servers. ; Default Value: Off ; Development Value: On ; Production Value: Off ; http://php.net/display-startup-errors display_startup_errors = On ; Besides displaying errors, PHP can also log errors to locations such as a ; server-specific log, STDERR, or a location specified by the error_log ; directive found below. While errors should not be displayed on productions ; servers they should still be monitored and logging is a great way to do that. ; Default Value: Off ; Development Value: On ; Production Value: On ; http://php.net/log-errors log_errors = On ; Set maximum length of log_errors. In error_log information about the source is ; added. The default is 1024 and 0 allows to not apply any maximum length at all. ; http://php.net/log-errors-max-len log_errors_max_len = 1024 ; Do not log repeated messages. Repeated errors must occur in same file on same ; line unless ignore_repeated_source is set true. ; http://php.net/ignore-repeated-errors ignore_repeated_errors = Off ; Ignore source of message when ignoring repeated messages. When this setting ; is On you will not log errors with repeated messages from different files or ; source lines. ; http://php.net/ignore-repeated-source ignore_repeated_source = Off ; If this parameter is set to Off, then memory leaks will not be shown (on ; stdout or in the log). This has only effect in a debug compile, and if ; error reporting includes E_WARNING in the allowed list ; http://php.net/report-memleaks report_memleaks = On ; This setting is on by default. ;report_zend_debug = 0 ; Store the last error/warning message in $php_errormsg (boolean). Setting this value ; to On can assist in debugging and is appropriate for development servers. It should ; however be disabled on production servers. ; Default Value: Off ; Development Value: On ; Production Value: Off ; http://php.net/track-errors track_errors = On ; Turn off normal error reporting and emit XML-RPC error XML ; http://php.net/xmlrpc-errors ;xmlrpc_errors = 0 ; An XML-RPC faultCode ;xmlrpc_error_number = 0 ; When PHP displays or logs an error, it has the capability of formatting the ; error message as HTML for easier reading. This directive controls whether ; the error message is formatted as HTML or not. ; Note: This directive is hardcoded to Off for the CLI SAPI ; Default Value: On ; Development Value: On ; Production value: On ; http://php.net/html-errors html_errors = On ; If html_errors is set to On *and* docref_root is not empty, then PHP ; produces clickable error messages that direct to a page describing the error ; or function causing the error in detail. ; You can download a copy of the PHP manual from http://php.net/docs ; and change docref_root to the base URL of your local copy including the ; leading '/'. You must also specify the file extension being used including ; the dot. PHP's default behavior is to leave these settings empty, in which ; case no links to documentation are generated. ; Note: Never use this feature for production boxes. ; http://php.net/docref-root ; Examples ;docref_root = "/phpmanual/" ; http://php.net/docref-ext ;docref_ext = .html ; String to output before an error message. PHP's default behavior is to leave ; this setting blank. ; http://php.net/error-prepend-string ; Example: ;error_prepend_string = "" ; String to output after an error message. PHP's default behavior is to leave ; this setting blank. ; http://php.net/error-append-string ; Example: ;error_append_string = "" ; Log errors to specified file. PHP's default behavior is to leave this value ; empty. ; http://php.net/error-log ; Example: ;error_log = php_errors.log ; Log errors to syslog (Event Log on Windows). ;error_log = syslog ;windows.show_crt_warning ; Default value: 0 ; Development value: 0 ; Production value: 0 ;;;;;;;;;;;;;;;;; ; Data Handling ; ;;;;;;;;;;;;;;;;; ; The separator used in PHP generated URLs to separate arguments. ; PHP's default setting is "&". ; http://php.net/arg-separator.output ; Example: ;arg_separator.output = "&" ; List of separator(s) used by PHP to parse input URLs into variables. ; PHP's default setting is "&". ; NOTE: Every character in this directive is considered as separator! ; http://php.net/arg-separator.input ; Example: ;arg_separator.input = ";&" ; This directive determines which super global arrays are registered when PHP ; starts up. G,P,C,E & S are abbreviations for the following respective super ; globals: GET, POST, COOKIE, ENV and SERVER. There is a performance penalty ; paid for the registration of these arrays and because ENV is not as commonly ; used as the others, ENV is not recommended on productions servers. You ; can still get access to the environment variables through getenv() should you ; need to. ; Default Value: "EGPCS" ; Development Value: "GPCS" ; Production Value: "GPCS"; ; http://php.net/variables-order variables_order = "GPCS" ; This directive determines which super global data (G,P,C,E & S) should ; be registered into the super global array REQUEST. If so, it also determines ; the order in which that data is registered. The values for this directive are ; specified in the same manner as the variables_order directive, EXCEPT one. ; Leaving this value empty will cause PHP to use the value set in the ; variables_order directive. It does not mean it will leave the super globals ; array REQUEST empty. ; Default Value: None ; Development Value: "GP" ; Production Value: "GP" ; http://php.net/request-order request_order = "GP" ; This directive determines whether PHP registers $argv & $argc each time it ; runs. $argv contains an array of all the arguments passed to PHP when a script ; is invoked. $argc contains an integer representing the number of arguments ; that were passed when the script was invoked. These arrays are extremely ; useful when running scripts from the command line. When this directive is ; enabled, registering these variables consumes CPU cycles and memory each time ; a script is executed. For performance reasons, this feature should be disabled ; on production servers. ; Note: This directive is hardcoded to On for the CLI SAPI ; Default Value: On ; Development Value: Off ; Production Value: Off ; http://php.net/register-argc-argv register_argc_argv = Off ; When enabled, the ENV, REQUEST and SERVER variables are created when they're ; first used (Just In Time) instead of when the script starts. If these ; variables are not used within a script, having this directive on will result ; in a performance gain. The PHP directive register_argc_argv must be disabled ; for this directive to have any affect. ; http://php.net/auto-globals-jit auto_globals_jit = On ; Whether PHP will read the POST data. ; This option is enabled by default. ; Most likely, you won't want to disable this option globally. It causes $_POST ; and $_FILES to always be empty; the only way you will be able to read the ; POST data will be through the php://input stream wrapper. This can be useful ; to proxy requests or to process the POST data in a memory efficient fashion. ; http://php.net/enable-post-data-reading ;enable_post_data_reading = Off ; Maximum size of POST data that PHP will accept. ; Its value may be 0 to disable the limit. It is ignored if POST data reading ; is disabled through enable_post_data_reading. ; http://php.net/post-max-size post_max_size = 8M ; Automatically add files before PHP document. ; http://php.net/auto-prepend-file auto_prepend_file = ; Automatically add files after PHP document. ; http://php.net/auto-append-file auto_append_file = ; By default, PHP will output a character encoding using ; the Content-type: header. To disable sending of the charset, simply ; set it to be empty. ; ; PHP's built-in default is text/html ; http://php.net/default-mimetype default_mimetype = "text/html" ; PHP's default character set is set to empty. ; http://php.net/default-charset ;default_charset = "UTF-8" ; Always populate the $HTTP_RAW_POST_DATA variable. PHP's default behavior is ; to disable this feature. If post reading is disabled through ; enable_post_data_reading, $HTTP_RAW_POST_DATA is *NOT* populated. ; http://php.net/always-populate-raw-post-data ;always_populate_raw_post_data = On ;;;;;;;;;;;;;;;;;;;;;;;;; ; Paths and Directories ; ;;;;;;;;;;;;;;;;;;;;;;;;; ; UNIX: "/path1:/path2" ;include_path = ".:/php/includes" ; ; Windows: "\path1;\path2" ;include_path = ".;c:\php\includes" ; ; PHP's default setting for include_path is ".;/path/to/php/pear" ; http://php.net/include-path ; The root of the PHP pages, used only if nonempty. ; if PHP was not compiled with FORCE_REDIRECT, you SHOULD set doc_root ; if you are running php as a CGI under any web server (other than IIS) ; see documentation for security issues. The alternate is to use the ; cgi.force_redirect configuration below ; http://php.net/doc-root doc_root = ; The directory under which PHP opens the script using /~username used only ; if nonempty. ; http://php.net/user-dir user_dir = ; Directory in which the loadable extensions (modules) reside. ; http://php.net/extension-dir ; extension_dir = "./" ; On windows: ; extension_dir = "ext" ; Whether or not to enable the dl() function. The dl() function does NOT work ; properly in multithreaded servers, such as IIS or Zeus, and is automatically ; disabled on them. ; http://php.net/enable-dl enable_dl = Off ; cgi.force_redirect is necessary to provide security running PHP as a CGI under ; most web servers. Left undefined, PHP turns this on by default. You can ; turn it off here AT YOUR OWN RISK ; **You CAN safely turn this off for IIS, in fact, you MUST.** ; http://php.net/cgi.force-redirect ;cgi.force_redirect = 1 ; if cgi.nph is enabled it will force cgi to always sent Status: 200 with ; every request. PHP's default behavior is to disable this feature. ;cgi.nph = 1 ; if cgi.force_redirect is turned on, and you are not running under Apache or Netscape ; (iPlanet) web servers, you MAY need to set an environment variable name that PHP ; will look for to know it is OK to continue execution. Setting this variable MAY ; cause security issues, KNOW WHAT YOU ARE DOING FIRST. ; http://php.net/cgi.redirect-status-env ;cgi.redirect_status_env = ; cgi.fix_pathinfo provides *real* PATH_INFO/PATH_TRANSLATED support for CGI. PHP's ; previous behaviour was to set PATH_TRANSLATED to SCRIPT_FILENAME, and to not grok ; what PATH_INFO is. For more information on PATH_INFO, see the cgi specs. Setting ; this to 1 will cause PHP CGI to fix its paths to conform to the spec. A setting ; of zero causes PHP to behave as before. Default is 1. You should fix your scripts ; to use SCRIPT_FILENAME rather than PATH_TRANSLATED. ; http://php.net/cgi.fix-pathinfo ;cgi.fix_pathinfo=1 ; FastCGI under IIS (on WINNT based OS) supports the ability to impersonate ; security tokens of the calling client. This allows IIS to define the ; security context that the request runs under. mod_fastcgi under Apache ; does not currently support this feature (03/17/2002) ; Set to 1 if running under IIS. Default is zero. ; http://php.net/fastcgi.impersonate ;fastcgi.impersonate = 1 ; Disable logging through FastCGI connection. PHP's default behavior is to enable ; this feature. ;fastcgi.logging = 0 ; cgi.rfc2616_headers configuration option tells PHP what type of headers to ; use when sending HTTP response code. If it's set 0 PHP sends Status: header that ; is supported by Apache. When this option is set to 1 PHP will send ; RFC2616 compliant header. ; Default is zero. ; http://php.net/cgi.rfc2616-headers ;cgi.rfc2616_headers = 0 ;;;;;;;;;;;;;;;; ; File Uploads ; ;;;;;;;;;;;;;;;; ; Whether to allow HTTP file uploads. ; http://php.net/file-uploads file_uploads = On ; Temporary directory for HTTP uploaded files (will use system default if not ; specified). ; http://php.net/upload-tmp-dir ;upload_tmp_dir = ; Maximum allowed size for uploaded files. ; http://php.net/upload-max-filesize upload_max_filesize = 2M ; Maximum number of files that can be uploaded via a single request max_file_uploads = 20 ;;;;;;;;;;;;;;;;;; ; Fopen wrappers ; ;;;;;;;;;;;;;;;;;; ; Whether to allow the treatment of URLs (like http:// or ftp://) as files. ; http://php.net/allow-url-fopen allow_url_fopen = On ; Whether to allow include/require to open URLs (like http:// or ftp://) as files. ; http://php.net/allow-url-include allow_url_include = Off ; Define the anonymous ftp password (your email address). PHP's default setting ; for this is empty. ; http://php.net/from ;from="john@doe.com" ; Define the User-Agent string. PHP's default setting for this is empty. ; http://php.net/user-agent ;user_agent="PHP" ; Default timeout for socket based streams (seconds) ; http://php.net/default-socket-timeout default_socket_timeout = 60 ; If your scripts have to deal with files from Macintosh systems, ; or you are running on a Mac and need to deal with files from ; unix or win32 systems, setting this flag will cause PHP to ; automatically detect the EOL character in those files so that ; fgets() and file() will work regardless of the source of the file. ; http://php.net/auto-detect-line-endings ;auto_detect_line_endings = Off ;;;;;;;;;;;;;;;;;;;;;; ; Dynamic Extensions ; ;;;;;;;;;;;;;;;;;;;;;; ; If you wish to have an extension loaded automatically, use the following ; syntax: ; ; extension=modulename.extension ; ; For example, on Windows: ; ; extension=msql.dll ; ; ... or under UNIX: ; ; extension=msql.so ; ; ... or with a path: ; ; extension=/path/to/extension/msql.so ; ; If you only provide the name of the extension, PHP will look for it in its ; default extension directory. ; ; Windows Extensions ; Note that ODBC support is built in, so no dll is needed for it. ; Note that many DLL files are located in the extensions/ (PHP 4) ext/ (PHP 5) ; extension folders as well as the separate PECL DLL download (PHP 5). ; Be sure to appropriately set the extension_dir directive. ; ;extension=php_bz2.dll ;extension=php_curl.dll ;extension=php_fileinfo.dll ;extension=php_gd2.dll ;extension=php_gettext.dll ;extension=php_gmp.dll ;extension=php_intl.dll ;extension=php_imap.dll ;extension=php_interbase.dll ;extension=php_ldap.dll ;extension=php_mbstring.dll ;extension=php_exif.dll ; Must be after mbstring as it depends on it ;extension=php_mysql.dll ;extension=php_mysqli.dll ;extension=php_oci8.dll ; Use with Oracle 10gR2 Instant Client ;extension=php_oci8_11g.dll ; Use with Oracle 11gR2 Instant Client ;extension=php_openssl.dll ;extension=php_pdo_firebird.dll ;extension=php_pdo_mysql.dll ;extension=php_pdo_oci.dll ;extension=php_pdo_odbc.dll ;extension=php_pdo_pgsql.dll ;extension=php_pdo_sqlite.dll ;extension=php_pgsql.dll ;extension=php_pspell.dll ;extension=php_shmop.dll ; The MIBS data available in the PHP distribution must be installed. ; See http://www.php.net/manual/en/snmp.installation.php ;extension=php_snmp.dll ;extension=php_soap.dll ;extension=php_sockets.dll ;extension=php_sqlite3.dll ;extension=php_sybase_ct.dll ;extension=php_tidy.dll ;extension=php_xmlrpc.dll ;extension=php_xsl.dll ;;;;;;;;;;;;;;;;;;; ; Module Settings ; ;;;;;;;;;;;;;;;;;;; [CLI Server] ; Whether the CLI web server uses ANSI color coding in its terminal output. cli_server.color = On [Date] ; Defines the default timezone used by the date functions ; http://php.net/date.timezone ;date.timezone = ; http://php.net/date.default-latitude ;date.default_latitude = 31.7667 ; http://php.net/date.default-longitude ;date.default_longitude = 35.2333 ; http://php.net/date.sunrise-zenith ;date.sunrise_zenith = 90.583333 ; http://php.net/date.sunset-zenith ;date.sunset_zenith = 90.583333 [filter] ; http://php.net/filter.default ;filter.default = unsafe_raw ; http://php.net/filter.default-flags ;filter.default_flags = [iconv] ;iconv.input_encoding = ISO-8859-1 ;iconv.internal_encoding = ISO-8859-1 ;iconv.output_encoding = ISO-8859-1 [intl] ;intl.default_locale = ; This directive allows you to produce PHP errors when some error ; happens within intl functions. The value is the level of the error produced. ; Default is 0, which does not produce any errors. ;intl.error_level = E_WARNING [sqlite] ; http://php.net/sqlite.assoc-case ;sqlite.assoc_case = 0 [sqlite3] ;sqlite3.extension_dir = [Pcre] ;PCRE library backtracking limit. ; http://php.net/pcre.backtrack-limit ;pcre.backtrack_limit=100000 ;PCRE library recursion limit. ;Please note that if you set this value to a high number you may consume all ;the available process stack and eventually crash PHP (due to reaching the ;stack size limit imposed by the Operating System). ; http://php.net/pcre.recursion-limit ;pcre.recursion_limit=100000 [Pdo] ; Whether to pool ODBC connections. Can be one of "strict", "relaxed" or "off" ; http://php.net/pdo-odbc.connection-pooling ;pdo_odbc.connection_pooling=strict ;pdo_odbc.db2_instance_name [Pdo_mysql] ; If mysqlnd is used: Number of cache slots for the internal result set cache ; http://php.net/pdo_mysql.cache_size pdo_mysql.cache_size = 2000 ; Default socket name for local MySQL connects. If empty, uses the built-in ; MySQL defaults. ; http://php.net/pdo_mysql.default-socket pdo_mysql.default_socket= [Phar] ; http://php.net/phar.readonly ;phar.readonly = On ; http://php.net/phar.require-hash ;phar.require_hash = On ;phar.cache_list = [mail function] ; For Win32 only. ; http://php.net/smtp SMTP = localhost ; http://php.net/smtp-port smtp_port = 25 ; For Win32 only. ; http://php.net/sendmail-from ;sendmail_from = me@example.com ; For Unix only. You may supply arguments as well (default: "sendmail -t -i"). ; http://php.net/sendmail-path ;sendmail_path = ; Force the addition of the specified parameters to be passed as extra parameters ; to the sendmail binary. These parameters will always replace the value of ; the 5th parameter to mail(), even in safe mode. ;mail.force_extra_parameters = ; Add X-PHP-Originating-Script: that will include uid of the script followed by the filename mail.add_x_header = On ; The path to a log file that will log all mail() calls. Log entries include ; the full path of the script, line number, To address and headers. ;mail.log = ; Log mail to syslog (Event Log on Windows). ;mail.log = syslog [SQL] ; http://php.net/sql.safe-mode sql.safe_mode = Off [ODBC] ; http://php.net/odbc.default-db ;odbc.default_db = Not yet implemented ; http://php.net/odbc.default-user ;odbc.default_user = Not yet implemented ; http://php.net/odbc.default-pw ;odbc.default_pw = Not yet implemented ; Controls the ODBC cursor model. ; Default: SQL_CURSOR_STATIC (default). ;odbc.default_cursortype ; Allow or prevent persistent links. ; http://php.net/odbc.allow-persistent odbc.allow_persistent = On ; Check that a connection is still valid before reuse. ; http://php.net/odbc.check-persistent odbc.check_persistent = On ; Maximum number of persistent links. -1 means no limit. ; http://php.net/odbc.max-persistent odbc.max_persistent = -1 ; Maximum number of links (persistent + non-persistent). -1 means no limit. ; http://php.net/odbc.max-links odbc.max_links = -1 ; Handling of LONG fields. Returns number of bytes to variables. 0 means ; passthru. ; http://php.net/odbc.defaultlrl odbc.defaultlrl = 4096 ; Handling of binary data. 0 means passthru, 1 return as is, 2 convert to char. ; See the documentation on odbc_binmode and odbc_longreadlen for an explanation ; of odbc.defaultlrl and odbc.defaultbinmode ; http://php.net/odbc.defaultbinmode odbc.defaultbinmode = 1 ;birdstep.max_links = -1 [Interbase] ; Allow or prevent persistent links. ibase.allow_persistent = 1 ; Maximum number of persistent links. -1 means no limit. ibase.max_persistent = -1 ; Maximum number of links (persistent + non-persistent). -1 means no limit. ibase.max_links = -1 ; Default database name for ibase_connect(). ;ibase.default_db = ; Default username for ibase_connect(). ;ibase.default_user = ; Default password for ibase_connect(). ;ibase.default_password = ; Default charset for ibase_connect(). ;ibase.default_charset = ; Default timestamp format. ibase.timestampformat = "%Y-%m-%d %H:%M:%S" ; Default date format. ibase.dateformat = "%Y-%m-%d" ; Default time format. ibase.timeformat = "%H:%M:%S" [MySQL] ; Allow accessing, from PHP's perspective, local files with LOAD DATA statements ; http://php.net/mysql.allow_local_infile mysql.allow_local_infile = On ; Allow or prevent persistent links. ; http://php.net/mysql.allow-persistent mysql.allow_persistent = On ; If mysqlnd is used: Number of cache slots for the internal result set cache ; http://php.net/mysql.cache_size mysql.cache_size = 2000 ; Maximum number of persistent links. -1 means no limit. ; http://php.net/mysql.max-persistent mysql.max_persistent = -1 ; Maximum number of links (persistent + non-persistent). -1 means no limit. ; http://php.net/mysql.max-links mysql.max_links = -1 ; Default port number for mysql_connect(). If unset, mysql_connect() will use ; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the ; compile-time value defined MYSQL_PORT (in that order). Win32 will only look ; at MYSQL_PORT. ; http://php.net/mysql.default-port mysql.default_port = ; Default socket name for local MySQL connects. If empty, uses the built-in ; MySQL defaults. ; http://php.net/mysql.default-socket mysql.default_socket = ; Default host for mysql_connect() (doesn't apply in safe mode). ; http://php.net/mysql.default-host mysql.default_host = ; Default user for mysql_connect() (doesn't apply in safe mode). ; http://php.net/mysql.default-user mysql.default_user = ; Default password for mysql_connect() (doesn't apply in safe mode). ; Note that this is generally a *bad* idea to store passwords in this file. ; *Any* user with PHP access can run 'echo get_cfg_var("mysql.default_password") ; and reveal this password! And of course, any users with read access to this ; file will be able to reveal the password as well. ; http://php.net/mysql.default-password mysql.default_password = ; Maximum time (in seconds) for connect timeout. -1 means no limit ; http://php.net/mysql.connect-timeout mysql.connect_timeout = 60 ; Trace mode. When trace_mode is active (=On), warnings for table/index scans and ; SQL-Errors will be displayed. ; http://php.net/mysql.trace-mode mysql.trace_mode = Off [MySQLi] ; Maximum number of persistent links. -1 means no limit. ; http://php.net/mysqli.max-persistent mysqli.max_persistent = -1 ; Allow accessing, from PHP's perspective, local files with LOAD DATA statements ; http://php.net/mysqli.allow_local_infile ;mysqli.allow_local_infile = On ; Allow or prevent persistent links. ; http://php.net/mysqli.allow-persistent mysqli.allow_persistent = On ; Maximum number of links. -1 means no limit. ; http://php.net/mysqli.max-links mysqli.max_links = -1 ; If mysqlnd is used: Number of cache slots for the internal result set cache ; http://php.net/mysqli.cache_size mysqli.cache_size = 2000 ; Default port number for mysqli_connect(). If unset, mysqli_connect() will use ; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the ; compile-time value defined MYSQL_PORT (in that order). Win32 will only look ; at MYSQL_PORT. ; http://php.net/mysqli.default-port mysqli.default_port = 3306 ; Default socket name for local MySQL connects. If empty, uses the built-in ; MySQL defaults. ; http://php.net/mysqli.default-socket mysqli.default_socket = ; Default host for mysql_connect() (doesn't apply in safe mode). ; http://php.net/mysqli.default-host mysqli.default_host = ; Default user for mysql_connect() (doesn't apply in safe mode). ; http://php.net/mysqli.default-user mysqli.default_user = ; Default password for mysqli_connect() (doesn't apply in safe mode). ; Note that this is generally a *bad* idea to store passwords in this file. ; *Any* user with PHP access can run 'echo get_cfg_var("mysqli.default_pw") ; and reveal this password! And of course, any users with read access to this ; file will be able to reveal the password as well. ; http://php.net/mysqli.default-pw mysqli.default_pw = ; Allow or prevent reconnect mysqli.reconnect = Off [mysqlnd] ; Enable / Disable collection of general statistics by mysqlnd which can be ; used to tune and monitor MySQL operations. ; http://php.net/mysqlnd.collect_statistics mysqlnd.collect_statistics = On ; Enable / Disable collection of memory usage statistics by mysqlnd which can be ; used to tune and monitor MySQL operations. ; http://php.net/mysqlnd.collect_memory_statistics mysqlnd.collect_memory_statistics = On ; Size of a pre-allocated buffer used when sending commands to MySQL in bytes. ; http://php.net/mysqlnd.net_cmd_buffer_size ;mysqlnd.net_cmd_buffer_size = 2048 ; Size of a pre-allocated buffer used for reading data sent by the server in ; bytes. ; http://php.net/mysqlnd.net_read_buffer_size ;mysqlnd.net_read_buffer_size = 32768 [OCI8] ; Connection: Enables privileged connections using external ; credentials (OCI_SYSOPER, OCI_SYSDBA) ; http://php.net/oci8.privileged-connect ;oci8.privileged_connect = Off ; Connection: The maximum number of persistent OCI8 connections per ; process. Using -1 means no limit. ; http://php.net/oci8.max-persistent ;oci8.max_persistent = -1 ; Connection: The maximum number of seconds a process is allowed to ; maintain an idle persistent connection. Using -1 means idle ; persistent connections will be maintained forever. ; http://php.net/oci8.persistent-timeout ;oci8.persistent_timeout = -1 ; Connection: The number of seconds that must pass before issuing a ; ping during oci_pconnect() to check the connection validity. When ; set to 0, each oci_pconnect() will cause a ping. Using -1 disables ; pings completely. ; http://php.net/oci8.ping-interval ;oci8.ping_interval = 60 ; Connection: Set this to a user chosen connection class to be used ; for all pooled server requests with Oracle 11g Database Resident ; Connection Pooling (DRCP). To use DRCP, this value should be set to ; the same string for all web servers running the same application, ; the database pool must be configured, and the connection string must ; specify to use a pooled server. ;oci8.connection_class = ; High Availability: Using On lets PHP receive Fast Application ; Notification (FAN) events generated when a database node fails. The ; database must also be configured to post FAN events. ;oci8.events = Off ; Tuning: This option enables statement caching, and specifies how ; many statements to cache. Using 0 disables statement caching. ; http://php.net/oci8.statement-cache-size ;oci8.statement_cache_size = 20 ; Tuning: Enables statement prefetching and sets the default number of ; rows that will be fetched automatically after statement execution. ; http://php.net/oci8.default-prefetch ;oci8.default_prefetch = 100 ; Compatibility. Using On means oci_close() will not close ; oci_connect() and oci_new_connect() connections. ; http://php.net/oci8.old-oci-close-semantics ;oci8.old_oci_close_semantics = Off [PostgreSQL] ; Allow or prevent persistent links. ; http://php.net/pgsql.allow-persistent pgsql.allow_persistent = On ; Detect broken persistent links always with pg_pconnect(). ; Auto reset feature requires a little overheads. ; http://php.net/pgsql.auto-reset-persistent pgsql.auto_reset_persistent = Off ; Maximum number of persistent links. -1 means no limit. ; http://php.net/pgsql.max-persistent pgsql.max_persistent = -1 ; Maximum number of links (persistent+non persistent). -1 means no limit. ; http://php.net/pgsql.max-links pgsql.max_links = -1 ; Ignore PostgreSQL backends Notice message or not. ; Notice message logging require a little overheads. ; http://php.net/pgsql.ignore-notice pgsql.ignore_notice = 0 ; Log PostgreSQL backends Notice message or not. ; Unless pgsql.ignore_notice=0, module cannot log notice message. ; http://php.net/pgsql.log-notice pgsql.log_notice = 0 [Sybase-CT] ; Allow or prevent persistent links. ; http://php.net/sybct.allow-persistent sybct.allow_persistent = On ; Maximum number of persistent links. -1 means no limit. ; http://php.net/sybct.max-persistent sybct.max_persistent = -1 ; Maximum number of links (persistent + non-persistent). -1 means no limit. ; http://php.net/sybct.max-links sybct.max_links = -1 ; Minimum server message severity to display. ; http://php.net/sybct.min-server-severity sybct.min_server_severity = 10 ; Minimum client message severity to display. ; http://php.net/sybct.min-client-severity sybct.min_client_severity = 10 ; Set per-context timeout ; http://php.net/sybct.timeout ;sybct.timeout= ;sybct.packet_size ; The maximum time in seconds to wait for a connection attempt to succeed before returning failure. ; Default: one minute ;sybct.login_timeout= ; The name of the host you claim to be connecting from, for display by sp_who. ; Default: none ;sybct.hostname= ; Allows you to define how often deadlocks are to be retried. -1 means "forever". ; Default: 0 ;sybct.deadlock_retry_count= [bcmath] ; Number of decimal digits for all bcmath functions. ; http://php.net/bcmath.scale bcmath.scale = 0 [browscap] ; http://php.net/browscap ;browscap = extra/browscap.ini [Session] ; Handler used to store/retrieve data. ; http://php.net/session.save-handler session.save_handler = files ; Argument passed to save_handler. In the case of files, this is the path ; where data files are stored. Note: Windows users have to change this ; variable in order to use PHP's session functions. ; ; The path can be defined as: ; ; session.save_path = "N;/path" ; ; where N is an integer. Instead of storing all the session files in ; /path, what this will do is use subdirectories N-levels deep, and ; store the session data in those directories. This is useful if you ; or your OS have problems with lots of files in one directory, and is ; a more efficient layout for servers that handle lots of sessions. ; ; NOTE 1: PHP will not create this directory structure automatically. ; You can use the script in the ext/session dir for that purpose. ; NOTE 2: See the section on garbage collection below if you choose to ; use subdirectories for session storage ; ; The file storage module creates files using mode 600 by default. ; You can change that by using ; ; session.save_path = "N;MODE;/path" ; ; where MODE is the octal representation of the mode. Note that this ; does not overwrite the process's umask. ; http://php.net/session.save-path ;session.save_path = "/tmp" ; Whether to use cookies. ; http://php.net/session.use-cookies session.use_cookies = 1 ; http://php.net/session.cookie-secure ;session.cookie_secure = ; This option forces PHP to fetch and use a cookie for storing and maintaining ; the session id. We encourage this operation as it's very helpful in combating ; session hijacking when not specifying and managing your own session id. It is ; not the end all be all of session hijacking defense, but it's a good start. ; http://php.net/session.use-only-cookies session.use_only_cookies = 1 ; Name of the session (used as cookie name). ; http://php.net/session.name session.name = PHPSESSID ; Initialize session on request startup. ; http://php.net/session.auto-start session.auto_start = 0 ; Lifetime in seconds of cookie or, if 0, until browser is restarted. ; http://php.net/session.cookie-lifetime session.cookie_lifetime = 0 ; The path for which the cookie is valid. ; http://php.net/session.cookie-path session.cookie_path = / ; The domain for which the cookie is valid. ; http://php.net/session.cookie-domain session.cookie_domain = ; Whether or not to add the httpOnly flag to the cookie, which makes it inaccessible to browser scripting languages such as JavaScript. ; http://php.net/session.cookie-httponly session.cookie_httponly = ; Handler used to serialize data. php is the standard serializer of PHP. ; http://php.net/session.serialize-handler session.serialize_handler = php ; Defines the probability that the 'garbage collection' process is started ; on every session initialization. The probability is calculated by using ; gc_probability/gc_divisor. Where session.gc_probability is the numerator ; and gc_divisor is the denominator in the equation. Setting this value to 1 ; when the session.gc_divisor value is 100 will give you approximately a 1% chance ; the gc will run on any give request. ; Default Value: 1 ; Development Value: 1 ; Production Value: 1 ; http://php.net/session.gc-probability session.gc_probability = 1 ; Defines the probability that the 'garbage collection' process is started on every ; session initialization. The probability is calculated by using the following equation: ; gc_probability/gc_divisor. Where session.gc_probability is the numerator and ; session.gc_divisor is the denominator in the equation. Setting this value to 1 ; when the session.gc_divisor value is 100 will give you approximately a 1% chance ; the gc will run on any give request. Increasing this value to 1000 will give you ; a 0.1% chance the gc will run on any give request. For high volume production servers, ; this is a more efficient approach. ; Default Value: 100 ; Development Value: 1000 ; Production Value: 1000 ; http://php.net/session.gc-divisor session.gc_divisor = 1000 ; After this number of seconds, stored data will be seen as 'garbage' and ; cleaned up by the garbage collection process. ; http://php.net/session.gc-maxlifetime session.gc_maxlifetime = 1440 ; NOTE: If you are using the subdirectory option for storing session files ; (see session.save_path above), then garbage collection does *not* ; happen automatically. You will need to do your own garbage ; collection through a shell script, cron entry, or some other method. ; For example, the following script would is the equivalent of ; setting session.gc_maxlifetime to 1440 (1440 seconds = 24 minutes): ; find /path/to/sessions -cmin +24 -type f | xargs rm ; Check HTTP Referer to invalidate externally stored URLs containing ids. ; HTTP_REFERER has to contain this substring for the session to be ; considered as valid. ; http://php.net/session.referer-check session.referer_check = ; How many bytes to read from the file. ; http://php.net/session.entropy-length ;session.entropy_length = 32 ; Specified here to create the session id. ; http://php.net/session.entropy-file ; Defaults to /dev/urandom ; On systems that don't have /dev/urandom but do have /dev/arandom, this will default to /dev/arandom ; If neither are found at compile time, the default is no entropy file. ; On windows, setting the entropy_length setting will activate the ; Windows random source (using the CryptoAPI) ;session.entropy_file = /dev/urandom ; Set to {nocache,private,public,} to determine HTTP caching aspects ; or leave this empty to avoid sending anti-caching headers. ; http://php.net/session.cache-limiter session.cache_limiter = nocache ; Document expires after n minutes. ; http://php.net/session.cache-expire session.cache_expire = 180 ; trans sid support is disabled by default. ; Use of trans sid may risk your users security. ; Use this option with caution. ; - User may send URL contains active session ID ; to other person via. email/irc/etc. ; - URL that contains active session ID may be stored ; in publicly accessible computer. ; - User may access your site with the same session ID ; always using URL stored in browser's history or bookmarks. ; http://php.net/session.use-trans-sid session.use_trans_sid = 0 ; Select a hash function for use in generating session ids. ; Possible Values ; 0 (MD5 128 bits) ; 1 (SHA-1 160 bits) ; This option may also be set to the name of any hash function supported by ; the hash extension. A list of available hashes is returned by the hash_algos() ; function. ; http://php.net/session.hash-function session.hash_function = 0 ; Define how many bits are stored in each character when converting ; the binary hash data to something readable. ; Possible values: ; 4 (4 bits: 0-9, a-f) ; 5 (5 bits: 0-9, a-v) ; 6 (6 bits: 0-9, a-z, A-Z, "-", ",") ; Default Value: 4 ; Development Value: 5 ; Production Value: 5 ; http://php.net/session.hash-bits-per-character session.hash_bits_per_character = 5 ; The URL rewriter will look for URLs in a defined set of HTML tags. ; form/fieldset are special; if you include them here, the rewriter will ; add a hidden field with the info which is otherwise appended ; to URLs. If you want XHTML conformity, remove the form entry. ; Note that all valid entries require a "=", even if no value follows. ; Default Value: "a=href,area=href,frame=src,form=,fieldset=" ; Development Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; Production Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; http://php.net/url-rewriter.tags url_rewriter.tags = "a=href,area=href,frame=src,input=src,form=fakeentry" ; Enable upload progress tracking in $_SESSION ; Default Value: On ; Development Value: On ; Production Value: On ; http://php.net/session.upload-progress.enabled ;session.upload_progress.enabled = On ; Cleanup the progress information as soon as all POST data has been read ; (i.e. upload completed). ; Default Value: On ; Development Value: On ; Production Value: On ; http://php.net/session.upload-progress.cleanup ;session.upload_progress.cleanup = On ; A prefix used for the upload progress key in $_SESSION ; Default Value: "upload_progress_" ; Development Value: "upload_progress_" ; Production Value: "upload_progress_" ; http://php.net/session.upload-progress.prefix ;session.upload_progress.prefix = "upload_progress_" ; The index name (concatenated with the prefix) in $_SESSION ; containing the upload progress information ; Default Value: "PHP_SESSION_UPLOAD_PROGRESS" ; Development Value: "PHP_SESSION_UPLOAD_PROGRESS" ; Production Value: "PHP_SESSION_UPLOAD_PROGRESS" ; http://php.net/session.upload-progress.name ;session.upload_progress.name = "PHP_SESSION_UPLOAD_PROGRESS" ; How frequently the upload progress should be updated. ; Given either in percentages (per-file), or in bytes ; Default Value: "1%" ; Development Value: "1%" ; Production Value: "1%" ; http://php.net/session.upload-progress.freq ;session.upload_progress.freq = "1%" ; The minimum delay between updates, in seconds ; Default Value: 1 ; Development Value: 1 ; Production Value: 1 ; http://php.net/session.upload-progress.min-freq ;session.upload_progress.min_freq = "1" [MSSQL] ; Allow or prevent persistent links. mssql.allow_persistent = On ; Maximum number of persistent links. -1 means no limit. mssql.max_persistent = -1 ; Maximum number of links (persistent+non persistent). -1 means no limit. mssql.max_links = -1 ; Minimum error severity to display. mssql.min_error_severity = 10 ; Minimum message severity to display. mssql.min_message_severity = 10 ; Compatibility mode with old versions of PHP 3.0. mssql.compatability_mode = Off ; Connect timeout ;mssql.connect_timeout = 5 ; Query timeout ;mssql.timeout = 60 ; Valid range 0 - 2147483647. Default = 4096. ;mssql.textlimit = 4096 ; Valid range 0 - 2147483647. Default = 4096. ;mssql.textsize = 4096 ; Limits the number of records in each batch. 0 = all records in one batch. ;mssql.batchsize = 0 ; Specify how datetime and datetim4 columns are returned ; On => Returns data converted to SQL server settings ; Off => Returns values as YYYY-MM-DD hh:mm:ss ;mssql.datetimeconvert = On ; Use NT authentication when connecting to the server mssql.secure_connection = Off ; Specify max number of processes. -1 = library default ; msdlib defaults to 25 ; FreeTDS defaults to 4096 ;mssql.max_procs = -1 ; Specify client character set. ; If empty or not set the client charset from freetds.conf is used ; This is only used when compiled with FreeTDS ;mssql.charset = "ISO-8859-1" [Assertion] ; Assert(expr); active by default. ; http://php.net/assert.active ;assert.active = On ; Issue a PHP warning for each failed assertion. ; http://php.net/assert.warning ;assert.warning = On ; Don't bail out by default. ; http://php.net/assert.bail ;assert.bail = Off ; User-function to be called if an assertion fails. ; http://php.net/assert.callback ;assert.callback = 0 ; Eval the expression with current error_reporting(). Set to true if you want ; error_reporting(0) around the eval(). ; http://php.net/assert.quiet-eval ;assert.quiet_eval = 0 [COM] ; path to a file containing GUIDs, IIDs or filenames of files with TypeLibs ; http://php.net/com.typelib-file ;com.typelib_file = ; allow Distributed-COM calls ; http://php.net/com.allow-dcom ;com.allow_dcom = true ; autoregister constants of a components typlib on com_load() ; http://php.net/com.autoregister-typelib ;com.autoregister_typelib = true ; register constants casesensitive ; http://php.net/com.autoregister-casesensitive ;com.autoregister_casesensitive = false ; show warnings on duplicate constant registrations ; http://php.net/com.autoregister-verbose ;com.autoregister_verbose = true ; The default character set code-page to use when passing strings to and from COM objects. ; Default: system ANSI code page ;com.code_page= [mbstring] ; language for internal character representation. ; http://php.net/mbstring.language ;mbstring.language = Japanese ; internal/script encoding. ; Some encoding cannot work as internal encoding. ; (e.g. SJIS, BIG5, ISO-2022-*) ; http://php.net/mbstring.internal-encoding ;mbstring.internal_encoding = EUC-JP ; http input encoding. ; http://php.net/mbstring.http-input ;mbstring.http_input = auto ; http output encoding. mb_output_handler must be ; registered as output buffer to function ; http://php.net/mbstring.http-output ;mbstring.http_output = SJIS ; enable automatic encoding translation according to ; mbstring.internal_encoding setting. Input chars are ; converted to internal encoding by setting this to On. ; Note: Do _not_ use automatic encoding translation for ; portable libs/applications. ; http://php.net/mbstring.encoding-translation ;mbstring.encoding_translation = Off ; automatic encoding detection order. ; auto means ; http://php.net/mbstring.detect-order ;mbstring.detect_order = auto ; substitute_character used when character cannot be converted ; one from another ; http://php.net/mbstring.substitute-character ;mbstring.substitute_character = none; ; overload(replace) single byte functions by mbstring functions. ; mail(), ereg(), etc are overloaded by mb_send_mail(), mb_ereg(), ; etc. Possible values are 0,1,2,4 or combination of them. ; For example, 7 for overload everything. ; 0: No overload ; 1: Overload mail() function ; 2: Overload str*() functions ; 4: Overload ereg*() functions ; http://php.net/mbstring.func-overload ;mbstring.func_overload = 0 ; enable strict encoding detection. ;mbstring.strict_detection = Off ; This directive specifies the regex pattern of content types for which mb_output_handler() ; is activated. ; Default: mbstring.http_output_conv_mimetype=^(text/|application/xhtml\+xml) ;mbstring.http_output_conv_mimetype= [gd] ; Tell the jpeg decode to ignore warnings and try to create ; a gd image. The warning will then be displayed as notices ; disabled by default ; http://php.net/gd.jpeg-ignore-warning ;gd.jpeg_ignore_warning = 0 [exif] ; Exif UNICODE user comments are handled as UCS-2BE/UCS-2LE and JIS as JIS. ; With mbstring support this will automatically be converted into the encoding ; given by corresponding encode setting. When empty mbstring.internal_encoding ; is used. For the decode settings you can distinguish between motorola and ; intel byte order. A decode setting cannot be empty. ; http://php.net/exif.encode-unicode ;exif.encode_unicode = ISO-8859-15 ; http://php.net/exif.decode-unicode-motorola ;exif.decode_unicode_motorola = UCS-2BE ; http://php.net/exif.decode-unicode-intel ;exif.decode_unicode_intel = UCS-2LE ; http://php.net/exif.encode-jis ;exif.encode_jis = ; http://php.net/exif.decode-jis-motorola ;exif.decode_jis_motorola = JIS ; http://php.net/exif.decode-jis-intel ;exif.decode_jis_intel = JIS [Tidy] ; The path to a default tidy configuration file to use when using tidy ; http://php.net/tidy.default-config ;tidy.default_config = /usr/local/lib/php/default.tcfg ; Should tidy clean and repair output automatically? ; WARNING: Do not use this option if you are generating non-html content ; such as dynamic images ; http://php.net/tidy.clean-output tidy.clean_output = Off [soap] ; Enables or disables WSDL caching feature. ; http://php.net/soap.wsdl-cache-enabled soap.wsdl_cache_enabled=1 ; Sets the directory name where SOAP extension will put cache files. ; http://php.net/soap.wsdl-cache-dir soap.wsdl_cache_dir="/tmp" ; (time to live) Sets the number of second while cached file will be used ; instead of original one. ; http://php.net/soap.wsdl-cache-ttl soap.wsdl_cache_ttl=86400 ; Sets the size of the cache limit. (Max. number of WSDL files to cache) soap.wsdl_cache_limit = 5 [sysvshm] ; A default size of the shared memory segment ;sysvshm.init_mem = 10000 [ldap] ; Sets the maximum number of open links or -1 for unlimited. ldap.max_links = -1 [mcrypt] ; For more information about mcrypt settings see http://php.net/mcrypt-module-open ; Directory where to load mcrypt algorithms ; Default: Compiled in into libmcrypt (usually /usr/local/lib/libmcrypt) ;mcrypt.algorithms_dir= ; Directory where to load mcrypt modes ; Default: Compiled in into libmcrypt (usually /usr/local/lib/libmcrypt) ;mcrypt.modes_dir= [dba] ;dba.default_handler= [curl] ; A default value for the CURLOPT_CAINFO option. This is required to be an ; absolute path. ;curl.cainfo = ; Local Variables: ; tab-width: 4 ; End:
#include // Header File For Windows #include // Header File For The OpenGL32 Library #include // Header File For The GLu32 Library #include // Header File For The Glaux Library #include HDC hDC=NULL; // Private GDI Device Context HGLRC hRC=NULL; // Permanent Rendering Context HWND hWnd=NULL; // Holds Our Window Handle HINSTANCE hInstance; // Holds The Instance Of The Application int x,y; int xx,yy; int chakela; int amd[200][200]; int rmd[200][200]; int gmd[200][200]; int bmd[200][200]; int yanser,yanseg,yanseb; FILE *zuojian; bool keys[256]; // Array Used For The Keyboard Routine bool active=TRUE; // Window Active Flag Set To TRUE By Default bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default void aa(); void bb(); void cc(); LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And Initialize The GL Window { if (height==0) // Prevent A Divide By Zero By { height=1; // Making Height Equal One } glViewport(0,0,width,height); // Reset The Current Viewport glMatrixMode(GL_PROJECTION); // Select The Projection Matrix glLoadIdentity(); // Reset The Projection Matrix // Calculate The Aspect Ratio Of The Window gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.1f,1000.0f); glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix glLoadIdentity(); // Reset The Modelview Matrix } int InitGL(GLvoid) // All Setup For OpenGL Goes Here { glShadeModel(GL_SMOOTH); // Enable Smooth Shading glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background glClearDepth(1.0f); // Depth Buffer Setup glEnable(GL_DEPTH_TEST); // Enables Depth Testing glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations return TRUE; // Initialization Went OK } int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer glLoadIdentity(); glColor3f(0.5f,0.5f,1.0f); aa(); cc(); bb(); // Reset The Current Modelview Matrix return TRUE; // Keep Going } GLvoid KillGLWindow(GLvoid) // Properly Kill The Window { if (fullscreen) // Are We In Fullscreen Mode? { ChangeDisplaySettings(NULL,0); // If So Switch Back To The Desktop ShowCursor(TRUE); // Show Mouse Pointer } if (hRC) // Do We Have A Rendering Context? { if (!wglMakeCurrent(NULL,NULL)) // Are We Able To Release The DC And RC Contexts? { MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION); } if (!wglDeleteContext(hRC)) // Are We Able To Delete The RC? { MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION); } hRC=NULL; // Set RC To NULL } if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC { MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION); hDC=NULL; // Set DC To NULL } if (hWnd && !DestroyWindow(hWnd)) // Are We Able To Destroy The Window? { MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION); hWnd=NULL; // Set hWnd To NULL } if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class { MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION); hInstance=NULL; // Set hInstance To NULL } } /* This Code Creates Our OpenGL Window. Parameters Are: * * title - Title To Appear At The Top Of The Window * * width - Width Of The GL Window Or Fullscreen Mode * * height - Height Of The GL Window Or Fullscreen Mode * * bits - Number Of Bits To Use For Color (8/16/24/32) * * fullscreenflag - Use Fullscreen Mode (TRUE) Or Windowed Mode (FALSE) */ BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag) { GLuint PixelFormat; // Holds The Results After Searching For A Match WNDCLASS wc; // Windows Class Structure DWORD dwExStyle; // Window Extended Style DWORD dwStyle; // Window Style RECT WindowRect; // Grabs Rectangle Upper Left / Lower Right Values WindowRect.left=(long)0; // Set Left Value To 0 WindowRect.right=(long)width; // Set Right Value To Requested Width WindowRect.top=(long)0; // Set Top Value To 0 WindowRect.bottom=(long)height; // Set Bottom Value To Requested Height fullscreen=fullscreenflag; // Set The Global Fullscreen Flag hInstance = GetModuleHandle(NULL); // Grab An Instance For Our Window wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; // Redraw On Size, And Own DC For Window. wc.lpfnWndProc = (WNDPROC) WndProc; // WndProc Handles Messages wc.cbClsExtra = 0; // No Extra Window Data wc.cbWndExtra = 0; // No Extra Window Data wc.hInstance = hInstance; // Set The Instance wc.hIcon = LoadIcon(NULL, IDI_WINLOGO); // Load The Default Icon wc.hCursor = LoadCursor(NULL, IDC_ARROW); // Load The Arrow Pointer wc.hbrBackground = NULL; // No Background Required For GL wc.lpszMenuName = NULL; // We Don't Want A Menu wc.lpszClassName = "OpenGL"; // Set The Class Name if (!RegisterClass(&wc)) // Attempt To Register The Window Class { MessageBox(NULL,"Failed To Register The Window Class.","ERROR",MB_OK|MB_ICONEXCLAMATION); return FALSE; // Return FALSE } if (fullscreen) // Attempt Fullscreen Mode? { DEVMODE dmScreenSettings; // Device Mode memset(&dmScreenSettings,0,sizeof(dmScreenSettings)); // Makes Sure Memory's Cleared dmScreenSettings.dmSize=sizeof(dmScreenSettings); // Size Of The Devmode Structure dmScreenSettings.dmPelsWidth = width; // Selected Screen Width dmScreenSettings.dmPelsHeight = height; // Selected Screen Height dmScreenSettings.dmBitsPerPel = bits; // Selected Bits Per Pixel dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT; // Try To Set Selected Mode And Get Results. NOTE: CDS_FULLSCREEN Gets Rid Of Start Bar. if (ChangeDisplaySettings(&dmScreenSettings,CDS_FULLSCREEN)!=DISP_CHANGE_SUCCESSFUL) { // If The Mode Fails, Offer Two Options. Quit Or Use Windowed Mode. if (MessageBox(NULL,"The Requested Fullscreen Mode Is Not Supported By\nYour Video Card. Use Windowed Mode Instead?","NeHe GL",MB_YESNO|MB_ICONEXCLAMATION)==IDYES) { fullscreen=FALSE; // Windowed Mode Selected. Fullscreen = FALSE } else { // Pop Up A Message Box Letting User Know The Program Is Closing. MessageBox(NULL,"Program Will Now Close.","ERROR",MB_OK|MB_ICONSTOP); return FALSE; // Return FALSE } } } if (fullscreen) // Are We Still In Fullscreen Mode? { dwExStyle=WS_EX_APPWINDOW; // Window Extended Style dwStyle=WS_POPUP; // Windows Style ShowCursor(FALSE); // Hide Mouse Pointer } else { dwExStyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; // Window Extended Style dwStyle=WS_OVERLAPPEDWINDOW; // Windows Style } AdjustWindowRectEx(&WindowRect, dwStyle, FALSE, dwExStyle); // Adjust Window To True Requested Size // Create The Window if (!(hWnd=CreateWindowEx( dwExStyle, // Extended Style For The Window "OpenGL", // Class Name title, // Window Title dwStyle | // Defined Window Style WS_CLIPSIBLINGS | // Required Window Style WS_CLIPCHILDREN, // Required Window Style 0, 0, // Window Position WindowRect.right-WindowRect.left, // Calculate Window Width WindowRect.bottom-WindowRect.top, // Calculate Window Height NULL, // No Parent Window NULL, // No Menu hInstance, // Instance NULL))) // Dont Pass Anything To WM_CREATE { KillGLWindow(); // Reset The Display MessageBox(NULL,"Window Creation Error.","ERROR",MB_OK|MB_ICONEXCLAMATION); return FALSE; // Return FALSE } static PIXELFORMATDESCRIPTOR pfd= // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format bits, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 16, // 16Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC=GetDC(hWnd))) // Did We Get A Device Context? { KillGLWindow(); // Reset The Display MessageBox(NULL,"Can't Create A GL Device Context.","ERROR",MB_OK|MB_ICONEXCLAMATION); return FALSE; // Return FALSE } if (!(PixelFormat=ChoosePixelFormat(hDC,&pfd))) // Did Windows Find A Matching Pixel Format? { KillGLWindow(); // Reset The Display MessageBox(NULL,"Can't Find A Suitable PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION); return FALSE; // Return FALSE } if(!SetPixelFormat(hDC,PixelFormat,&pfd)) // Are We Able To Set The Pixel Format? { KillGLWindow(); // Reset The Display MessageBox(NULL,"Can't Set The PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION); return FALSE; // Return FALSE } if (!(hRC=wglCreateContext(hDC))) // Are We Able To Get A Rendering Context? { KillGLWindow(); // Reset The Display MessageBox(NULL,"Can't Create A GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION); return FALSE; // Return FALSE } if(!wglMakeCurrent(hDC,hRC)) // Try To Activate The Rendering Context { KillGLWindow(); // Reset The Display MessageBox(NULL,"Can't Activate The GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION); return FALSE; // Return FALSE } ShowWindow(hWnd,SW_SHOW); // Show The Window SetForegroundWindow(hWnd); // Slightly Higher Priority SetFocus(hWnd); // Sets Keyboard Focus To The Window ReSizeGLScene(width, height); // Set Up Our Perspective GL Screen if (!InitGL()) // Initialize Our Newly Created GL Window { KillGLWindow(); // Reset The Display MessageBox(NULL,"Initialization Failed.","ERROR",MB_OK|MB_ICONEXCLAMATION); return FALSE; // Return FALSE } return TRUE; // Success } LRESULT CALLBACK WndProc( HWND hWnd, // Handle For This Window UINT uMsg, // Message For This Window WPARAM wParam, // Additional Message Information LPARAM lParam) // Additional Message Information { switch (uMsg) // Check For Windows Messages { case WM_CHAR: // Is A Key Being Held Down? { switch (wParam) { case 'a': { zuojian=fopen("c:/a.txt","wb+"); fwrite(amd,4,40000,zuojian); fwrite(rmd,4,40000,zuojian); fwrite(gmd,4,40000,zuojian); fwrite(bmd,4,40000,zuojian); fclose(zuojian); MessageBox(hWnd,"ok","ok",0); break; } case 'q': { zuojian=fopen("c:/a.txt","rb+"); fread(amd,4,40000,zuojian); fread(rmd,4,40000,zuojian); fread(gmd,4,40000,zuojian); fread(bmd,4,40000,zuojian); fclose(zuojian); MessageBox(hWnd,"ok","ok",0); break; } break; } return 0; } case WM_LBUTTONDOWN: { chakela=1; // amd[LOWORD(lParam)/10][HIWORD(lParam)/10]=1; //MessageBox(0,"cvxcv","fgfd",2); return 0; } case WM_MOUSEMOVE : { xx=LOWORD(lParam)/10; yy=HIWORD(lParam)/10; if(chakela==1) { amd[xx][yy]=1; rmd[xx][yy]=yanser; gmd[xx][yy]=yanseg; bmd[xx][yy]=yanseb; } return 0; } case WM_LBUTTONUP: { chakela=0; //MessageBox(0,"cvxcv","fgfd",2); return 0; } case WM_RBUTTONDOWN: { if(xx<=5) { yanser=yy; } if(xx5) yanseg=yy; } if(xx10) yanseb=yy; } return 0; } case WM_ACTIVATE: // Watch For Window Activate Message { if (!HIWORD(wParam)) // Check Minimization State { active=TRUE; // Program Is Active } else { active=FALSE; // Program Is No Longer Active } return 0; // Return To The Message Loop } case WM_SYSCOMMAND: // Intercept System Commands { switch (wParam) // Check System Calls { case SC_SCREENSAVE: // Screensaver Trying To Start? case SC_MONITORPOWER: // Monitor Trying To Enter Powersave? return 0; // Prevent From Happening } break; // Exit } case WM_CLOSE: // Did We Receive A Close Message? { PostQuitMessage(0); // Send A Quit Message return 0; // Jump Back } case WM_KEYDOWN: // Is A Key Being Held Down? { keys[wParam] = TRUE; // If So, Mark It As TRUE return 0; // Jump Back } case WM_KEYUP: // Has A Key Been Released? { keys[wParam] = FALSE; // If So, Mark It As FALSE return 0; // Jump Back } case WM_SIZE: // Resize The OpenGL Window { ReSizeGLScene(LOWORD(lParam),HIWORD(lParam)); // LoWord=Width, HiWord=Height return 0; // Jump Back } } // Pass All Unhandled Messages To DefWindowProc return DefWindowProc(hWnd,uMsg,wParam,lParam); } int WINAPI WinMain( HINSTANCE hInstance, // Instance HINSTANCE hPrevInstance, // Previous Instance LPSTR lpCmdLine, // Command Line Parameters int nCmdShow) // Window Show State { MSG msg; // Windows Message Structure BOOL done=FALSE; // Bool Variable To Exit Loop // Ask The User Which Screen Mode They Prefer if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO) { fullscreen=FALSE; // Windowed Mode } // Create Our OpenGL Window if (!CreateGLWindow("NeHe's Color Tutorial",640,480,16,fullscreen)) { return 0; // Quit If Window Was Not Created } while(!done) // Loop That Runs While done=FALSE { if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting? { if (msg.message==WM_QUIT) // Have We Received A Quit Message? { done=TRUE; // If So done=TRUE } else // If Not, Deal With Window Messages { TranslateMessage(&msg); // Translate The Message DispatchMessage(&msg); // Dispatch The Message } } else // If There Are No Messages { // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene() if ((active && !DrawGLScene()) || keys[VK_ESCAPE]) // Active? Was There A Quit Received? { done=TRUE; // ESC or DrawGLScene Signalled A Quit } else // Not Time To Quit, Update Screen { SwapBuffers(hDC); // Swap Buffers (Double Buffering) } if (keys[VK_F1]) // Is F1 Being Pressed? { keys[VK_F1]=FALSE; // If So Make Key FALSE KillGLWindow(); // Kill Our Current Window fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode // Recreate Our OpenGL Window if (!CreateGLWindow("NeHe's Color Tutorial",640,480,16,fullscreen)) { return 0; // Quit If Window Was Not Created } } } } // Shutdown KillGLWindow(); // Kill The Window return (msg.wParam); // Exit The Program } void aa() { x=y=0; while(x<200) { while(y<200) { if(amd[x][y]==1) { glLoadIdentity(); glTranslatef(x,-y,-200.0f); glColor3f(rmd[x][y]/50.0f,gmd[x][y]/50.0f,bmd[x][y]/50.0f); glBegin(GL_QUADS); glVertex3f(-1, 1, 0.0f); glVertex3f( 1, 1, 0.0f); glVertex3f( 1,-1, 0.0f); glVertex3f(-1,-1, 0.0f); glEnd(); } y++; } y=0; x++;} } void bb() { glLoadIdentity(); glTranslatef(xx,-yy,-200.0f); glColor3f(1,1,0); glBegin(GL_QUADS); glVertex3f(-1, 1, 0.0f); glVertex3f( 1, 1, 0.0f); glVertex3f( 1,-1, 0.0f); glVertex3f(-1,-1, 0.0f); glEnd(); } void cc() { glLoadIdentity(); glTranslatef(0,0,-201.0f); glColor3f(1,0,0); glBegin(GL_QUADS); glVertex3f(0, -50, 0.0f); glVertex3f( 0, 0, 0.0f); glVertex3f( 5,0, 0.0f); glVertex3f(5,-50, 0.0f); glEnd(); glLoadIdentity(); glTranslatef(5,0,-201.0f); glColor3f(0,1,0); glBegin(GL_QUADS); glVertex3f(0, -50, 0.0f); glVertex3f( 0, 0, 0.0f); glVertex3f( 5,0, 0.0f); glVertex3f(5,-50, 0.0f); glEnd(); glLoadIdentity(); glTranslatef(10,0,-201.0f); glColor3f(0,0,1); glBegin(GL_QUADS); glVertex3f(0, -50, 0.0f); glVertex3f( 0, 0, 0.0f); glVertex3f( 5,0, 0.0f); glVertex3f(5,-50, 0.0f); glEnd(); }
Contents Module Overview 1 Lesson 1: Memory 3 Lesson 2: I/O 73 Lesson 3: CPU 111 Module 3: Troubleshooting Server Performance Module Overview Troubleshooting server performance-based support calls requires product knowledge, good communication skills, and a proven troubleshooting methodology. In this module we will discuss Microsoft® SQL Server™ interaction with the operating system and methodology of troubleshooting server-based problems. At the end of this module, you will be able to:  Define the common terms associated the memory, I/O, and CPU subsystems.  Describe how SQL Server leverages the Microsoft Windows® operating system facilities including memory, I/O, and threading.  Define common SQL Server memory, I/O, and processor terms.  Generate a hypothesis based on performance counters captured by System Monitor.  For each hypothesis generated, identify at least two other non-System Monitor pieces of information that would help to confirm or reject your hypothesis.  Identify at least five counters for each subsystem that are key to understanding the performance of that subsystem.  Identify three common myths associated with the memory, I/O, or CPU subsystems. Lesson 1: Memory What You Will Learn After completing this lesson, you will be able to:  Define common terms used when describing memory.  Give examples of each memory concept and how it applies to SQL Server.  Describe how SQL Server user and manages its memory.  List the primary configuration options that affect memory.  Describe how configuration options affect memory usage.  Describe the effect on the I/O subsystem when memory runs low.  List at least two memory myths and why they are not true. Recommended Reading  SQL Server 7.0 Performance Tuning Technical Reference, Microsoft Press  Windows 2000 Resource Kit companion CD-ROM documentation. Chapter 15: Overview of Performance Monitoring  Inside Microsoft Windows 2000, Third Edition, David A. Solomon and Mark E. Russinovich  Windows 2000 Server Operations Guide, Storage, File Systems, and Printing; Chapters: Evaluating Memory and Cache Usage  Advanced Windows, 4th Edition, Jeffrey Richter, Microsoft Press Related Web Sites  http://ntperformance/ Memory Definitions Memory Definitions Before we look at how SQL Server uses and manages its memory, we need to ensure a full understanding of the more common memory related terms. The following definitions will help you understand how SQL Server interacts with the operating system when allocating and using memory. Virtual Address Space A set of memory addresses that are mapped to physical memory addresses by the system. In a 32-bit operation system, there is normally a linear array of 2^32 addresses representing 4,294,967,269 byte addresses. Physical Memory A series of physical locations, with unique addresses, that can be used to store instructions or data. AWE – Address Windowing Extensions A 32-bit process is normally limited to addressing 2 gigabytes (GB) of memory, or 3 GB if the system was booted using the /3G boot switch even if there is more physical memory available. By leveraging the Address Windowing Extensions API, an application can create a fixed-size window into the additional physical memory. This allows a process to access any portion of the physical memory by mapping it into the applications window. When used in combination with Intel’s Physical Addressing Extensions (PAE) on Windows 2000, an AWE enabled application can support up to 64 GB of memory Reserved Memory Pages in a processes address space are free, reserved or committed. Reserving memory address space is a way to reserve a range of virtual addresses for later use. If you attempt to access a reserved address that has not yet been committed (backed by memory or disk) you will cause an access violation. Committed Memory Committed pages are those pages that when accessed in the end translate to pages in memory. Those pages may however have to be faulted in from a page file or memory mapped file. Backing Store Backing store is the physical representation of a memory address. Page Fault (Soft/Hard) A reference to an invalid page (a page that is not in your working set) is referred to as a page fault. Assuming the page reference does not result in an access violation, a page fault can be either hard or soft. A hard page fault results in a read from disk, either a page file or memory-mapped file. A soft page fault is resolved from one of the modified, standby, free or zero page transition lists. Paging is represented by a number of counters including page faults/sec, page input/sec and page output/sec. Page faults/sec include soft and hard page faults where as the page input/output counters represent hard page faults. Unfortunately, all of these counters include file system cache activity. For more information, see also…Inside Windows 2000,Third Edition, pp. 443-451. Private Bytes Private non-shared committed address space Working Set The subset of processes virtual pages that is resident in physical memory. For more information, see also… Inside Windows 2000,Third Edition, p. 455. System Working Set Like a process, the system has a working set. Five different types of pages represent the system’s working set: system cache; paged pool; pageable code and data in the kernel; page-able code and data in device drivers; and system mapped views. The system working set is represented by the counter Memory: cache bytes. System working set paging activity can be viewed by monitoring the Memory: Cache Faults/sec counter. For more information, see also… Inside Windows 2000,Third Edition, p. 463. System Cache The Windows 2000 cache manager provides data caching for both local and network file system drivers. By caching virtual blocks, the cache manager can reduce disk I/O and provide intelligent read ahead. Represented by Memory:Cache Resident bytes. For more information, see also… Inside Windows 2000,Third Edition, pp. 654-659. Non Paged Pool Range of addresses guaranteed to be resident in physical memory. As such, non-paged pool can be accessed at any time without incurring a page fault. Because device drivers operate at DPC/dispatch level (covered in lesson 2), and page faults are not allowed at this level or above, most device drivers use non-paged pool to assure that they do not incur a page fault. Represented by Memory: Pool Nonpaged Bytes, typically between 3-30 megabytes (MB) in size. Note The pool is, in effect, a common area of memory shared by all processes. One of the most common uses of non-paged pool is the storage of object handles. For more information regarding “maximums,” see also… Inside Windows 2000,Third Edition, pp. 403-404 Paged Pool Range of address that can be paged in and out of physical memory. Typically used by drivers who need memory but do not need to access that memory from DPC/dispatch of above interrupt level. Represented by Memory: Pool Paged Bytes and Memory:Pool Paged Resident Bytes. Typically between 10-30MB + size of Registry. For more information regarding “limits,” see also… Inside Windows 2000,Third Edition, pp. 403-404. Stack Each thread has two stacks, one for kernel mode and one for user mode. A stack is an area of memory in which program procedure or function call addresses and parameters are temporarily stored. In Process To run in the same address space. In-process servers are loaded in the client’s address space because they are implemented as DLLs. The main advantage of running in-process is that the system usually does not need to perform a context switch. The disadvantage to running in-process is that DLL has access to the process address space and can potentially cause problems. Out of Process To run outside the calling processes address space. OLEDB providers can run in-process or out of process. When running out of process, they run under the context of DLLHOST.EXE. Memory Leak To reserve or commit memory and unintentionally not release it when it is no longer being used. A process can leak resources such as process memory, pool memory, user and GDI objects, handles, threads, and so on. Memory Concepts (X86 Address Space) Per Process Address Space Every process has its own private virtual address space. For 32-bit processes, that address space is 4 GB, based on a 32-bit pointer. Each process’s virtual address space is split into user and system partitions based on the underlying operating system. The diagram included at the top represents the address partitioning for the 32-bit version of Windows 2000. Typically, the process address space is evenly divided into two 2-GB regions. Each process has access to 2 GB of the 4 GB address space. The upper 2 GB of address space is reserved for the system. The user address space is where application code, global variables, per-thread stacks, and DLL code would reside. The system address space is where the kernel, executive, HAL, boot drivers, page tables, pool, and system cache reside. For specific information regarding address space layout, refer to Inside Microsoft Windows 2000 Third Edition pages 417-428 by Microsoft Press. Access Modes Each virtual memory address is tagged as to what access mode the processor must be running in. System space can only be accessed while in kernel mode, while user space is accessible in user mode. This protects system space from being tampered with by user mode code. Shared System Space Although every process has its own private memory space, kernel mode code and drivers share system space. Windows 2000 does not provide any protection to private memory being use by components running in kernel mode. As such, it is very important to ensure components running in kernel mode are thoroughly tested. 3-GB Address Space 3-GB Address Space Although 2 GB of address space may seem like a large amount of memory, application such as SQL Server could leverage more memory if it were available. The boot.ini option /3GB was created for those cases where systems actually support greater than 2 GB of physical memory and an application can make use of it This capability allows memory intensive applications running on Windows 2000 Advanced Server to use up to 50 percent more virtual memory on Intel-based computers. Application memory tuning provides more of the computer's virtual memory to applications by providing less virtual memory to the operating system. Although a system having less than 2 GB of physical memory can be booted using the /3G switch, in most cases this is ill-advised. If you restart with the 3 GB switch, also known as 4-Gig Tuning, the amount of non-paged pool is reduced to 128 MB from 256 MB. For a process to access 3 GB of address space, the executable image must have been linked with the /LARGEADDRESSAWARE flag or modified using Imagecfg.exe. It should be pointed out that SQL Server was linked using the /LAREGEADDRESSAWARE flag and can leverage 3 GB when enabled. Note Even though you can boot Windows 2000 Professional or Windows 2000 Server with the /3GB boot option, users processes are still limited to 2 GB of address space even if the IMAGE_FILE_LARGE_ADDRESS_AWARE flag is set in the image. The only thing accomplished by using the /3G option on these system is the reduction in the amount of address space available to the system (ISW2K Pg. 418). Important If you use /3GB in conjunction with AWE/PAE you are limited to 16 GB of memory. For more information, see the following Knowledge Base articles: Q171793 Information on Application Use of 4GT RAM Tuning Q126402 PagedPoolSize and NonPagedPoolSize Values in Windows NT Q247904 How to Configure Paged Pool and System PTE Memory Areas Q274598 W2K Does Not Enable Complete Memory Dumps Between 2 & 4 GB AWE Memory Layout AWE Memory Usually, the operation system is limited to 4 GB of physical memory. However, by leveraging PAE, Windows 2000 Advanced Server can support up to 8 GB of memory, and Data Center 64 GB of memory. However, as stated previously, each 32-bit process normally has access to only 2 GB of address space, or 3 GB if the system was booted with the /3-GB option. To allow processes to allocate more physical memory than can be represented in the 2GB of address space, Microsoft created the Address Windows Extensions (AWE). These extensions allow for the allocation and use of up to the amount of physical memory supported by the operating system. By leveraging the Address Windowing Extensions API, an application can create a fixed-size window into the physical memory. This allows a process to access any portion of the physical memory by mapping regions of physical memory in and out of the applications window. The allocation and use of AWE memory is accomplished by  Creating a window via VirtualAlloc using the MEM_PHYSICAL option  Allocating the physical pages through AllocateUserPhysicalPages  Mapping the RAM pages to the window using MapUserPhysicalPages Note SQL Server 7.0 supports a feature called extended memory in Windows NT® 4 Enterprise Edition by using a PSE36 driver. Currently there are no PSE drivers for Windows 2000. The preferred method of accessing extended memory is via the Physical Addressing Extensions using AWE. The AWE mapping feature is much more efficient than the older process of coping buffers from extended memory into the process address space. Unfortunately, SQL Server 7.0 cannot leverage PAE/AWE. Because there are currently no PSE36 drivers for Windows 2000 this means SQL Server 7.0 cannot support more than 3GB of memory on Windows 2000. Refer to KB article Q278466. AWE restrictions  The process must have Lock Pages In Memory user rights to use AWE Important It is important that you use Enterprise Manager or DMO to change the service account. Enterprise Manager and DMO will grant all of the privileges and Registry and file permissions needed for SQL Server. The Service Control Panel does NOT grant all the rights or permissions needed to run SQL Server.  Pages are not shareable or page-able  Page protection is limited to read/write  The same physical page cannot be mapped into two separate AWE regions, even within the same process.  The use of AWE/PAE in conjunction with /3GB will limit the maximum amount of supported memory to between 12-16 GB of memory.  Task manager does not show the correct amount of memory allocated to AWE-enabled applications. You must use Memory Manager: Total Server Memory. It should, however, be noted that this only shows memory in use by the buffer pool.  Machines that have PAE enabled will not dump user mode memory. If an event occurs in User Mode Memory that causes a blue screen and root cause determination is absolutely necessary, the machine must be booted with the /NOPAE switch, and with /MAXMEM set to a number appropriate for transferring dump files.  With AWE enabled, SQL Server will, by default, allocate almost all memory during startup, leaving 256 MB or less free. This memory is locked and cannot be paged out. Consuming all available memory may prevent other applications or SQL Server instances from starting. Note PAE is not required to leverage AWE. However, if you have more than 4GB of physical memory you will not be able to access it unless you enable PAE. Caution It is highly recommended that you use the “max server memory” option in combination with “awe enabled” to ensure some memory headroom exists for other applications or instances of SQL Server, because AWE memory cannot be shared or paged. For more information, see the following Knowledge Base articles: Q268363 Intel Physical Addressing Extensions (PAE) in Windows 2000 Q241046 Cannot Create a dump File on Computers with over 4 GB RAM Q255600 Windows 2000 utilities do not display physical memory above 4GB Q274750 How to configure SQL Server memory more than 2 GB (Idea) Q266251 Memory dump stalls when PAE option is enabled (Idea) Tip The KB will return more hits if you query on PAE rather than AWE. Virtual Address Space Mapping Virtual Address Space Mapping By default Windows 2000 (on an X86 platform) uses a two-level (three-level when PAE is enabled) page table structure to translate virtual addresses to physical addresses. Each 32-bit address has three components, as shown below. When a process accesses a virtual address the system must first locate the Page Directory for the current process via register CR3 (X86). The first 10 bits of the virtual address act as an index into the Page Directory. The Page Directory Entry then points to the Page Frame Number (PFN) of the appropriate Page Table. The next 10 bits of the virtual address act as an index into the Page Table to locate the appropriate page. If the page is valid, the PTE contains the PFN of the actual page in memory. If the page is not valid, the memory management fault handler locates the page and attempts to make it valid. The final 12 bits act as a byte offset into the page. Note This multi-step process is expensive. This is why systems have translation look aside buffers (TLB) to speed up the process. One of the reasons context switching is so expensive is the translation buffers must be dumped. Thus, the first few lookups are very expensive. Refer to ISW2K pages 439-440. Core System Memory Related Counters Core System Memory Related Counters When evaluating memory performance you are looking at a wide variety of counters. The counters listed here are a few of the core counters that give you quick overall view of the state of memory. The two key counters are Available Bytes and Committed Bytes. If Committed Bytes exceeds the amount of physical memory in the system, you can be assured that there is some level of hard page fault activity happening. The goal of a well-tuned system is to have as little hard paging as possible. If Available Bytes is below 5 MB, you should investigate why. If Available Bytes is below 4 MB, the Working Set Manager will start to aggressively trim the working sets of process including the system cache.  Committed Bytes Total memory, including physical and page file currently committed  Commit Limit • Physical memory + page file size • Represents the total amount of memory that can be committed without expanding the page file. (Assuming page file is allowed to grow)  Available Bytes Total physical memory currently available Note Available Bytes is a key indicator of the amount of memory pressure. Windows 2000 will attempt to keep this above approximately 4 MB by aggressively trimming the working sets including system cache. If this value is constantly between 3-4 MB, it is cause for investigation. One counter you might expect would be for total physical memory. Unfortunately, there is no specific counter for total physical memory. There are however many other ways to determine total physical memory. One of the most common is by viewing the Performance tab of Task Manager. Page File Usage The only counters that show current page file space usage are Page File:% Usage and Page File:% Peak Usage. These two counters will give you an indication of the amount of space currently used in the page file. Memory Performance Memory Counters There are a number of counters that you need to investigate when evaluating memory performance. As stated previously, no single counter provides the entire picture. You will need to consider many different counters to begin to understand the true state of memory. Note The counters listed are a subset of the counters you should capture. *Available Bytes In general, it is desirable to see Available Bytes above 5 MB. SQL Servers goal on Intel platforms, running Windows NT, is to assure there is approximately 5+ MB of free memory. After Available Bytes reaches 4 MB, the Working Set Manager will start to aggressively trim the working sets of process and, finally, the system cache. This is not to say that working set trimming does not happen before 4 MB, but it does become more pronounced as the number of available bytes decreases below 4 MB. Page Faults/sec Page Faults/sec represents the total number of hard and soft page faults. This value includes the System Working Set as well. Keep this in mind when evaluating the amount of paging activity in the system. Because this counter includes paging associated with the System Cache, a server acting as a file server may have a much higher value than a dedicated SQL Server may have. The System Working Set is covered in depth on the next slide. Because Page Faults/sec includes soft faults, this counter is not as useful as Pages/sec, which represents hard page faults. Because of the associated I/O, hard page faults tend to be much more expensive. *Pages/sec Pages/sec represent the number of pages written/read from disk because of hard page faults. It is the sum of Memory: Pages Input/sec and Memory: Pages Output/sec. Because it is counted in numbers of pages, it can be compared to other counts of pages, such as Memory: Page Faults/sec, without conversion. On a well-tuned system, this value should be consistently low. In and of itself, a high value for this counter does not necessarily indicate a problem. You will need to isolate the paging activity to determine if it is associated with in-paging, out-paging, memory mapped file activity or system cache. Any one of these activities will contribute to this counter. Note Paging in and of itself is not necessarily a bad thing. Paging is only “bad” when a critical process must wait for it’s pages to be in-paged, or when the amount of read/write paging is causing excessive kernel time or disk I/O, thus interfering with normal user mode processing. Tip (Memory: Pages/sec) / (PhysicalDisk: Disk Bytes/sec * 4096) yields the approximate percentage of paging to total disk I/O. Note, this is only relevant on X86 platforms with a 4 KB page size. Page Reads/sec (Hard Page Fault) Page Reads/sec is the number of times the disk was accessed to resolve hard page faults. It includes reads to satisfy faults in the file system cache (usually requested by applications) and in non-cached memory mapped files. This counter counts numbers of read operations, without regard to the numbers of pages retrieved by each operation. This counter displays the difference between the values observed in the last two samples, divided by the duration of the sample interval. Page Writes/sec (Hard Page Fault) Page Writes/sec is the number of times pages were written to disk to free up space in physical memory. Pages are written to disk only if they are changed while in physical memory, so they are likely to hold data, not code. This counter counts write operations, without regard to the number of pages written in each operation. This counter displays the difference between the values observed in the last two samples, divided by the duration of the sample interval. *Pages Input/sec (Hard Page Fault) Pages Input/sec is the number of pages read from disk to resolve hard page faults. It includes pages retrieved to satisfy faults in the file system cache and in non-cached memory mapped files. This counter counts numbers of pages, and can be compared to other counts of pages, such as Memory:Page Faults/sec, without conversion. This counter displays the difference between the values observed in the last two samples, divided by the duration of the sample interval. This is one of the key counters to monitor for potential performance complaints. Because a process must wait for a read page fault this counter, read page faults have a direct impact on the perceived performance of a process. *Pages Output/sec (Hard Page Fault) Pages Output/sec is the number of pages written to disk to free up space in physical memory. Pages are written back to disk only if they are changed in physical memory, so they are likely to hold data, not code. A high rate of pages output might indicate a memory shortage. Windows NT writes more pages back to disk to free up space when physical memory is in short supply. This counter counts numbers of pages, and can be compared to other counts of pages, without conversion. This counter displays the difference between the values observed in the last two samples, divided by the duration of the sample interval. Like Pages Input/sec, this is one of the key counters to monitor. Processes will generally not notice write page faults unless the disk I/O begins to interfere with normal data operations. Demand Zero Faults/Sec (Soft Page Fault) Demand Zero Faults/sec is the number of page faults that require a zeroed page to satisfy the fault. Zeroed pages, pages emptied of previously stored data and filled with zeros, are a security feature of Windows NT. Windows NT maintains a list of zeroed pages to accelerate this process. This counter counts numbers of faults, without regard to the numbers of pages retrieved to satisfy the fault. This counter displays the difference between the values observed in the last two samples, divided by the duration of the sample interval. Transition Faults/Sec (Soft Page Fault) Transition Faults/sec is the number of page faults resolved by recovering pages that were on the modified page list, on the standby list, or being written to disk at the time of the page fault. The pages were recovered without additional disk activity. Transition faults are counted in numbers of faults, without regard for the number of pages faulted in each operation. This counter displays the difference between the values observed in the last two samples, divided by the duration of the sample interval. System Working Set System Working Set Like processes, the system page-able code and data are managed by a working set. For the purpose of this course, that working set is referred to as the System Working Set. This is done to differentiate the system cache portion of the working set from the entire working set. There are five different types of pages that make up the System Working Set. They are: system cache; paged pool; page-able code and data in ntoskrnl.exe; page-able code, and data in device drivers and system-mapped views. Unfortunately, some of the counters that appear to represent the system cache actually represent the entire system working set. Where noted system cache actually represents the entire system working set. Note The counters listed are a subset of the counters you should capture. *Memory: Cache Bytes (Represents Total System Working Set) Represents the total size of the System Working Set including: system cache; paged pool; pageable code and data in ntoskrnl.exe; pageable code and data in device drivers; and system-mapped views. Cache Bytes is the sum of the following counters: System Cache Resident Bytes, System Driver Resident Bytes, System Code Resident Bytes, and Pool Paged Resident Bytes. Memory: System Cache Resident Bytes (System Cache) System Cache Resident Bytes is the number of bytes from the file system cache that are resident in physical memory. Windows 2000 Cache Manager works with the memory manager to provide virtual block stream and file data caching. For more information, see also…Inside Windows 2000,Third Edition, pp. 645-650 and p. 656. Memory: Pool Paged Resident Bytes Represents the physical memory consumed by Paged Pool. This counter should NOT be monitored by itself. You must also monitor Memory: Paged Pool. A leak in the pool may not show up in Pool paged Resident Bytes. Memory: System Driver Resident Bytes Represents the physical memory consumed by driver code and data. System Driver Resident Bytes and System Driver Total Bytes do not include code that must remain in physical memory and cannot be written to disk. Memory: System Code Resident Bytes Represents the physical memory consumed by page-able system code. System Code Resident Bytes and System Code Total Bytes do not include code that must remain in physical memory and cannot be written to disk. Working Set Performance Counter You can measure the number of page faults in the System Working Set by monitoring the Memory: Cache Faults/sec counter. Contrary to the “Explain” shown in System Monitor, this counter measures the total amount of page faults/sec in the System Working Set, not only the System Cache. You cannot measure the performance of the System Cache using this counter alone. For more information, see also…Inside Windows 2000,Third Edition, p. 656. Note You will find that in general the working set manager will usually trim the working sets of normal processes prior to trimming the system working set. System Cache System Cache The Windows 2000 cache manager provides a write-back cache with lazy writing and intelligent read-ahead. Files are not written to disk immediately but differed until the cache manager calls the memory manager to flush the cache. This helps to reduce the total number of I/Os. Once per second, the lazy writer thread queues one-eighth of the dirty pages in the system cache to be written to disk. If this is not sufficient to meet the needs, the lazy writer will calculate a larger value. If the dirty page threshold is exceeded prior to lazy writer waking, the cache manager will wake the lazy writer. Important It should be pointed out that mapped files or files opened with FILE_FLAG_NO_BUFFERING, do not participate in the System Cache. For more information regarding mapped views, see also…Inside Windows 2000,Third Edition, p. 669. For those applications that would like to leverage system cache but cannot tolerate write delays, the cache manager supports write through operations via the FILE_FLAG_WRITE_THROUGH. On the other hand, an application can disable lazy writing by using the FILE_ATTRIBUTE_TEMPORARY. If this flag is enabled, the lazy writer will not write the pages to disk unless there is a shortage of memory or the file is closed. Important Microsoft SQL Server uses both FILE_FLAG_NO_BUFFERING and FILE_FLAG_WRITE_THROUGH Tip The file system cache is not represented by a static amount of memory. The system cache can and will grow. It is not unusual to see the system cache consume a large amount of memory. Like other working sets, it is trimmed under pressure but is generally the last thing to be trimmed. System Cache Performance Counters The counters listed are a subset of the counters you should capture. Cache: Data Flushes/sec Data Flushes/sec is the rate at which the file system cache has flushed its contents to disk as the result of a request to flush or to satisfy a write-through file write request. More than one page can be transferred on each flush operation. Cache: Data Flush Pages/sec Data Flush Pages/sec is the number of pages the file system cache has flushed to disk as a result of a request to flush or to satisfy a write-through file write request. Cache: Lazy Write Flushes/sec Represents the rate of lazy writes to flush the system cache per second. More than one page can be transferred per second. Cache: Lazy Write Pages/sec Lazy Write Pages/sec is the rate at which the Lazy Writer thread has written to disk. Note When looking at Memory:Cache Faults/sec, you can remove cache write activity by subtracting (Cache: Data Flush Pages/sec + Cache: Lazy Write Pages/sec). This will give you a better idea of how much other page faulting activity is associated with the other components of the System Working Set. However, you should note that there is no easy way to remove the page faults associated with file cache read activity. For more information, see the following Knowledge Base articles: Q145952 (NT4) Event ID 26 Appears If Large File Transfer Fails Q163401 (NT4) How to Disable Network Redirector File Caching Q181073 (SQL 6.5) DUMP May Cause Access Violation on Win2000 System Pool System Pool As documented earlier, there are two types of shared pool memory: non-paged pool and paged pool. Like private memory, pool memory is susceptible to a leak. Nonpaged Pool Miscellaneous kernel code and structures, and drivers that need working memory while at or above DPC/dispatch level use non-paged pool. The primary counter for non-paged pool is Memory: Pool Nonpaged Bytes. This counter will usually between 3 and 30 MB. Paged Pool Drivers that do not need to access memory above DPC/Dispatch level are one of the primary users of paged pool, however any process can use paged pool by leveraging the ExAllocatePool calls. Paged pool also contains the Registry and file and printing structures. The primary counters for monitoring paged pool is Memory: Pool Paged Bytes. This counter will usually be between 10-30MB plus the size of the Registry. To determine how much of paged pool is currently resident in physical memory, monitor Memory: Pool Paged Resident Bytes. Note The paged and non-paged pools are two of the components of the System Working Set. If a suspected leak is clearly visible in the overview and not associated with a process, then it is most likely a pool leak. If the leak is not associated with SQL Server handles, OLDEB providers, XPROCS or SP_OA calls then most likely this call should be pushed to the Windows NT group. For more information, see the following Knowledge Base articles: Q265028 (MS) Pool Tags Q258793 (MS) How to Find Memory Leaks by Using Pool Bitmap Analysis Q115280 (MS) Finding Windows NT Kernel Mode Memory Leaks Q177415 (MS) How to Use Poolmon to Troubleshoot Kernel Mode Memory Leaks Q126402 PagedPoolSize and NonPagedPoolSize Values in Windows NT Q247904 How to Configure Paged Pool and System PTE Memory Areas Tip To isolate pool leaks you will need to isolate all drivers and third-party processes. This should be done by disabling each service or driver one at a time and monitoring the effect. You can also monitor paged and non-paged pool through poolmon. If pool tagging has been enabled via GFLAGS, you may be able to associate the leak to a particular tag. If you suspect a particular tag, you should involve the platform support group. Process Memory Counters Process _Total Limitations Although the rollup of _Total for Process: Private Bytes, Virtual Bytes, Handles and Threads, represent the key resources being used across all processes, they can be misleading when evaluating a memory leak. This is because a leak in one process may be masked by a decrease in another process. Note The counters listed are a subset of the counters you should capture. Tip When analyzing memory leaks, it is often easier to a build either a separate chart or report showing only one or two key counters for all process. The primary counter used for leak analysis is private bytes, but processes can leak handles and threads just as easily. After a suspect process is located, build a separate chart that includes all the counters for that process. Individual Process Counters When analyzing individual process for memory leaks you should include the counters listed.  Process: % Processor Time  Process: Working Set (includes shared pages)  Process: Virtual Bytes  Process: Private Bytes  Process: Page Faults/sec  Process: Handle Count  Process: Thread Count  Process: Pool Paged Bytes  Process: Pool Nonpaged Bytes Tip WINLOGON, SVCHOST, services, or SPOOLSV are referred to as HELPER processes. They provide core functionality for many operations and as such are often extended by the addition of third-party DLLs. Tlist –s may help identify what services are running under a particular helper. Helper Processes Helper Processes Winlogon, Services, and Spoolsv and Svchost are examples of what are referred to as HELPER processes. They provide core functionality for many operations and, as such, are often extended by the addition of third-party DLLs. Running every service in its own process can waste system resources. Consequently, some services run in their own processes while others share a process with other services. One problem with sharing a process is that a bug in one service may cause the entire process to fail. The resource kit tool, Tlist when used with the –s qualifier can help you identify what services are running in what processes. WINLOGON Used to support GINAs. SPOOLSV SPOOLSV is responsible for printing. You will need to investigate all added printing functionality. Services Service is responsible for system services. Svchost.exe Svchost.exe is a generic host process name for services that are run from dynamic-link libraries (DLLs). There can be multiple instances of Svchost.exe running at the same time. Each Svchost.exe session can contain a grouping of services, so that separate services can be run depending on how and where Svchost.exe is started. This allows for better control and debugging. The Effect of Memory on Other Components Memory Drives Overall Performance Processor, cache, bus speeds, I/O, all of these resources play a roll in overall perceived performance. Without minimizing the impact of these components, it is important to point out that a shortage of memory can often have a larger perceived impact on performance than a shortage of some other resource. On the other hand, an abundance of memory can often be leveraged to mask bottlenecks. For instance, in certain environments, file system cache can significantly reduce the amount of disk I/O, potentially masking a slow I/O subsystem. Effect on I/O I/O can be driven by a number of memory considerations. Page read/faults will cause a read I/O when a page is not in memory. If the modified page list becomes too long the Modified Page Writer and Mapped Page Writer will need to start flushing pages causing disk writes. However, the one event that can have the greatest impact is running low on available memory. In this case, all of the above events will become more pronounced and have a larger impact on disk activity. Effect on CPU The most effective use of a processor from a process perspective is to spend as much time possible executing user mode code. Kernel mode represents processor time associated with doing work, directly or indirectly, on behalf of a thread. This includes items such as synchronization, scheduling, I/O, memory management, and so on. Although this work is essential, it takes processor cycles and the cost, in cycles, to transition between user and kernel mode is expensive. Because all memory management and I/O functions must be done in kernel mode, it follows that the fewer the memory resources the more cycles are going to be spent managing those resources. A direct result of low memory is that the Working Set Manager, Modified Page Writer and Mapped Page Writer will have to use more cycles attempting to free memory. Analyzing Memory Look for Trends and Trend Relationships Troubleshooting performance is about analyzing trends and trend relationships. Establishing that some event happened is not enough. You must establish the effect of the event. For example, you note that paging activity is high at the same time that SQL Server becomes slow. These two individual facts may or may not be related. If the paging is not associated with SQL Servers working set, or the disks SQL is using there may be little or no cause/affect relationship. Look at Physical Memory First The first item to look at is physical memory. You need to know how much physical and page file space the system has to work with. You should then evaluate how much available memory there is. Just because the system has free memory does not mean that there is not any memory pressure. Available Bytes in combination with Pages Input/sec and Pages Output/sec can be a good indicator as to the amount of pressure. The goal in a perfect world is to have as little hard paging activity as possible with available memory greater than 5 MB. This is not to say that paging is bad. On the contrary, paging is a very effective way to manage a limited resource. Again, we are looking for trends that we can use to establish relationships. After evaluating physical memory, you should be able to answer the following questions:  How much physical memory do I have?  What is the commit limit?  Of that physical memory, how much has the operating system committed?  Is the operating system over committing physical memory?  What was the peak commit charge?  How much available physical memory is there?  What is the trend associated with committed and available? Review System Cache and Pool Contribution After you understand the individual process memory usage, you need to evaluate the System Cache and Pool usage. These can and often represent a significant portion of physical memory. Be aware that System Cache can grow significantly on a file server. This is usually normal. One thing to consider is that the file system cache tends to be the last thing trimmed when memory becomes low. If you see abrupt decreases in System Cache Resident Bytes when Available Bytes is below 5 MB you can be assured that the system is experiencing excessive memory pressure. Paged and non-paged pool size is also important to consider. An ever-increasing pool should be an indicator for further research. Non-paged pool growth is usually a driver issue, while paged pool could be driver-related or process-related. If paged pool is steadily growing, you should investigate each process to see if there is a specific process relationship. If not you will have to use tools such as poolmon to investigate further. Review Process Memory Usage After you understand the physical memory limitations and cache and pool contribution you need to determine what components or processes are creating the pressure on memory, if any. Be careful if you opt to chart the _Total Private Byte’s rollup for all processes. This value can be misleading in that it includes shared pages and can therefore exceed the actual amount of memory being used by the processes. The _Total rollup can also mask processes that are leaking memory because other processes may be freeing memory thus creating a balance between leaked and freed memory. Identify processes that expand their working set over time for further analysis. Also, review handles and threads because both use resources and potentially can be mismanaged. After evaluating the process resource usage, you should be able to answer the following:  Are any of the processes increasing their private bytes over time?  Are any processes growing their working set over time?  Are any processes increasing the number of threads or handles over time?  Are any processes increasing their use of pool over time?  Is there a direct relationship between the above named resources and total committed memory or available memory?  If there is a relationship, is this normal behavior for the process in question? For example, SQL does not commit ‘min memory’ on startup; these pages are faulted in into the working set as needed. This is not necessarily an indication of a memory leak.  If there is clearly a leak in the overview and is not identifiable in the process counters it is most likely in the pool.  If the leak in pool is not associated with SQL Server handles, then more often than not, it is not a SQL Server issue. There is however the possibility that the leak could be associated with third party XPROCS, SP_OA* calls or OLDB providers. Review Paging Activity and Its Impact on CPU and I/O As stated earlier, paging is not in and of itself a bad thing. When starting a process the system faults in the pages of an executable, as they are needed. This is preferable to loading the entire image at startup. The same can be said for memory mapped files and file system cache. All of these features leverage the ability of the system to fault in pages as needed The greatest impact of paging on a process is when the process must wait for an in-page fault or when page file activity represents a significant portion of the disk activity on the disk the application is actively using. After evaluating page fault activity, you should be able to answer the following questions:  What is the relationship between PageFaults/sec and Page Input/sec + Page Output/Sec?  What is the relationship if any between hard page faults and available memory?  Does paging activity represent a significant portion of processor or I/O resource usage? Don’t Prematurely Jump to Any Conclusions Analyzing memory pressure takes time and patience. An individual counter in and of it self means little. It is only when you start to explore relationships between cause and effect that you can begin to understand the impact of a particular counter. The key thoughts to remember are:  With the exception of a swap (when the entire process’s working set has been swapped out/in), hard page faults to resolve reads, are the most expensive in terms its effect on a processes perceived performance.  In general, page writes associated with page faults do not directly affect a process’s perceived performance, unless that process is waiting on a free page to be made available. Page file activity can become a problem if that activity competes for a significant percentage of the disk throughput in a heavy I/O orientated environment. That assumes of course that the page file resides on the same disk the application is using. Lab 3.1 System Memory Lab 3.1 Analyzing System Memory Using System Monitor Exercise 1 – Troubleshooting the Cardinal1.log File Students will evaluate an existing System Monitor log and determine if there is a problem and what the problem is. Students should be able to isolate the issue as a memory problem, locate the offending process, and determine whether or not this is a pool issue. Exercise 2 – Leakyapp Behavior Students will start leaky app and monitor memory, page file and cache counters to better understand the dynamics of these counters. Exercise 3 – Process Swap Due To Minimizing of the Cmd Window Students will start SQL from command line while viewing SQL process performance counters. Students will then minimize the window and note the effect on the working set. Overview What You Will Learn After completing this lab, you will be able to:  Use some of the basic functions within System Monitor.  Troubleshoot one or more common performance scenarios. Before You Begin Prerequisites To complete this lab, you need the following:  Windows 2000  SQL Server 2000  Lab Files Provided  LeakyApp.exe (Resource Kit) Estimated time to complete this lab: 45 minutes Exercise 1 Troubleshooting the Cardinal1.log File In this exercise, you will analyze a log file from an actual system that was having performance problems. Like an actual support engineer, you will not have much information from which to draw conclusions. The customer has sent you this log file and it is up to you to find the cause of the problem. However, unlike the real world, you have an instructor available to give you hints should you become stuck. Goal Review the Cardinal1.log file (this file is from Windows NT 4.0 Performance Monitor, which Windows 2000 can read). Chart the log file and begin to investigate the counters to determine what is causing the performance problems. Your goal should be to isolate the problem to a major area such as pool, virtual address space etc, and begin to isolate the problem to a specific process or thread. This lab requires access to the log file Cardinal1.log located in C:\LABS\M3\LAB1\EX1  To analyze the log file 1. Using the Performance MMC, select the System Monitor snap-in, and click the View Log File Data button (icon looks like a disk). 2. Under Files of type, choose PERFMON Log Files (*.log) 3. Navigate to the folder containing Cardinal1.log file and open it. 4. Begin examining counters to find what might be causing the performance problems. When examining some of these counters, you may notice that some of them go off the top of the chart. It may be necessary to adjust the scale on these. This can be done by right-clicking the rightmost pane and selecting Properties. Select the Data tab. Select the counter that you wish to modify. Under the Scale option, change the scale value, which makes the counter data visible on the chart. You may need to experiment with different scale values before finding the ideal value. Also, it may sometimes be beneficial to adjust the vertical scale for the entire chart. Selecting the Graph tab on the Properties page can do this. In the Vertical scale area, adjust the Maximum and Minimum values to best fit the data on the chart. Lab 3.1, Exercise 1: Results Exercise 2 LeakyApp Behavior In this lab, you will have an opportunity to work with a partner to monitor a live system, which is suffering from a simulated memory leak. Goal During this lab, your goal is to observe the system behavior when memory starts to become a limited resource. Specifically you will want to monitor committed memory, available memory, the system working set including the file system cache and each processes working set. At the end of the lab, you should be able to provide an answer to the listed questions.  To monitor a live system with a memory leak 1. Choose one of the two systems as a victim on which to run the leakyapp.exe program. It is recommended that you boot using the \MAXMEM=128 option so that this lab goes a little faster. You and your partner should decide which server will play the role of the problematic server and which server is to be used for monitoring purposes. 2. On the problematic server, start the leakyapp program. 3. On the monitoring system, create a counter that logs all necessary counters need to troubleshoot a memory problem. This should include physicaldisk counters if you think paging is a problem. Because it is likely that you will only need to capture less than five minutes of activity, the suggested interval for capturing is five seconds. 4. After the counters have been started, start the leaky application program 5. Click Start Leaking. The button will now change to Stop Leaking, which indicates that the system is now leaking memory. 6. After leakyapp shows the page file is 50 percent full, click Stop leaking. Note that the process has not given back its memory, yet. After approximately one minute, exit. Lab 3.1, Exercise 2: Questions After analyzing the counter logs you should be able to answer the following: 1. Under which system memory counter does the leak show up clearly? Memory:Committed Bytes 2. What process counter looked very similar to the overall system counter that showed the leak? Private Bytes 3. Is the leak in Paged Pool, Non-paged pool, or elsewhere? Elsewhere 4. At what point did Windows 2000 start to aggressively trim the working sets of all user processes? <5 MB Free 5. Was the System Working Set trimmed before or after the working sets of other processes? After 6. What counter showed this? Memory:Cache Bytes 7. At what point was the File System Cache trimmed? After the first pass through all other working sets 8. What was the effect on all the processes working set when the application quit leaking? None 9. What was the effect on all the working sets when the application exited? Nothing, initially; but all grew fairly quickly based on use 10. When the server was running low on memory, which was Windows spending more time doing, paging to disk or in-paging? Paging to disk, initially; however, as other applications began to run, in-paging increased Exercise 3 Minimizing a Command Window In this exercise, you will have an opportunity to observe the behavior of Windows 2000 when a command window is minimized. Goal During this lab, your goal is to observe the behavior of Windows 2000 when a command window becomes minimized. Specifically, you will want to monitor private bytes, virtual bytes, and working set of SQL Server when the command window is minimized. At the end of the lab, you should be able to provide an answer to the listed questions.  To monitor a command window’s working set as the window is minimized 1. Using System Monitor, create a counter list that logs all necessary counters needed to troubleshoot a memory problem. Because it is likely that you will only need to capture less than five minutes of activity, the suggested capturing interval is five seconds. 2. After the counters have been started, start a Command Prompt window on the target system. 3. In the command window, start SQL Server from the command line. Example: SQL Servr.exe –c –sINSTANCE1 4. After SQL Server has successfully started, Minimize the Command Prompt window. 5. Wait approximately two minutes, and then Restore the window. 6. Wait approximately two minutes, and then stop the counter log. Lab 3.1, Exercise 3: Questions After analyzing the counter logs you should be able to answer the following questions: 1. What was the effect on SQL Servers private bytes, virtual bytes, and working set when the window was minimized? Private Bytes and Virtual Bytes remained the same, while Working Set went to 0 2. What was the effect on SQL Servers private bytes, virtual bytes, and working set when the window was restored? None; the Working Set did not grow until SQL accessed the pages and faulted them back in on an as-needed basis SQL Server Memory Overview SQL Server Memory Overview Now that you have a better understanding of how Windows 2000 manages memory resources, you can take a closer look at how SQL Server 2000 manages its memory. During the course of the lecture and labs you will have the opportunity to monitor SQL Servers use of memory under varying conditions using both System Monitor counters and SQL Server tools. SQL Server Memory Management Goals Because SQL Server has in-depth knowledge about the relationships between data and the pages they reside on, it is in a better position to judge when and what pages should be brought into memory, how many pages should be brought in at a time, and how long they should be resident. SQL Servers primary goals for management of its memory are the following:  Be able to dynamically adjust for varying amounts of available memory.  Be able to respond to outside memory pressure from other applications.  Be able to adjust memory dynamically for internal components. Items Covered  SQL Server Memory Definitions  SQL Server Memory Layout  SQL Server Memory Counters  Memory Configurations Options  Buffer Pool Performance and Counters  Set Aside Memory and Counters  General Troubleshooting Process  Memory Myths and Tips SQL Server Memory Definitions SQL Server Memory Definitions Pool A group of resources, objects, or logical components that can service a resource allocation request Cache The management of a pool or resource, the primary goal of which is to increase performance. Bpool The Bpool (Buffer Pool) is a single static class instance. The Bpool is made up of 8-KB buffers and can be used to handle data pages or external memory requests. There are three basic types or categories of committed memory in the Bpool.  Hashed Data Pages  Committed Buffers on the Free List  Buffers known by their owners (Refer to definition of Stolen) Consumer A consumer is a subsystem that uses the Bpool. A consumer can also be a provider to other consumers. There are five consumers and two advanced consumers who are responsible for the different categories of memory. The following list represents the consumers and a partial list of their categories  Connection – Responsible for PSS and ODS memory allocations  General – Resource structures, parse headers, lock manager objects  Utilities – Recovery, Log Manager  Optimizer – Query Optimization  Query Plan – Query Plan Storage Advanced Consumer Along with the five consumers, there are two advanced consumers. They are  Ccache – Procedure cache. Accepts plans from the Optimizer and Query Plan consumers. Is responsible for managing that memory and determines when to release the memory back to the Bpool.  Log Cache – Managed by the LogMgr, which uses the Utility consumer to coordinate memory requests with the Bpool. Reservation Requesting the future use of a resource. A reservation is a reasonable guarantee that the resource will be available in the future. Committed Producing the physical resource Allocation The act of providing the resource to a consumer Stolen The act of getting a buffer from the Bpool is referred to as stealing a buffer. If the buffer is stolen and hashed for a data page, it is referred to as, and counted as, a Hashed buffer, not a stolen buffer. Stolen buffers on the other hand are buffers used for things such as procedure cache and SRV_PROC structures. Target Target memory is the amount of memory SQL Server would like to maintain as committed memory. Target memory is based on the min and max server configuration values and current available memory as reported by the operating system. Actual target calculation is operating system specific. Memory to Leave (Set Aside) The virtual address space set aside to ensure there is sufficient address space for thread stacks, XPROCS, COM objects etc. Hashed Page A page in pool that represents a database page. SQL Server Memory Layout Virtual Address Space When SQL Server is started the minimum of physical ram or virtual address space supported by the OS is evaluated. There are many possible combinations of OS versions and memory configurations. For example: you could be running Microsoft Windows 2000 Advanced Server with 2 GB or possibly 4 GB of memory. To avoid page file use, the appropriate memory level is evaluated for each configuration. Important Utilities can inject a DLL into the process address space by using HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs When the USER32.dll library is mapped into the process space, so, too, are the DLLs listed in the Registry key. To determine what DLL’s are running in SQL Server address space you can use tlist.exe. You can also use a tool such as Depends from Microsoft or HandelEx from http://ww.sysinternals.com. Memory to Leave As stated earlier there are many possible configurations of physical memory and address space. It is possible for physical memory to be greater than virtual address space. To ensure that some virtual address space is always available for things such as thread stacks and external needs such as XPROCS, SQL Server reserves a small portion of virtual address space prior to determining the size of the buffer pool. This address space is referred to as Memory To Leave. Its size is based on the number of anticipated tread stacks and a default value for external needs referred to as cmbAddressSave. After reserving the buffer pool space, the Memory To Leave reservation is released. Buffer Pool Space During Startup, SQL Server must determine the maximum size of the buffer pool so that the BUF, BUFHASH and COMMIT BITMAP structures that are used to manage the Bpool can be created. It is important to understand that SQL Server does not take ‘max memory’ or existing memory pressure into consideration. The reserved address space of the buffer pool remains static for the life of SQL Server process. However, the committed space varies as necessary to provide dynamic scaling. Remember only the committed memory effects the overall memory usage on the machine. This ensures that the max memory configuration setting can be dynamically changed with minimal changes needed to the Bpool. The reserved space does not need to be adjusted and is maximized for the current machine configuration. Only the committed buffers need to be limited to maintain a specified max server memory (MB) setting. SQL Server Startup Pseudo Code The following pseudo code represents the process SQL Server goes through on startup. Warning This example does not represent a completely accurate portrayal of the steps SQL Server takes when initializing the buffer pool. Several details have been left out or glossed over. The intent of this example is to help you understand the general process, not the specific details.  Determine the size of cmbAddressSave (-g)  Determine Total Physical Memory  Determine Available Physical Memory  Determine Total Virtual Memory  Calculate MemToLeave maxworkterthreads * (stacksize=512 KB) + (cmbAddressSave = 256 MB)  Reserve MemToLeave and set PAGE_NOACCESS  Check for AWE, test to see if it makes sense to use it and log the results • Min(Available Memory, Max Server Memory) > Virtual Memory • Supports Read Scatter • SQL Server not started with -f • AWE Enabled via sp_configure • Enterprise Edition • Lock Pages In Memory user right enabled  Calculate Virtual Address Limit VA Limit = Min(Physical Memory, Virtual Memory – MemtoLeave)  Calculate the number of physical and virtual buffers that can be supported AWE Present Physical Buffers = (RAM / (PAGESIZE + Physical Overhead)) Virtual Buffers = (VA Limit / (PAGESIZE + Virtual Overhead)) AWE Not Present Physical Buffers = Virtual Buffers = VA Limit / (PAGESIZE + Physical Overhead + Virtual Overhead)  Make sure we have the minimum number of buffers Physical Buffers = Max(Physical Buffers, MIN_BUFFERS)  Allocate and commit the buffer management structures  Reserve the address space required to support the Bpool buffers  Release the MemToLeave SQL Server Startup Pseudo Code Example The following is an example based on the pseudo code represented on the previous page. This example is based on a machine with 384 MB of physical memory, not using AWE or /3GB. Note CmbAddressSave was changed between SQL Server 7.0 and SQL Server 2000. For SQL Server 7.0, cmbAddressSave was 128. Warning This example does not represent a completely accurate portrayal of the steps SQL Server takes when initializing the buffer pool. Several details have been left out or glossed over. The intent of this example is to help you understand the general process, not the specific details.  Determine the size of cmbAddressSave (No –g so 256MB)  Determine Total Physical Memory (384)  Determine Available Physical Memory (384)  Determine Total Virtual Memory (2GB)  Calculate MemToLeave maxworkterthreads * (stacksize=512 KB) + (cmbAddressSave = 256 MB) (255 * .5MB + 256MB = 384MB)  Reserve MemToLeave and set PAGE_NOACCESS  Check for AWE, test to see if it makes sense to use it and log the results (AWE Not Enabled)  Calculate Virtual Address Limit VA Limit = Min(Physical Memory, Virtual Memory – MemtoLeave) 384MB = Min(384MB, 2GB – 384MB)  Calculate the number of physical and virtual buffers that can be supported AWE Not Present 48664 (approx) = 384 MB / (8 KB + Overhead)  Make sure we have the minimum number of buffers Physical Buffers = Max(Physical Buffers, MIN_BUFFERS) 48664 = Max(48664,1024)  Allocate and commit the buffer management structures  Reserve the address space required to support the Bpool buffers  Release the MemToLeave Tip Trace Flag 1604 can be used to view memory allocations on startup. The cmbAddressSave can be adjusted using the –g XXX startup parameter. SQL Server Memory Counters SQL Server Memory Counters The two primary tools for monitoring and analyzing SQL Server memory usage are System Monitor and DBCC MEMORYSTATUS. For detailed information on DBCC MEMORYSTATUS refer to Q271624 Interpreting the Output of the DBCC MEMORYSTAUS Command. Important Represents SQL Server 2000 Counters. The counters presented are not the same as the counters for SQL Server 7.0. The SQL Server 7.0 counters are listed in the appendix. Determining Memory Usage for OS and BPOOL Memory Manager: Total Server memory (KB) - Represents all of SQL usage Buffer Manager: Total Pages - Represents total bpool usage To determine how much of Total Server Memory (KB) represents MemToLeave space; subtract Buffer Manager: Total Pages. The result can be verified against DBCC MEMORYSTATUS, specifically Dynamic Memory Manager: OS In Use. It should however be noted that this value only represents requests that went thru the bpool. Memory reserved outside of the bpool by components such as COM objects will not show up here, although they will count against SQL Server private byte count. Buffer Counts: Target (Buffer Manager: Target Pages) The size the buffer pool would like to be. If this value is larger than committed, the buffer pool is growing. Buffer Counts: Committed (Buffer Manager: Total Pages) The total number of buffers committed in the OS. This is the current size of the buffer pool. Buffer Counts: Min Free This is the number of pages that the buffer pool tries to keep on the free list. If the free list falls below this value, the buffer pool will attempt to populate it by discarding old pages from the data or procedure cache. Buffer Distribution: Free (Buffer Manager / Buffer Partition: Free Pages) This value represents the buffers currently not in use. These are available for data or may be requested by other components and mar

16,471

社区成员

发帖
与我相关
我的任务
社区描述
VC/MFC相关问题讨论
社区管理员
  • 基础类社区
  • Web++
  • encoderlee
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告

        VC/MFC社区版块或许是CSDN最“古老”的版块了,记忆之中,与CSDN的年龄几乎差不多。随着时间的推移,MFC技术渐渐的偏离了开发主流,若干年之后的今天,当我们面对着微软的这个经典之笔,内心充满着敬意,那些曾经的记忆,可以说代表着二十年前曾经的辉煌……
        向经典致敬,或许是老一代程序员内心里面难以释怀的感受。互联网大行其道的今天,我们期待着MFC技术能够恢复其曾经的辉煌,或许这个期待会永远成为一种“梦想”,或许一切皆有可能……
        我们希望这个版块可以很好的适配Web时代,期待更好的互联网技术能够使得MFC技术框架得以重现活力,……

试试用AI创作助手写篇文章吧