Invalid argument supplied 的错误

jellday 2010-04-16 09:55:09

<?
$xml = @simplexml_load_file('http://newsrss.bbc.co.uk/weather/forecast/2076/Next3DaysRSS.xml')
or die();
$ba=array();
$key = 0;
foreach( $xml->channel->item as $item )
{
...


在本地调试没事, 上传到服务器, 出现 PHP Warning: Invalid argument supplied for foreach() in ***.php on line 6

请问foreach( $xml->channel->item as $item ) 这句错在哪里?
...全文
177 1 打赏 收藏 转发到动态 举报
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
ghostwuboy 2010-04-16
  • 打赏
  • 举报
回复

if (is_array($xml->channel->item)) {
foreach( $xml->channel->item as $item )
{
...


}

你未判断$xml->channel->item这是不是一个数组

$xml = @simplexml_load_file('http://newsrss.bbc.co.uk/weather/forecast/2076/Next3DaysRSS.xml')
把@去掉,就会报出警告和错误
集合了 所有的 Unix命令大全 登陆服务器时输入 公帐号 openlab-open123 telnet 192.168.0.23 自己帐号 sd08077-you0 ftp工具 192.168.0.202 tools-toolss 老师测评网址 http://172.16.0.198:8080/poll/ 各个 shell 可互相切换 ksh:$ sh:$ csh:guangzhou% bash:bash-3.00$ 一、注意事项 命令和参数之间必需用空格隔开,参数和参数之间也必需用空格隔开。 一行不能超过256个字符;大小写有区分。 二、特殊字符含义 文件名以“.”开头的都是隐藏文件/目录,只需在文件/目录名前加“.”就可隐藏它。 ~/ 表示主目录。 ./ 当前目录(一个点)。 ../ 上一级目录(两个点)。 ; 多个命令一起用。 > >> 输出重定向 。将一个命令的输出内容写入到一个文件里面。如果该文件存在, 就将该文件的内容覆盖; 如果不存在就先创建该文件, 然后再写入内容。 输出重定向,意思就是说,将原来屏幕输出变为文件输出,即将内容输到文件中。 < << 输入重定向。 本来命令是通过键盘得到输入的,但是用小于号,就能够使命令从文件中得到输入。 \ 表示未写完,回车换行再继续。 * 匹配零个或者多个字符。 ? 匹配一个字符。 [] 匹配中括号里的内容[a-z][A-Z][0-9]。 ! 事件。 $ 取环境变量的值。 | 管道。把前一命令的输出作为后一命令的输入,把几个命令连接起来。 |经常跟tee连用,tee 把内容保存到文档并显示出来。 三、通用后接命令符 -a 所有(all)。 -e 所有(every),比a更详细。 -f 取消保护。 -i 添加提示。 -p 强制执行。 -r 目录管理。 分屏显示的中途操作 空格 继续打开下一屏; 回车 继续打开下一行; b 另外开上一屏; f 另外开下一屏; h 帮助; q或Ctrl+C 退出; /字符串 从上往下查找匹配的字符串; ?字符串 从下往上查找匹配的字符串; n 继续查找。 四、退出命令 exit 退出; DOS内部命令 用于退出当前的命令处理器(COMMAND.COM) 恢复前一个命令处理器。 Ctrl+d 跟exit一样效果,表中止本次操作。 logout 当csh时可用来退出,其他shell不可用。 clear 清屏,清除(之前的内容并未删除,只是没看到,拉回上面可以看回)。 五、目录管理命令 pwd 显示当前所在目录,打印当前目录的绝对路径。 cd 进入某目录,DOS内部命令 显示或改变当前目录。 cd回车/cd ~ 都是回到自己的主目录。 cd . 当前目录(空格再加一个点)。 cd .. 回到上一级目录(空格再加两个点)。 cd ../.. 向上两级。 cd /user/s0807 从绝对路径去到某目录。 cd ~/s0807 直接进入主目录下的某目录(“cd ~"相当于主目录的路径的简写)。 ls 显示当前目录的所有目录和文件。 用法 ls [-aAbcCdeEfFghHilLmnopqrRstux1@] [file...] ls /etc/ 显示某目录下的所有文件和目录,如etc目录下的。 ls -l (list)列表显示文件(默认按文件名排序), 显示文件的权限、硬链接数(即包含文件数,普通文件是1,目录1+)、用户、组名、大小、修改日期、文件名。 ls -t (time)按修改时间排序,显示目录和文件。 ls -lt 是“-l”和“-t”的组合,按时间顺序显示列表。 ls -F 显示文件类型,目录“/ ”结尾;可执行文件“*”结尾;文本文件(none),没有结尾。 ls -R 递归显示目录结构。即该目录下的文件和各个副目录下的文件都一一显示。 ls -a 显示所有文件,包括隐藏文件。 文件权限 r 读权限。对普通文件来说,是读取该文件的权限;对目录来说,是获得该目录下的文件信息。 w 写权限。对文件,是修改;对目录,是增删文件与子目录。 (注 删除没有写权限的文件可以用 rm -f ,这是为了操作方便,是人性化的设计)。 x 执行权限;对目录,是进入该目录 - 表示没有权限 形式 - rw- r-- r-- 其中 第一个是文件类型(-表普通文件,d表目录,l表软链接文件) 第2~4个是属主,生成文件时登录的人,权限最高,用u表示 第5~7个是属组,系统管理员分配的同组的一个或几个人,用g表示 第8~10个是其他人,除属组外的人,用o表示 所有人,包括属主、属组及其他人,用a表示 chmod 更改权限; 用法 chmod [-fR] <绝对模式> 文件 ... chmod [-fR] <符号模式列表> 文件 ... 其中 <符号模式列表> 是一个用逗号分隔的表 [ugoa]{+|-|=}[rwxXlstugo] chmod u+rw 给用户加权限。同理,u-rw也可以减权限。 chmod u=rw 给用户赋权限。与加权限不一样,赋权限有覆盖的效果。 主要形式有如下几种 chmod u+rw chmod u=rw chmod u+r, u+w chmod u+rw,g+w, o+r chmod 777( 用数字的方式设置权限是最常用的) 数字表示权限时,各数位分别表示属主、属组及其他人; 其中,1是执行权(Execute),2是写权限(Write),4是读权限(Read), 具体权限相当于三种权限的数相加,如7=1+2+4,即拥有读写和执行权。 另外,临时文件/目录的权限为rwt,可写却不可删,关机后自动删除;建临时目录:chmod 777 目录名,再chmod +t 目录名。 id 显示用户有效的uid(用户字)和gid(组名) 用法 id [-ap] [user] id 显示自己的。 id root 显示root的。 id -a root 显示用户所在组的所有组名(如root用户,是所有组的组员) df 查看文件系统,查看数据区 用法 df [-F FSType] [-abeghklntVvZ] [-o FSType 特定选项] [目录 | 块设备 | 资源] df -k 以kbytes显示文件大小的查看文件系统方式 六、显示文件内容 more 分屏显示文件的内容。 用法 more [-cdflrsuw] [-行] [+行号] [+/模式] [文件名 ...]。 显示7个信息:用户名 密码 用户id(uid) 组id(gid) 描述信息(一般为空) 用户主目录 login shell(登录shell) cat 显示文件内容,不分屏(一般用在小文件,大文件显示不下);合并文件,仅在屏幕上合并,并不改变原文件。 用法 cat [ -usvtebn ] [-|文件] ... tail 实时监控文件,一般用在日志文件,可以只看其中的几行。 用法 tail [+/-[n][lbc][f]] [文件] tail [+/-[n][l][r|f]] [文件] 七、文件/目录的增删 echo 显示一行内容。 touch 如果文件/目录不存在,则创建新文件/目录;如果文件存在,那么就是更新该文件的最后访问时间, 用法 touch [-acm] [-r ref_file] 文件... touch [-acm] [MMDDhhmm[yy]] 文件... touch [-acm] [-t [[CC]YY]MMDDhhmm[.SS]] file... mkdir 创建目录(必须有创建目录的权限) 用法 mkdir [-m 模式] [-p] dirname ... mkdir dir1/dir2 在dir1下建dir2 mkdir dir13 dir4 dir5 连建多个 mkdir ~/games 用户主目录下建(默认在当前目录下创建) mkdir -p dir6/dir7/dir8 强制创建dir8;若没有前面的目录,会自动创建dir6和dir7。 不用-p时,若没有dir6/dir7,则创建失败。 cp 复制文件/目录 cp 源文件 目标文件 复制文件;若已有文件则覆盖 cp -r 源目录 目标目录 复制目录;若已有目录则把源目录复制到目标目录下, 没有目标目录时,相当于完全复制源目录,只是文件名不同。 cp beans apple dir2 把beans、apple文件复制到dir2目录下 cp -i beans apple 增加是否覆盖的提示 mv 移动或重命名文件/目录 用法 mv [-f] [-i] f1 f2 mv [-f] [-i] f1 ... fn d1 mv [-f] [-i] d1 d2 mv 源文件名 目标文件名 若目标文件名还没有,则是源文件重命名为目标文件;若目标文件已存在,则源文件覆盖目标文件。 mv 源文件名 目标目录 移动文件 mv 源目录 目标目录 若目标目录不存在,则源目录重命名;若目标目录已存在,则源目录移动到目标目录下。 rm 删除文件/目录 用法 rm [-fiRr] 文件 ... rm 文件名 删除文件。 rm -r 目录名 删除目录。 rm –f 文件 只要是该文件或者目录的拥有者,无论是否有权限删除,都可以用这个命令参数强行删除。 rm -rf * 删除所有文件及目录 rmdir 删除空目录。只可以删除空目录。 ln 创建硬链接或软链接,硬链接=同一文件的多个名字;软链接=快捷方式 用法 ln [-f] [-n] [-s] f1 [f2] ln [-f] [-n] [-s] f1 ... fn d1 ln [-f] [-n] -s d1 d2 ln file1 file1.ln 创建硬链接。感觉是同一文件,删除一个,对另一个没有影响;须两个都删除才算删除。 ln -s file1 file1.sln 创建软链接。可跨系统操作,冲破操作权限;也是快捷方式。 八、时间显示 date 显示时间,精确到秒 用法 date [-u] mmddHHMM[[cc]yy][.SS] date [-u] [+format] date -a [-]sss[.fff] cal 显示日历 cal 9 2008 显示2008年9月的日历; cal 显示当月的 用法 cal [ [月] 年 ] 九、帮助 man 帮助( format and display the on-line manual pages) 用法 man [-] [-adFlrt] [-M 路径] [-T 宏软件包] [-s 段] 名称 ... man [-] [-adFlrt] [-M path] [-T macro-package] [-s section] name... man [-M 路径] -k 关键字 ... man [-M 路径] -f 文件 ... awk 按一定格式输出(pattern scanning and processing language) 用法 awk [-Fc] [-f 源代码 | 'cmds'] [文件] 十、vi 底行模式 /? 命令模式 i a o 输入模式 vi 的使用方法 1、光标 h 左 j 下 k 上 l 右 set nu 显示行号(set nonu) 21 光标停在指定行 21G 第N行 (G到文件尾,1G到文件头) 如果要将光标移动到文件第一行,那么就按 1G H 屏幕头 M 屏幕中间 L 屏幕底 ^ 或 shift+6 行首 $ 或 shift+4 行尾 Ctrl+f 下翻 Ctrl+b 上翻 2、输入 (输入模式) o 光标往下换一行 O (大写字母o)在光标所在行上插入一空行 i 在光标所在位置的前面插入字母 a 在光标所在位置的后面插入一个新字母 退出插入状态。 3、修改替换 r 替换一个字符 dd 删除行,剪切行 (5dd删除5行) 5,10d 删除 5 至 10 行(包括第 5行和第 10 行) x 删除一个字符 dw 删除词,剪切词。 ( 3dw删除 3 单词) cw 替换一个单词。 (cw 和 dw 的区别 cw 删除某一个单词后直接进入编辑模式,而dw删除词后仍处于命令模式) cc 替换一行 C 替换从光标到行尾 yy 复制行 (用法同下的 Y ,见下行) Y 将光标移动到要复制行位置,按yy。当你想粘贴的时候,请将光标移动到你想复制的位置的前一个位置,然后按 p yw 复制词 p 当前行下粘贴 1,2co3 复制行1,2在行3之后 4,5m6 移动行4,5在行6之后 u 当你的前一个命令操作是一个误操作的时候,那么可以按一下 u键,即可复原。只能撤销一次 r file2 在光标所在处插入另一个文件 ~ 将字母变成大写 J 可以将当前行与下一行连接起来 /字符串 从上往下找匹配的字符串 ?字符串 从下往上找匹配的字符串 n 继续查找 1,$s/旧串/新串/g 替换全文(或者 %s/旧串/新串/g) (1表示从第一行开始) 没有g则只替换一次,加g替换所有 3、存盘和退出 w 存盘 w newfile 存成新文件 wq 存盘再退出VI(或者ZZ或 X) q! 强行退出不存盘 查看用户 users 显示在线用户(仅显示用户名)。 who 显示在线用户,但比users更详细,包括用户名、终端号、登录时间、IP地址。 who am i 仅显示自己,(但包括用户名、端口、登录时间、IP地址;信息量=who)。 whoami 也仅显示自己,但只有用户名(仅显示自己的有效的用户名)。 w 显示比who更多内容,还包括闲置时间、占CPU、平均占用CPU、执行命令。 用法 w [ -hlsuw ] [ 用户 ] su 改变用户,需再输入密码。 用法 su [-] [ username [ arg ... ] ] su - 相当于退出再重新登录。 查找 find 查找文件 用法 find [-H | -L] 路径列表 谓词列表 find / -name perl 从根目录开始查找名为perl的文件。 find . -mtime 10 -print 从当前目录查找距离现在10天时修改的文件,显示在屏幕上。 (注 “10”表示第10天的时候;如果是“+10”表示10天以外的范围;“-10”表示10天以内的范围。) grep 文件中查找字符;有过滤功能,只列出想要的内容 用法 grep -hblcnsviw 模式 文件 . . . 如 grep abc /etc/passwd 在passwd文件下找abc字符 wc 统计 -l 统计行数; -w统计单词数; -c 统计字符数 如 grep wang /etc/passwd|wc -l 统计passwd文件含“wang”的行数 du 查看目录情况 如 du -sk * 不加-s会显示子目录,-k按千字节排序 用法 du [-a] [-d] [-h|-k] [-r] [-o|-s] [-H|-L] [文件...] 进程管理 ps 显示进程。 用法 ps [ -aAdeflcjLPyZ ] [ -o 格式 ] [ -t 项列表 ] [ -u 用户列表 ] [ -U 用户列表 ] [ -G 组列表 ] [ -p 进程列表 ] [ -g 程序组列表 ] [ -s 标识符列表 ] [ -z 区域列表 ] ps 显示自己的进程。 ps -e 显示每个进程,包括空闲进程。 ps -f 显示详情。 ps -ef 组合-e和-f,所有进程的详情。 ps -U uidlist(用户列表) 具体查看某人的进程。 kill pkill sleep jobs 用法 jobs [-l ] fg %n bg %n stop %n 挂起(仅csh能用) Ctrl+C Ctrl+Z 网络链接 ping usage ping host [timeout] usage ping -s [-l | U] [adLnRrv] [-A addr_family] [-c traffic_class] [-g gateway [-g gateway ...]] [-F flow_label] [-I interval] [-i interface] [-P tos] [-p port] [-t ttl] host [data_size] [npackets] ifconfig -a /sbin/ifconfig 查看本机的IP地址 netstat -rn rlogin ftp 帮助文件 [sd0807@localhost ~]$ help GNU bash, version 3.1.17(1)-release (i686-redhat-linux-gnu) These shell commands are defined internally. Type `help' to see this list. Type `help name' to find out more about the function `name'. Use `info bash' to find out more about the shell in general. Use `man -k' or `info' to find out more about commands not in this list. A star (*) next to a name means that the command is disabled. JOB_SPEC [&] (( expression )) . filename [arguments] [ arg... ] [[ expression ]] alias [-p] [name[=value] ... ] bg [job_spec ...] bind [-lpvsPVS] [-m keymap] [-f fi break [n] builtin [shell-builtin [arg ...]] caller [EXPR] case WORD in [PATTERN [| PATTERN]. cd [-L|-P] [dir] command [-pVv] command [arg ...] compgen [-abcdefgjksuv] [-o option complete [-abcdefgjksuv] [-pr] [-o continue [n] declare [-afFirtx] [-p] [name[=val dirs [-clpv] [+N] [-N] disown [-h] [-ar] [jobspec ...] echo [-neE] [arg ...] enable [-pnds] [-a] [-f filename] eval [arg ...] exec [-cl] [-a name] file [redirec exit [n] export [-nf] [name[=value] ...] or false fc [-e ename] [-nlr] [first] [last fg [job_spec] for NAME [in WORDS ... ;] do COMMA for (( exp1; exp2; exp3 )); do COM function NAME { COMMANDS ; } or NA getopts optstring name [arg] hash [-lr] [-p pathname] [-dt] [na help [-s] [pattern ...] history [-c] [-d offset] [n] or hi if COMMANDS; then COMMANDS; [ elif jobs [-lnprs] [jobspec ...] or job kill [-s sigspec | -n signum | -si let arg [arg ...] local name[=value] ... logout popd [+N | -N] [-n] printf [-v var] format [arguments] pushd [dir | +N | -N] [-n] pwd [-LP] read [-ers] [-u fd] [-t timeout] [ readonly [-af] [name[=value] ...] return [n] select NAME [in WORDS ... ;] do CO set [--abefhkmnptuvxBCHP] [-o option] [arg ...] shift [n] shopt [-pqsu] [-o long-option] opt source filename [arguments] suspend [-f] test [expr] time [-p] PIPELINE times trap [-lp] [arg signal_spec ...] true type [-afptP] name [name ...] typeset [-afFirtx] [-p] name[=valu ulimit [-SHacdfilmnpqstuvx] [limit umask [-p] [-S] [mode] unalias [-a] name [name ...] unset [-f] [-v] [name ...] until COMMANDS; do COMMANDS; done variables - Some variable names an wait [n] while COMMANDS; do COMMANDS; done { COMMANDS ; } 输入 man help BASH_BUILTINS(1) BASH_BUILTINS(1) NAME bash, :, ., [, alias, bg, bind, break, builtin, cd, command, compgen, complete, continue, declare, dirs, disown, echo, enable, eval, exec, exit, export, fc, fg, getopts, hash, help, history, jobs, kill, let, local, logout, popd, printf, pushd, pwd, read, readonly, return, set, shift, shopt, source, suspend, test, times, trap, type, typeset, ulimit, umask, una- lias, unset, wait - bash built-in commands, see bash(1) BASH BUILTIN COMMANDS Unless otherwise noted, each builtin command documented in this section as accepting options preceded by - accepts -- to signify the end of the options. For example, the :, true, false, and test builtins do not accept options. : [arguments] No effect; the command does nothing beyond expanding arguments and performing any specified redirections. A zero exit code is returned. . filename [arguments] source filename [arguments] Read and execute commands from filename in the current shell environment and return the exit status of the last command executed from filename. If filename does not contain a slash, file names in PATH are used to find the directory containing file- name. The file searched for in PATH need not be executable. When bash is not in posix mode, the current directory is searched if no file is found in PATH. If the sourcepath option to the shopt builtin command is turned off, the PATH is not searched. If any arguments are supplied, they become the positional parameters when filename is executed. Otherwise the positional parameters are unchanged. The return status is the status of the last command exited within the script (0 if no commands are executed), and false if filename is not found or cannot be read. alias [-p] [name[=value] ...] Alias with no arguments or with the -p option prints the list of aliases in the form alias name=value on standard output. When arguments are supplied, an alias is defined for each name whose value is given. A trailing space in value causes the next word to be checked for alias substitution when the alias is expanded. For each name in the argument list for which no value is supplied, the name and value of the alias is printed. Alias returns true unless a name is given for which no alias has been defined. bg [jobspec ...] Resume each suspended job jobspec in the background, as if it had been started with &. If jobspec is not present, the shell’s notion of the current job is used. bg jobspec returns 0 unless run when job control is disabled or, when run with job con- trol enabled, any specified jobspec was not found or was started without job control. bind [-m keymap] [-lpsvPSV] bind [-m keymap] [-q function] [-u function] [-r keyseq] bind [-m keymap] -f filename bind [-m keymap] -x keyseq:shell-command bind [-m keymap] keyseq:function-name bind readline-command Display current readline key and function bindings, bind a key sequence to a readline function or macro, or set a readline variable. Each non-option argument is a command as it would appear in .inputrc, but each binding or command must be passed as a sepa- rate argument; e.g., ’"\C-x\C-r": re-read-init-file’. Options, if supplied, have the following meanings: -m keymap Use keymap as the keymap to be affected by the subsequent bindings. Accept- able keymap names are emacs, emacs-standard, emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and vi-insert. vi is equivalent to vi-command; emacs is equivalent to emacs-standard. -l List the names of all readline functions. -p Display readline function names and bindings in such a way that they can be re-read. -P List current readline function names and bindings. -v Display readline variable names and values in such a way that they can be re- read. -V List current readline variable names and values. -s Display readline key sequences bound to macros and the strings they output in such a way that they can be re-read. -S Display readline key sequences bound to macros and the strings they output. -f filename Read key bindings from filename. -q function Query about which keys invoke the named function. -u function Unbind all keys bound to the named function. -r keyseq Remove any current binding for keyseq. -x keyseq:shell-command Cause shell-command to be executed whenever keyseq is entered. The return value is 0 unless an unrecognized option is given or an error occurred. break [n] Exit from within a for, while, until, or select loop. If n is specified, break n levels. n must be ≥ 1. If n is greater than the number of enclosing loops, all enclosing loops are exited. The return value is 0 unless the shell is not executing a loop when break is executed. builtin shell-builtin [arguments] Execute the specified shell builtin, passing it arguments, and return its exit sta- tus. This is useful when defining a function whose name is the same as a shell builtin, retaining the functionality of the builtin within the function. The cd builtin is commonly redefined this way. The return status is false if shell-builtin is not a shell builtin command. cd [-L|-P] [dir] Change the current directory to dir. The variable HOME is the default dir. The variable CDPATH defines the search path for the directory containing dir. Alterna- tive directory names in CDPATH are separated by a colon (:). A null directory name in CDPATH is the same as the current directory, i.e., ‘‘.’’. If dir begins with a slash (/), then CDPATH is not used. The -P option says to use the physical directory structure instead of following symbolic links (see also the -P option to the set builtin command); the -L option forces symbolic links to be followed. An argument of - is equivalent to $OLDPWD. If a non-empty directory name from CDPATH is used, or if - is the first argument, and the directory change is successful, the absolute path- name of the new working directory is written to the standard output. The return value is true if the directory was successfully changed; false otherwise. caller [expr] Returns the context of any active subroutine call (a shell function or a script exe- cuted with the . or source builtins. Without expr, caller displays the line number and source filename of the current subroutine call. If a non-negative integer is supplied as expr, caller displays the line number, subroutine name, and source file corresponding to that position in the current execution call stack. This extra information may be used, for example, to print a stack trace. The current frame is frame 0. The return value is 0 unless the shell is not executing a subroutine call or expr does not correspond to a valid position in the call stack. command [-pVv] command [arg ...] Run command with args suppressing the normal shell function lookup. Only builtin com- mands or commands found in the PATH are executed. If the -p option is given, the search for command is performed using a default value for PATH that is guaranteed to find all of the standard utilities. If either the -V or -v option is supplied, a description of command is printed. The -v option causes a single word indicating the command or file name used to invoke command to be displayed; the -V option produces a more verbose description. If the -V or -v option is supplied, the exit status is 0 if command was found, and 1 if not. If neither option is supplied and an error occurred or command cannot be found, the exit status is 127. Otherwise, the exit status of the command builtin is the exit status of command. compgen [option] [word] Generate possible completion matches for word according to the options, which may be any option accepted by the complete builtin with the exception of -p and -r, and write the matches to the standard output. When using the -F or -C options, the vari- ous shell variables set by the programmable completion facilities, while available, will not have useful values. The matches will be generated in the same way as if the programmable completion code had generated them directly from a completion specification with the same flags. If word is specified, only those completions matching word will be displayed. The return value is true unless an invalid option is supplied, or no matches were generated. complete [-abcdefgjksuv] [-o comp-option] [-A action] [-G globpat] [-W wordlist] [-P prefix] [-S suffix] [-X filterpat] [-F function] [-C command] name [name ...] complete -pr [name ...] Specify how arguments to each name should be completed. If the -p option is sup- plied, or if no options are supplied, existing completion specifications are printed in a way that allows them to be reused as input. The -r option removes a completion specification for each name, or, if no names are supplied, all completion specifica- tions. The process of applying these completion specifications when word completion is attempted is described above under Programmable Completion. Other options, if specified, have the following meanings. The arguments to the -G, -W, and -X options (and, if necessary, the -P and -S options) should be quoted to protect them from expansion before the complete builtin is invoked. -o comp-option The comp-option controls several aspects of the compspec’s behavior beyond the simple generation of completions. comp-option may be one of: bashdefault Perform the rest of the default bash completions if the compspec gen- erates no matches. default Use readline’s default filename completion if the compspec generates no matches. dirnames Perform directory name completion if the compspec generates no matches. filenames Tell readline that the compspec generates filenames, so it can per- form any filename-specific processing (like adding a slash to direc- tory names or suppressing trailing spaces). Intended to be used with shell functions. nospace Tell readline not to append a space (the default) to words completed at the end of the line. plusdirs After any matches defined by the compspec are generated, directory name completion is attempted and any matches are added to the results of the other actions. -A action The action may be one of the following to generate a list of possible comple- tions: alias Alias names. May also be specified as -a. arrayvar Array variable names. binding Readline key binding names. builtin Names of shell builtin commands. May also be specified as -b. command Command names. May also be specified as -c. directory Directory names. May also be specified as -d. disabled Names of disabled shell builtins. enabled Names of enabled shell builtins. export Names of exported shell variables. May also be specified as -e. file File names. May also be specified as -f. function Names of shell functions. group Group names. May also be specified as -g. helptopic Help topics as accepted by the help builtin. hostname Hostnames, as taken from the file specified by the HOSTFILE shell variable. job Job names, if job control is active. May also be specified as -j. keyword Shell reserved words. May also be specified as -k. running Names of running jobs, if job control is active. service Service names. May also be specified as -s. setopt Valid arguments for the -o option to the set builtin. shopt Shell option names as accepted by the shopt builtin. signal Signal names. stopped Names of stopped jobs, if job control is active. user User names. May also be specified as -u. variable Names of all shell variables. May also be specified as -v. -G globpat The filename expansion pattern globpat is expanded to generate the possible completions. -W wordlist The wordlist is split using the characters in the IFS special variable as delimiters, and each resultant word is expanded. The possible completions are the members of the resultant list which match the word being completed. -C command command is executed in a subshell environment, and its output is used as the possible completions. -F function The shell function function is executed in the current shell environment. When it finishes, the possible completions are retrieved from the value of the COMPREPLY array variable. -X filterpat filterpat is a pattern as used for filename expansion. It is applied to the list of possible completions generated by the preceding options and argu- ments, and each completion matching filterpat is removed from the list. A leading ! in filterpat negates the pattern; in this case, any completion not matching filterpat is removed. -P prefix prefix is added at the beginning of each possible completion after all other options have been applied. -S suffix suffix is appended to each possible completion after all other options have been applied. The return value is true unless an invalid option is supplied, an option other than -p or -r is supplied without a name argument, an attempt is made to remove a comple- tion specification for a name for which no specification exists, or an error occurs adding a completion specification. continue [n] Resume the next iteration of the enclosing for, while, until, or select loop. If n is specified, resume at the nth enclosing loop. n must be ≥ 1. If n is greater than the number of enclosing loops, the last enclosing loop (the ‘‘top-level’’ loop) is resumed. The return value is 0 unless the shell is not executing a loop when con- tinue is executed. declare [-afFirtx] [-p] [name[=value] ...] typeset [-afFirtx] [-p] [name[=value] ...] Declare variables and/or give them attributes. If no names are given then display the values of variables. The -p option will display the attributes and values of each name. When -p is used, additional options are ignored. The -F option inhibits the display of function definitions; only the function name and attributes are printed. If the extdebug shell option is enabled using shopt, the source file name and line number where the function is defined are displayed as well. The -F option implies -f. The following options can be used to restrict output to variables with the specified attribute or to give variables attributes: -a Each name is an array variable (see Arrays above). -f Use function names only. -i The variable is treated as an integer; arithmetic evaluation (see ARITHMETIC EVALUATION ) is performed when the variable is assigned a value. -r Make names readonly. These names cannot then be assigned values by subsequent assignment statements or unset. -t Give each name the trace attribute. Traced functions inherit the DEBUG and RETURN traps from the calling shell. The trace attribute has no special mean- ing for variables. -x Mark names for export to subsequent commands via the environment. Using ‘+’ instead of ‘-’ turns off the attribute instead, with the exception that +a may not be used to destroy an array variable. When used in a function, makes each name local, as with the local command. If a variable name is followed by =value, the value of the variable is set to value. The return value is 0 unless an invalid option is encountered, an attempt is made to define a function using ‘‘-f foo=bar’’, an attempt is made to assign a value to a readonly variable, an attempt is made to assign a value to an array variable without using the compound assignment syntax (see Arrays above), one of the names is not a valid shell variable name, an attempt is made to turn off readonly status for a readonly variable, an attempt is made to turn off array status for an array variable, or an attempt is made to display a non-exis- tent function with -f. dirs [-clpv] [+n] [-n] Without options, displays the list of currently remembered directories. The default display is on a single line with directory names separated by spaces. Directories are added to the list with the pushd command; the popd command removes entries from the list. +n Displays the nth entry counting from the left of the list shown by dirs when invoked without options, starting with zero. -n Displays the nth entry counting from the right of the list shown by dirs when invoked without options, starting with zero. -c Clears the directory stack by deleting all of the entries. -l Produces a longer listing; the default listing format uses a tilde to denote the home directory. -p Print the directory stack with one entry per line. -v Print the directory stack with one entry per line, prefixing each entry with its index in the stack. The return value is 0 unless an invalid option is supplied or n indexes beyond the end of the directory stack. disown [-ar] [-h] [jobspec ...] Without options, each jobspec is removed from the table of active jobs. If the -h option is given, each jobspec is not removed from the table, but is marked so that SIGHUP is not sent to the job if the shell receives a SIGHUP. If no jobspec is present, and neither the -a nor the -r option is supplied, the current job is used. If no jobspec is supplied, the -a option means to remove or mark all jobs; the -r option without a jobspec argument restricts operation to running jobs. The return value is 0 unless a jobspec does not specify a valid job. echo [-neE] [arg ...] Output the args, separated by spaces, followed by a newline. The return status is always 0. If -n is specified, the trailing newline is suppressed. If the -e option is given, interpretation of the following backslash-escaped characters is enabled. The -E option disables the interpretation of these escape characters, even on systems where they are interpreted by default. The xpg_echo shell option may be used to dynamically determine whether or not echo expands these escape characters by default. echo does not interpret -- to mean the end of options. echo interprets the following escape sequences: \a alert (bell) \b backspace \c suppress trailing newline \e an escape character \f form feed \n new line \r carriage return \t horizontal tab \v vertical tab \\ backslash \0nnn the eight-bit character whose value is the octal value nnn (zero to three octal digits) \nnn the eight-bit character whose value is the octal value nnn (one to three octal digits) \xHH the eight-bit character whose value is the hexadecimal value HH (one or two hex digits) enable [-adnps] [-f filename] [name ...] Enable and disable builtin shell commands. Disabling a builtin allows a disk command which has the same name as a shell builtin to be executed without specifying a full pathname, even though the shell normally searches for builtins before disk commands. If -n is used, each name is disabled; otherwise, names are enabled. For example, to use the test binary found via the PATH instead of the shell builtin version, run ‘‘enable -n test’’. The -f option means to load the new builtin command name from shared object filename, on systems that support dynamic loading. The -d option will delete a builtin previously loaded with -f. If no name arguments are given, or if the -p option is supplied, a list of shell builtins is printed. With no other option arguments, the list consists of all enabled shell builtins. If -n is supplied, only disabled builtins are printed. If -a is supplied, the list printed includes all builtins, with an indication of whether or not each is enabled. If -s is supplied, the output is restricted to the POSIX special builtins. The return value is 0 unless a name is not a shell builtin or there is an error loading a new builtin from a shared object. eval [arg ...] The args are read and concatenated together into a single command. This command is then read and executed by the shell, and its exit status is returned as the value of eval. If there are no args, or only null arguments, eval returns 0. exec [-cl] [-a name] [command [arguments]] If command is specified, it replaces the shell. No new process is created. The arguments become the arguments to command. If the -l option is supplied, the shell places a dash at the beginning of the zeroth arg passed to command. This is what login(1) does. The -c option causes command to be executed with an empty environ- ment. If -a is supplied, the shell passes name as the zeroth argument to the exe- cuted command. If command cannot be executed for some reason, a non-interactive shell exits, unless the shell option execfail is enabled, in which case it returns failure. An interactive shell returns failure if the file cannot be executed. If command is not specified, any redirections take effect in the current shell, and the return status is 0. If there is a redirection error, the return status is 1. exit [n] Cause the shell to exit with a status of n. If n is omitted, the exit status is that of the last command executed. A trap on EXIT is executed before the shell termi- nates. export [-fn] [name[=word]] ... export -p The supplied names are marked for automatic export to the environment of subsequently executed commands. If the -f option is given, the names refer to functions. If no names are given, or if the -p option is supplied, a list of all names that are exported in this shell is printed. The -n option causes the export property to be removed from each name. If a variable name is followed by =word, the value of the variable is set to word. export returns an exit status of 0 unless an invalid option is encountered, one of the names is not a valid shell variable name, or -f is sup- plied with a name that is not a function. fc [-e ename] [-nlr] [first] [last] fc -s [pat=rep] [cmd] Fix Command. In the first form, a range of commands from first to last is selected from the history list. First and last may be specified as a string (to locate the last command beginning with that string) or as a number (an index into the history list, where a negative number is used as an offset from the current command number). If last is not specified it is set to the current command for listing (so that ‘‘fc -l -10’’ prints the last 10 commands) and to first otherwise. If first is not speci- fied it is set to the previous command for editing and -16 for listing. The -n option suppresses the command numbers when listing. The -r option reverses the order of the commands. If the -l option is given, the commands are listed on standard output. Otherwise, the editor given by ename is invoked on a file contain- ing those commands. If ename is not given, the value of the FCEDIT variable is used, and the value of EDITOR if FCEDIT is not set. If neither variable is set, is used. When editing is complete, the edited commands are echoed and executed. In the second form, command is re-executed after each instance of pat is replaced by rep. A useful alias to use with this is ‘‘r="fc -s"’’, so that typing ‘‘r cc’’ runs the last command beginning with ‘‘cc’’ and typing ‘‘r’’ re-executes the last command. If the first form is used, the return value is 0 unless an invalid option is encoun- tered or first or last specify history lines out of range. If the -e option is sup- plied, the return value is the value of the last command executed or failure if an error occurs with the temporary file of commands. If the second form is used, the return status is that of the command re-executed, unless cmd does not specify a valid history line, in which case fc returns failure. fg [jobspec] Resume jobspec in the foreground, and make it the current job. If jobspec is not present, the shell’s notion of the current job is used. The return value is that of the command placed into the foreground, or failure if run when job control is dis- abled or, when run with job control enabled, if jobspec does not specify a valid job or jobspec specifies a job that was started without job control. getopts optstring name [args] getopts is used by shell procedures to parse positional parameters. optstring con- tains the option characters to be recognized; if a character is followed by a colon, the option is expected to have an argument, which should be separated from it by white space. The colon and question mark characters may not be used as option char- acters. Each time it is invoked, getopts places the next option in the shell vari- able name, initializing name if it does not exist, and the index of the next argument to be processed into the variable OPTIND. OPTIND is initialized to 1 each time the shell or a shell script is invoked. When an option requires an argument, getopts places that argument into the variable OPTARG. The shell does not reset OPTIND auto- matically; it must be manually reset between multiple calls to getopts within the same shell invocation if a new set of parameters is to be used. When the end of options is encountered, getopts exits with a return value greater than zero. OPTIND is set to the index of the first non-option argument, and name is set to ?. getopts normally parses the positional parameters, but if more arguments are given in args, getopts parses those instead. getopts can report errors in two ways. If the first character of optstring is a colon, silent error reporting is used. In normal operation diagnostic messages are printed when invalid options or missing option arguments are encountered. If the variable OPTERR is set to 0, no error messages will be displayed, even if the first character of optstring is not a colon. If an invalid option is seen, getopts places ? into name and, if not silent, prints an error message and unsets OPTARG. If getopts is silent, the option character found is placed in OPTARG and no diagnostic message is printed. If a required argument is not found, and getopts is not silent, a question mark (?) is placed in name, OPTARG is unset, and a diagnostic message is printed. If getopts is silent, then a colon (:) is placed in name and OPTARG is set to the option charac- ter found. getopts returns true if an option, specified or unspecified, is found. It returns false if the end of options is encountered or an error occurs. hash [-lr] [-p filename] [-dt] [name] For each name, the full file name of the command is determined by searching the directories in $PATH and remembered. If the -p option is supplied, no path search is performed, and filename is used as the full file name of the command. The -r option causes the shell to forget all remembered locations. The -d option causes the shell to forget the remembered location of each name. If the -t option is supplied, the full pathname to which each name corresponds is printed. If multiple name arguments are supplied with -t, the name is printed before the hashed full pathname. The -l option causes output to be displayed in a format that may be reused as input. If no arguments are given, or if only -l is supplied, information about remembered commands is printed. The return status is true unless a name is not found or an invalid option is supplied. help [-s] [pattern] Display helpful information about builtin commands. If pattern is specified, help gives detailed help on all commands matching pattern; otherwise help for all the builtins and shell control structures is printed. The -s option restricts the infor- mation displayed to a short usage synopsis. The return status is 0 unless no command matches pattern. history [n] history -c history -d offset history -anrw [filename] history -p arg [arg ...] history -s arg [arg ...] With no options, display the command history list with line numbers. Lines listed with a * have been modified. An argument of n lists only the last n lines. If the shell variable HISTTIMEFORMAT is set and not null, it is used as a format string for strftime(3) to display the time stamp associated with each displayed history entry. No intervening blank is printed between the formatted time stamp and the history line. If filename is supplied, it is used as the name of the history file; if not, the value of HISTFILE is used. Options, if supplied, have the following meanings: -c Clear the history list by deleting all the entries. -d offset Delete the history entry at position offset. -a Append the ‘‘new’’ history lines (history lines entered since the beginning of the current bash session) to the history file. -n Read the history lines not already read from the history file into the current history list. These are lines appended to the history file since the begin- ning of the current bash session. -r Read the contents of the history file and use them as the current history. -w Write the current history to the history file, overwriting the history file’s contents. -p Perform history substitution on the following args and display the result on the standard output. Does not store the results in the history list. Each arg must be quoted to disable normal history expansion. -s Store the args in the history list as a single entry. The last command in the history list is removed before the args are added. If the HISTTIMEFORMAT is set, the time stamp information associated with each history entry is written to the history file. The return value is 0 unless an invalid option is encountered, an error occurs while reading or writing the history file, an invalid offset is supplied as an argument to -d, or the history expansion supplied as an argument to -p fails. jobs [-lnprs] [ jobspec ... ] jobs -x command [ args ... ] The first form lists the active jobs. The options have the following meanings: -l List process IDs in addition to the normal information. -p List only the process ID of the job’s process group leader. -n Display information only about jobs that have changed status since the user was last notified of their status. -r Restrict output to running jobs. -s Restrict output to stopped jobs. If jobspec is given, output is restricted to information about that job. The return status is 0 unless an invalid option is encountered or an invalid jobspec is sup- plied. If the -x option is supplied, jobs replaces any jobspec found in command or args with the corresponding process group ID, and executes command passing it args, returning its exit status. kill [-s sigspec | -n signum | -sigspec] [pid | jobspec] ... kill -l [sigspec | exit_status] Send the signal named by sigspec or signum to the processes named by pid or jobspec. sigspec is either a case-insensitive signal name such as SIGKILL (with or without the SIG prefix) or a signal number; signum is a signal number. If sigspec is not present, then SIGTERM is assumed. An argument of -l lists the signal names. If any arguments are supplied when -l is given, the names of the signals corresponding to the arguments are listed, and the return status is 0. The exit_status argument to -l is a number specifying either a signal number or the exit status of a process termi- nated by a signal. kill returns true if at least one signal was successfully sent, or false if an error occurs or an invalid option is encountered. let arg [arg ...] Each arg is an arithmetic expression to be evaluated (see ARITHMETIC EVALUATION). If the last arg evaluates to 0, let returns 1; 0 is returned otherwise. local [option] [name[=value] ...] For each argument, a local variable named name is created, and assigned value. The option can be any of the options accepted by declare. When local is used within a function, it causes the variable name to have a visible scope restricted to that function and its children. With no operands, local writes a list of local variables to the standard output. It is an error to use local when not within a function. The return status is 0 unless local is used outside a function, an invalid name is sup- plied, or name is a readonly variable. logout Exit a login shell. popd [-n] [+n] [-n] Removes entries from the directory stack. With no arguments, removes the top direc- tory from the stack, and performs a cd to the new top directory. Arguments, if sup- plied, have the following meanings: +n Removes the nth entry counting from the left of the list shown by dirs, start- ing with zero. For example: ‘‘popd +0’’ removes the first directory, ‘‘popd +1’’ the second. -n Removes the nth entry counting from the right of the list shown by dirs, starting with zero. For example: ‘‘popd -0’’ removes the last directory, ‘‘popd -1’’ the next to last. -n Suppresses the normal change of directory when removing directories from the stack, so that only the stack is manipulated. If the popd command is successful, a dirs is performed as well, and the return status is 0. popd returns false if an invalid option is encountered, the directory stack is empty, a non-existent directory stack entry is specified, or the directory change fails. printf [-v var] format [arguments] Write the formatted arguments to the standard output under the control of the format. The format is a character string which contains three types of objects: plain charac- ters, which are simply copied to standard output, character escape sequences, which are converted and copied to the standard output, and format specifications, each of which causes printing of the next successive argument. In addition to the standard printf(1) formats, %b causes printf to expand backslash escape sequences in the cor- responding argument (except that \c terminates output, backslashes in \', \", and \? are not removed, and octal escapes beginning with \0 may contain up to four digits), and %q causes printf to output the corresponding argument in a format that can be reused as shell input. The -v option causes the output to be assigned to the variable var rather than being printed to the standard output. The format is reused as necessary to consume all of the arguments. If the format requires more arguments than are supplied, the extra format specifications behave as if a zero value or null string, as appropriate, had been supplied. The return value is zero on success, non-zero on failure. pushd [-n] [dir] pushd [-n] [+n] [-n] Adds a directory to the top of the directory stack, or rotates the stack, making the new top of the stack the current working directory. With no arguments, exchanges the top two directories and returns 0, unless the directory stack is empty. Arguments, if supplied, have the following meanings: +n Rotates the stack so that the nth directory (counting from the left of the list shown by dirs, starting with zero) is at the top. -n Rotates the stack so that the nth directory (counting from the right of the list shown by dirs, starting with zero) is at the top. -n Suppresses the normal change of directory when adding directories to the stack, so that only the stack is manipulated. dir Adds dir to the directory stack at the top, making it the new current working directory. If the pushd command is successful, a dirs is performed as well. If the first form is used, pushd returns 0 unless the cd to dir fails. With the second form, pushd returns 0 unless the directory stack is empty, a non-existent directory stack element is specified, or the directory change to the specified new current directory fails. pwd [-LP] Print the absolute pathname of the current working directory. The pathname printed contains no symbolic links if the -P option is supplied or the -o physical option to the set builtin command is enabled. If the -L option is used, the pathname printed may contain symbolic links. The return status is 0 unless an error occurs while reading the name of the current directory or an invalid option is supplied. read [-ers] [-u fd] [-t timeout] [-a aname] [-p prompt] [-n nchars] [-d delim] [name ...] One line is read from the standard input, or from the file descriptor fd supplied as an argument to the -u option, and the first word is assigned to the first name, the second word to the second name, and so on, with leftover words and their intervening separators assigned to the last name. If there are fewer words read from the input stream than names, the remaining names are assigned empty values. The characters in IFS are used to split the line into words. The backslash character (\) may be used to remove any special meaning for the next character read and for line continuation. Options, if supplied, have the following meanings: -a aname The words are assigned to sequential indices of the array variable aname, starting at 0. aname is unset before any new values are assigned. Other name arguments are ignored. -d delim The first character of delim is used to terminate the input line, rather than newline. -e If the standard input is coming from a terminal, readline (see READLINE above) is used to obtain the line. -n nchars read returns after reading nchars characters rather than waiting for a com- plete line of input. -p prompt Display prompt on standard error, without a trailing newline, before attempt- ing to read any input. The prompt is displayed only if input is coming from a terminal. -r Backslash does not act as an escape character. The backslash is considered to be part of the line. In particular, a backslash-newline pair may not be used as a line continuation. -s Silent mode. If input is coming from a terminal, characters are not echoed. -t timeout Cause read to time out and return failure if a complete line of input is not read within timeout seconds. This option has no effect if read is not reading input from the terminal or a pipe. -u fd Read input from file descriptor fd. If no names are supplied, the line read is assigned to the variable REPLY. The return code is zero, unless end-of-file is encountered, read times out, or an invalid file descriptor is supplied as the argument to -u. readonly [-apf] [name[=word] ...] The given names are marked readonly; the values of these names may not be changed by subsequent assignment. If the -f option is supplied, the functions corresponding to the names are so marked. The -a option restricts the variables to arrays. If no name arguments are given, or if the -p option is supplied, a list of all readonly names is printed. The -p option causes output to be displayed in a format that may be reused as input. If a variable name is followed by =word, the value of the vari- able is set to word. The return status is 0 unless an invalid option is encountered, one of the names is not a valid shell variable name, or -f is supplied with a name that is not a function. return [n] Causes a function to exit with the return value specified by n. If n is omitted, the return status is that of the last command executed in the function body. If used outside a function, but during execution of a script by the . (source) command, it causes the shell to stop executing that script and return either n or the exit status of the last command executed within the script as the exit status of the script. If used outside a function and not during execution of a script by ., the return status is false. Any command associated with the RETURN trap is executed before execution resumes after the function or script. set [--abefhkmnptuvxBCHP] [-o option] [arg ...] Without options, the name and value of each shell variable are displayed in a format that can be reused as input for setting or resetting the currently-set variables. Read-only variables cannot be reset. In posix mode, only shell variables are listed. The output is sorted according to the current locale. When options are specified, they set or unset shell attributes. Any arguments remaining after the options are processed are treated as values for the positional parameters and are assigned, in order, to $1, $2, ... $n. Options, if specified, have the following meanings: -a Automatically mark variables and functions which are modified or created for export to the environment of subsequent commands. -b Report the status of terminated background jobs immediately, rather than before the next primary prompt. This is effective only when job control is enabled. -e Exit immediately if a simple command (see SHELL GRAMMAR above) exits with a non-zero status. The shell does not exit if the command that fails is part of the command list immediately following a while or until keyword, part of the test in an if statement, part of a && or ││ list, or if the command’s return value is being inverted via !. A trap on ERR, if set, is executed before the shell exits. -f Disable pathname expansion. -h Remember the location of commands as they are looked up for execution. This is enabled by default. -k All arguments in the form of assignment statements are placed in the environ- ment for a command, not just those that precede the command name. -m Monitor mode. Job control is enabled. This option is on by default for interactive shells on systems that support it (see JOB CONTROL above). Back- ground processes run in a separate process group and a line containing their exit status is printed upon their completion. -n Read commands but do not execute them. This may be used to check a shell script for syntax errors. This is ignored by interactive shells. -o option-name The option-name can be one of the following: allexport Same as -a. braceexpand Same as -B. emacs Use an emacs-style command line editing interface. This is enabled by default when the shell is interactive, unless the shell is started with the --noediting option. errtrace Same as -E. functrace Same as -T. errexit Same as -e. hashall Same as -h. histexpand Same as -H. history Enable command history, as described above under HISTORY. This option is on by default in interactive shells. ignoreeof The effect is as if the shell command ‘‘IGNOREEOF=10’’ had been exe- cuted (see Shell Variables above). keyword Same as -k. monitor Same as -m. noclobber Same as -C. noexec Same as -n. noglob Same as -f. nolog Currently ignored. notify Same as -b. nounset Same as -u. onecmd Same as -t. physical Same as -P. pipefail If set, the return value of a pipeline is the value of the last (rightmost) command to exit with a non-zero status, or zero if all command
sdk LCS/Telegraphics Wintab* Interface Specification 1.1: 16- and 32-bit API Reference By Rick Poyner Revised February 11, 2012 This specification was developed in response to a perceived need for a standardized programming inter-face to digitizing tablets, three dimensional position sensors, and other pointing devices by a group of lead-ing digitizer manufacturers and applications developers. The availability of drivers that support the features of the specification will simplify the process of developing Windows appli¬cation programs that in-corporate absolute coordinate input, and enhance the acceptance of ad¬vanced pointing de¬vices among users. This specification is intended to be an open standard, and as such the text and information contained herein may be freely used, copied, or distributed without compensation or licensing restrictions. This document is copyright 1991-2012 by LCS/Telegraphics.* Address questions and comments to: LCS/Telegraphics 150 Rogers St. Cambridge, MA 02142 (617)225-7970 (617)225-7969 FAX Compuserve: 76506,1676 Internet: wintab@pointing.com Note: sections marked with the “(1.1)” are new sections added for specification version 1.1. Sec-tions bearing the “(1.1 modified)” notation contain updated information for specification version 1.1. Version 1.1 Update Notation Conventions 1 1. Background Information 1 1.1. Features of Digitizers 1 1.2. The Windows Environment 1 2. Design Goals 2 2.1. User Control 2 2.2. Ease of Programming 2 2.3. Tablet Sharing 3 2.4. Tablet Feature Support 3 3. Design Concepts 3 3.1. Device Conventions 3 3.2. Device Information 4 3.3. Tablet Contexts 4 3.4. Event Packets 4 3.5. Tablet Managers 5 3.6. Extensions 5 3.7. Persistent Binding of Interface Features (1.1) 6 4. Interface Implementations 6 4.1. File and Module Conventions 6 4.2. Feature Support Options 6 5. Function Reference 7 5.1. Basic Functions 7 5.1.1. WTInfo 8 5.1.2. WTOpen 9 5.1.3. WTClose 10 5.1.4. WTPacketsGet 10 5.1.5. WTPacket 11 5.2. Visibility Functions 11 5.2.1. WTEnable 11 5.2.2. WTOverlap 12 5.3. Context Editing Functions 12 5.3.1. WTConfig 12 5.3.2. WTGet 13 5.3.3. WTSet (1.1 modified) 13 5.3.4. WTExtGet 14 5.3.5. WTExtSet 14 5.3.6. WTSave 15 5.3.7. WTRestore 15 5.4. Advanced Packet and Queue Functions 16 5.4.1. WTPacketsPeek 16 5.4.2. WTDataGet 17 5.4.3. WTDataPeek 17 5.4.4. WTQueuePackets (16-bit only) 18 5.4.5. WTQueuePacketsEx 18 5.4.6. WTQueueSizeGet 19 5.4.7. WTQueueSizeSet 19 5.5. Manager Handle Functions 19 5.5.1. WTMgrOpen 19 5.5.2. WTMgrClose 20 5.6. Manager Context Functions 20 5.6.1. WTMgrContextEnum 20 5.6.2. WTMgrContextOwner 21 5.6.3. WTMgrDefContext 22 5.6.4. WTMgrDefContextEx (1.1) 22 5.7. Manager Configuration Functions 23 5.7.1. WTMgrDeviceConfig 23 5.7.2. WTMgrConfigReplace (16-bit only) 24 5.7.3. WTMgrConfigReplaceEx 24 5.8. Manager Packet Hook Functions 25 5.8.1. WTMgrPacketHook (16-bit only) 26 5.8.2. WTMgrPacketHookEx 26 5.8.3. WTMgrPacketUnhook 29 5.8.4. WTMgrPacketHookDefProc (16-bit only) 30 5.8.5. WTMgrPacketHookNext 30 5.9. Manager Preference Data Functions 31 5.9.1. WTMgrExt 31 5.9.2. WTMgrCsrEnable 32 5.9.3. WTMgrCsrButtonMap 32 5.9.4. WTMgrCsrPressureBtnMarks (16-bit only) 33 5.9.5. WTMgrCsrPressureBtnMarksEx 33 5.9.6. WTMgrCsrPressureResponse 34 5.9.7. WTMgrCsrExt 35 6. Message Reference 36 6.1. Event Messages 36 6.1.1. WT_PACKET 36 6.1.2. WT_CSRCHANGE (1.1) 37 6.2. Context Messages 37 6.2.1. WT_CTXOPEN 37 6.2.2. WT_CTXCLOSE 37 6.2.3. WT_CTXUPDATE 38 6.2.4. WT_CTXOVERLAP 38 6.2.5. WT_PROXIMITY 38 6.3. Information Change Messages 39 6.3.1. WT_INFOCHANGE 39 7. Data Reference 39 7.1. Common Data Types (1.1 modified) 39 7.2. Information Data Structures 41 7.2.1. AXIS 41 7.2.2. Information Categories and Indices (1.1 modified) 42 7.3. Context Data Structures 50 7.3.1. LOGCONTEXT (1.1 modified) 50 7.4. Event Data Structures 55 7.4.1. PACKET (1.1 modified) 55 7.4.2. ORIENTATION 57 7.4.3. ROTATION (1.1) 58 Appendix A. Using PKTDEF.H 59 Appendix B. Extension Definitions 60 B.1. Extensions Programming 60 B.2. Out of Bounds Tracking 61 OBT Programming 61 Information Category 61 Turning OBT On and Off 61 B.3. Function Keys 62 FKEYS Programming 62 Information Category 62 B.4. Tilt 62 TILT Programming 63 Information Category 63 B.5. Cursor Mask 63 CSRMASK Programming 64 Information Category 64 B.6. Extended Button Masks 64 XBTNMASK Programming 64 Information Category 65 VERSION 1.1 UPDATE NOTATION CONVENTIONS Sections marked with the “(1.1)” are new sections added for specification version 1.1. Sections bearing the “(1.1 modified)” notation contain updated information for specification version 1.1. The “(1.1)” notation also marks the definitions of new functions, messages, and data structures. The nota-tion “1.1:” marks new text or commentaries explaining new functionality added to existing features. 1 BACKGROUND INFORMATION This document describes a programming interface for using digitizing tablets and other advanced pointing de¬vices with Microsoft Windows Version 3.0 and above. The design presented here is based on the input of numerous professionals from the pointing device manufacturing and Windows soft¬ware development industries. In this document, the words "tablet" and "digitizer" are used interchange¬ably to mean all absolute point¬ing or digitizing devices that can be made to work with this interface. The definition is not lim¬ited to de¬vices that use a physical tablet. In fact, this specification can support de¬vices that combine rela¬tive and absolute pointing as well as purely relative devices. The following sections describe features of tablets and of the Windows environment that helped mo¬tivate the design. 1.1 Features of Digitizers Digitizing tablets present several problems to device interface authors. • Many tablets have a very high report rate. • Many tablets have many configurable features and types of input information. • Tablets often control the system cursor, provide additional digitizing input, and provide template or macro functions. 1.2 The Windows Environment Programming for tablets in the Windows environment presents additional problems. • Multitasking means multiple applications may have to share the tablet. • The tablet must also be able to control the system cursor and/or the pen (in Pen Windows). • The tablet must work with legacy applications, and with applications written to take advan¬tage of tablet services. • The tablet driver must add minimal speed and memory overhead, so as many applications as possible can run as efficiently as possible. • The user should be able to control how applications use the tablet. The user interface must be ef-ficient, consistent, and customizable. 2 DESIGN GOALS While the tablet interface design must address the technical problems stated above, it must also be useful to the programmers who will write tablet programs, and ultimately, to the tablet users. Four design goals will help clarify these needs, and provide some criteria for evaluating the interface speci¬fication. The goals are user control, ease of programming, tablet sharing, and tablet feature support. 2.1 User Control The user should be able to use and control the tablet in as natural and easy a manner as possible. The user's preferences should take precedence over application requests, where possible. Here are questions to ask when thinking about user control as a design goal: • Can the user understand how applications use the tablet? • Is the interface for controlling tablet functions natural and unobtrusive? • Is the user allowed to change things that help to customize the work environment, but pre¬vented from changing things over which applications must have control? 2.2 Ease of Programming Programming is easiest when the amount of knowledge and effort required matches the task at hand. Writing simple programs should require only a few lines of code and a minimal understanding of the en-vironment. On the other hand, more advanced features and functions should be available to those who need them. The interface should accommodate three kinds of programmers: those who wish to write sim-ple tablet programs, programmers who wish to write complex applications that take full ad¬vantage of tab-let capabilities, and programmers who wish to provide tablet device control features. In addition, the inter-face should accommodate programmers in as many different programming lan¬guages, situations, and en-vironments as possible. Questions to ask when thinking about ease of programming include: • How hard is it to learn the interface and write a simple program that uses tablet input? • Can programmers of complex applications control the features they need? • Are more powerful tablet device control features available? • Can the interface be used in different programming environments? • Is the interface logical, consistent, and robust? 2.3 Tablet Sharing In the Windows environment, multiple applications that use the tablet may be running at once. Each ap-plication will require different services. Applications must be able to get the services they need without getting in each others' way. Questions to ask when thinking about tablet sharing include: • Can tablet applications use the tablet features they need, independent of other applications? • Does the interface prevent a rogue application from "hijacking" the tablet, or causing dead¬locks? • Does the sharing architecture promote efficiency? 2.4 Tablet Feature Support The interface gives standard access to as many features as possible, while leaving room for future ex¬ten-sions and vendor-specific customizations. Applications should be able to get the tablet informa¬tion and services they want, just the way they want them. Users should be able to use the tablet to set up an effi-cient, comfortable work environment. Questions to ask when thinking about tablet feature support include: • Does the interface provide the features applications need? Are any commonly available fea¬tures not supported? • Does the interface provide what users need? Is anything missing? • Are future extensions possible and fairly easy? • Are vendor-specific extensions possible? 3 DESIGN CONCEPTS The proposed interface design depends on several fundamental concepts. Devices and cursor types de-scribe physical hardware configurations. The interface publishes read-only information through a single information interface. Applications interact with the interface by setting up tablet contexts and consuming event packets. Applications may assume interface and hardware control functions by be¬coming tablet managers. The interface provides explicit support for future extensions. 3.1 Device Conventions The interface provides access to one or more devices that produce pointing input. Devices sup¬ported by this interface have some common characteristics. The device must define an absolute or relative coordi-nate space in at least two dimensions for which it can return position data. The device must have a point-ing ap¬para¬tus or method (such as a stylus, or a finger touching a touch pad), called the cursor, that de¬fines the current position. The cursor must be able to return at least one bit of additional state (via a but¬ton, touching a digitizing surface, etc.). Devices may have multiple cursor types that have different physical configurations, or that have differ¬ent numbers of buttons, or return auxiliary information, such as pressure information. Cursor types may also describe different optional hardware configurations. The interface defines a standard orientation for reporting device native coordinates. When the user is viewing the device in its normal position, the coordinate origin will be at the lower left of the device. The coordinate system will be right-handed, that is, the positive x axis points from left to right, and the posi¬tive y axis points either upward or away from the user. The z axis, if supported, points either to¬ward the user or upward. For devices that lay flat on a table top, the x-y plane will be horizontal and the z axis will point upward. For devices that are oriented vertically (for example, a touch screen on a conventional dis¬play), the x-y plane will be vertical, and the z axis will point toward the user. 3.2 Device Information Any program can get descriptive information about the tablet via the WTInfo function. The interface specifies certain information that must be available, but allows new implementations to add new types of information. The basic information includes device identifiers, version numbers, and overall ca¬pabilities. The information items are organized by category and index numbers. The combination of a category and index specifies a single information data item, which may be a scalar value, string, structure, or array. Applica¬tions may retrieve single items or whole categories at once. Some categories are multiplexed. A single category code represents the first of a group of identically in-dexed categories, one for each of a set of similar objects. Multiplexed categories in¬clude those for devices and cur¬sor types. One constructs the category number by adding the defined cate¬gory code to a zero-based device or cursor identification number. The information is read-only for normal tablet applications. Some information items may change during the course of a Windows session; tablet applications receive messages notifying them of changes in tablet information. 3.3 Tablet Contexts Tablet contexts play a central role in the interface; they are the objects that applications use to specify their use of the tablet. Con¬texts include not only the physical area of the tablet that the application will use, but also information about the type, con¬tents, and delivery method for tablet events, as well as other information. Tablet contexts are somewhat analo¬gous to display contexts in the GDI interface model; they contain context information about a spe¬cific application's use of the tablet. An application can open more than one context, but most only need one. Applications can customize their contexts, or they can open a context using a default context specification that is always available. The WTInfo function provides access to the default context specification. Opening a context requires a window handle. The window handle becomes the context's owner and will receive any window messages associated with the context. Contexts are remotely similar to screen windows in that they can physically overlap. The tablet inter¬face uses a combination of context overlap order and context attributes to decide which context will process a given event. The topmost context in the overlap order whose input context encompasses the event, and whose event masks select the event, will process the event. (Note that the notion of overlap order is sepa-rate from the notion of the physical z dimension.) Tablet managers (described below) provide a way to modify and overlap contexts. 3.4 Event Packets Tablet contexts generate and report tablet activity via event packets. Applications can control how they receive events, which events they receive, and what information they contain. Applications may receive events either by polling, or via Windows messages. • Polling: Any application that has opened a context can call the WTPacketsGet function to get the next state of the tablet for that context. • Window Messages: Applications that request messages will receive the WT_PACKET mes¬sage (described below), which indicates that something happened in the context and provides a refer-ence to more information. Applications can control which events they receive by using event masks. For example, some appli¬ca¬tions may only need to know when a button is pressed, while others may need to receive an event every time the cursor moves. Tablet context event masks implement this type of control. Applications can control the contents of the event packets they receive. Some tablets can return data that many applications will not need, like button pressure and three dimensional position and orien¬tation in-formation. The context object provides a way of specifying which data items the appli¬cation needs. This allows the driver to improve the efficiency of packet delivery to applications that only need a few items per packet. Packets are stored in context-specific packet queues and retrieved by explicit function calls. The interface provides ways to peek at and get packets, to query the size and contents of the queue, and to re-size the queue. 3.5 Tablet Managers The interface provides functions for tablet management. An application can become a tablet manager by opening a tablet manager handle. This handle allows the manager access to spe¬cial functions. These man-agement functions allow the application to arrange, overlap, and modify tablet contexts. Man¬agers may also perform other functions, such as changing default values used by applica¬tions, chang¬ing ergo¬nomic, preference, and configuration settings, controlling tablet behavior with non-tablet aware applica¬tions, modi¬fy¬ing user dialogs, and recording and playing back tablet packets. Opening a manager handle re¬quires a window handle. The window becomes a manager window and receives window messages about interface and con¬text activity. 3.6 Extensions The interface allows implementations to define additional features called extensions. Extensions can be made available to new applications without the need to modify ex¬isting applications. Extensions are sup-ported through the information categories, through the flexible definition of packets, and through special context and manager functions. Designing an extension involves defining the meaning and behavior of the extension packet and/or prefer-ence data, filling in the information category, defining the extension's interface with the special functions, and possibly defining additional functions to support the extension. Each extension will be assigned a unique tag for identification. Not all implementations will support all extensions. A multiplexed information category contains descriptive data about extensions. Note that applica¬tions must find their extensions by iterating through the categories and matching tags. While tags are fixed across all implementations, category numbers may vary among implementations. 3.7 Persistent Binding of Interface Features (1.1) The interface provides access to many of its features using consecutive numeric indices whose value is not guaranteed from session to session. However, sufficient information is provided to create unique identifi¬ers for devices, cursors, and interface extensions. Devices should be uniquely identified by the contents of their name strings. If multiple identical devices are present, implementation providers should provide unique, persistent id strings to the extent possible. Identical devices that return unique serial numbers are ideal. If supported by the hardware, cursors also may have a physical cursor id that uniquely identifies the cursor in a persistent and stable manner. Interface extensions are uniquely identified by their tag. 4 INTERFACE IMPLEMENTATIONS Implementations of this interface usually support one specific device, a class of similar devices, or a com-mon combination of devices. The following sections discuss guidelines for implementations. 4.1 File and Module Conventions For 16-bit implementations, the interface functions, and any additional vendor- or device-specific func-tions, reside in a dynamic link library with the file name "WINTAB.DLL" and module name "WINTAB"; 32-bit implementations use the file name "WINTAB32.DLL" and module name "WINTAB32." Any other file or module con¬ventions are implementation specific. Implementations may include other library mod-ules or data files as necessary. Installation processes are likewise implementa¬tion-specific. Wintab programs written in the C language require two header files. WINTAB.H contains definitions of all of the functions, constants, and fixed data types. PKTDEF.H contains a parameterized definition of the PACKET data structure, that can be tailored to fit the application. The Wintab Programmer's Kit con¬tains these and other files necessary for Wintab programming, plus several example programs with C-lan¬guage source files. The Wintab Programmer's Kit is available from the author. 4.2 Feature Support Options Some features of the interface are optional and may be left out by some implementations. Support of defined data items other than x, y, and buttons is optional. Many devices only report x, y, and button information. Support of system-cursor contexts is optional. This option relieves implementations of replacing the sys¬tem mouse driver in Windows versions before 3.1. Support of Pen Windows contexts is optional. Not all systems will have the Pen Windows hardware and software necessary. Support of external tablet manager applications is optional, and the number of manager handles is imple-mentation-dependent. However, the manager functions should be present in all implementa¬tions, return¬ing appropriate failure codes if not fully implemented. An implementation may provide context- and hardware-management support internally only, if desired. On the other hand, providing the external man-ager interface may relieve the implementation of a considerable amount of user in¬terface code, and make improvements to the manager interface easier to implement and distribute later. Support of extension data items is optional. Most extensions will be geared to unusual hardware features. 5 FUNCTION REFERENCE All tablet function names have the prefix "WT" and have attributes equivalent to WINAPI. Applica¬tions gain access to the tablet interface functions through a dynamic-link library with standard file and module names, as defined in the previous section. Applications may link to the functions by using the Windows functions LoadLibrary, FreeLibrary, and GetProcAddress, or use an import library. Specific to 32-bit Wintab: The functions WTInfo, WTOpen, WTGet, and WTSet have both ANSI and Unicode versions, using the same ANSI/Unicode porting conventions used in the Win32 API. Five non-portable functions, WTQueuePackets, WTMgrCsrPressureBtnMarks, WTMgrConfigReplace, WTMgrPacketHook, and WTMgrPacketHookDefProc are replaced by new portable functions WTQueuePacketsEx, WTMgrCsrPressureBtnMarksEx, WTMgrConfigReplaceEx, WTMgrPack-etHookEx, WTMgrPacketUnhook, and WTMgrPacketHookNext. WTMgrConfigReplaceEx and WTMgrPacketHookEx have both ANSI and Unicode versions. Table 5.1. Ordinal Function Numbers for Dynamic Linking Ordinal numbers for dynamic linking are defined in the table below. Where two ordinal entries appear, the first entry identifies the 16-bit and 32-bit ANSI versions of the function. The second entry identifies the 32-bit Unicode version. Function Name Ordinal Function Name Ordinal WTInfo 20, 1020 WTMgrOpen 100 WTOpen 21, 1021 WTMgrClose 101 WTClose 22 WTMgrContextEnum 120 WTPacketsGet 23 WTMgrContextOwner 121 WTPacket 24 WTMgrDefContext 122 WTEnable 40 WTMgrDefContextEx (1.1) 206 WTOverlap 41 WTMgrDeviceConfig 140 WTConfig 60 WTMgrConfigReplace 141 WTGet 61, 1061 WTMgrConfigReplaceEx 202, 1202 WTSet 62, 1062 WTMgrPacketHook 160 WTExtGet 63 WTMgrPacketHookEx 203, 1203 WTExtSet 64 WTMgrPacketUnhook 204 WTSave 65 WTMgrPacketHookDefProc 161 WTRestore 66 WTMgrPacketHookNext 205 WTPacketsPeek 80 WTMgrExt 180 WTDataGet 81 WTMgrCsrEnable 181 WTDataPeek 82 WTMgrCsrButtonMap 182 WTQueuePackets 83 WTMgrCsrPressureBtnMarks 183 WTQueuePacketsEx 200 WTMgrCsrPressureBtnMarksEx 201 WTQueueSizeGet 84 WTMgrCsrPressureResponse 184 WTQueueSizeSet 85 WTMgrCsrExt 185 5.1 Basic Functions The functions in the following section will be used by most tablet-aware applications. They include getting interface and device information, opening and closing contexts, and retrieving packets by polling or via Windows messages. 5.1.1 WTInfo Syntax UINT WTInfo(wCategory, nIndex, lpOutput) This function returns global information about the interface in an application-sup-plied buffer. Different types of information are specified by different index argu-ments. Applications use this function to receive information about tablet coordi-nates, physical dimensions, capabilities, and cursor types. Parameter Type/Description wCategory UINT Identifies the category from which information is being re-quested. nIndex UINT Identifies which information is being requested from within the category. lpOutput LPVOID Points to a buffer to hold the requested information. Return Value The return value specifies the size of the returned information in bytes. If the infor-mation is not supported, the function returns zero. If a tablet is not physi¬cally pres-ent, this function always returns zero. Comments Several important categories of information are available through this function. First, the function provides identification information, including specification and software version numbers, and tablet vendor and model information. Sec¬ond, the function provides general capability information, including dimensions, resolutions, optional features, and cursor types. Third, the function provides categories that give defaults for all tablet context attributes. Finally, the func¬tion may provide any other implementation- or vendor-specific information cat¬egories necessary. The information returned by this function is subject to change during a Win¬dows session. Applications cannot change the information returned here, but tablet man-ager applications or hardware changes or errors can. Applications can respond to information changes by fielding the WT_INFOCHANGE message. The parameters of the message indicate which information has changed. If the wCategory argument is zero, the function copies no data to the output buffer, but returns the size in bytes of the buffer necessary to hold the largest complete category. If the nIndex argument is zero, the function returns all of the information entries in the category in a single data structure. If the lpOutput argument is NULL, the function just returns the required buffer size. See Also Category and index definitions in tables 7.3 through 7.9, and the WT_INFOCHANGE message in section 6.3.1. 5.1.2 WTOpen Syntax HCTX WTOpen(hWnd, lpLogCtx, fEnable) This function establishes an active context on the tablet. On successful comple¬tion of this function, the application may begin receiving tablet events via mes¬sages (if they were requested), and may use the handle returned to poll the con¬text, or to per-form other context-related functions. Parameter Type/Description hWnd HWND Identifies the window that owns the tablet context, and receives messages from the context. lpLogCtx LPLOGCONTEXT Points to an application-provided LOGCONTEXT data structure describing the context to be opened. fEnable BOOL Specifies whether the new context will immediately begin processing input data. Return Value The return value identifies the new context. It is NULL if the context is not opened. Comments Opening a new context allows the application to receive tablet input or creates a context that controls the system cursor or Pen Windows pen. The owning window (and all manager windows) will immediately receive a WT_CTXOPEN message when the context has been opened. If the fEnable argument is zero, the context will be created, but will not process input. The context can be enabled using the WTEnable function. If tablet event messages were requested in the context specification, the owning window will receive them. The application can control the message numbers used the lcMsgBase field of the LOGCONTEXT structure. The window that owns the new context will receive context and information change messages even if event messages were not requested. It is not necessary to handle these in many cases, but some applications may wish to do so. The newly opened tablet context will be placed on the top of the context overlap or-der. Invalid or out-of-range attribute values in the logical context structure will ei¬ther be validated, or cause the open to fail, depending on the attributes involved. Upon a successful return from the function, the context specification pointed to by lpLogCtx will contain the validated values. See Also The WTEnable function in section 5.2.1, the LOGCONTEXT data structure in section 7.3.1, and the context and infor¬mation change messages in sections 6.2 and 6.3. 5.1.3 WTClose Syntax BOOL WTClose(hCtx) This function closes and destroys the tablet context object. Parameter Type/Description hCtx HCTX Identifies the context to be closed. Return Value The function returns a non-zero value if the context was valid and was destroyed. Otherwise, it returns zero. Comments After a call to this function, the passed handle is no longer valid. The owning win¬dow (and all manager windows) will receive a WT_CTXCLOSE message when the context has been closed. See Also The WTOpen function in section 5.1.2. 5.1.4 WTPacketsGet Syntax int WTPacketsGet(hCtx, cMaxPkts, lpPkts) This function copies the next cMaxPkts events from the packet queue of context hCtx to the passed lpPkts buffer and removes them from the queue. Parameter Type/Description hCtx HCTX Identifies the context whose packets are being returned. cMaxPkts int Specifies the maximum number of packets to return. lpPkts LPVOID Points to a buffer to receive the event packets. Return Value The return value is the number of packets copied in the buffer. Comments The exact structure of the returned packet is determined by the packet infor¬mation that was requested when the context was opened. The buffer pointed to by lpPkts must be at least cMaxPkts * sizeof(PACKET) bytes long to prevent overflow. Applications may flush packets from the queue by calling this function with a NULL lpPkt argument. See Also The WTPacketsPeek function in section 5.4.1, and the descriptions of the LOGCONTEXT (section 7.3.1) and PACKET (section 7.4.1) data structures. 5.1.5 WTPacket Syntax BOOL WTPacket(hCtx, wSerial, lpPkt) This function fills in the passed lpPkt buffer with the context event packet having the specified serial number. The returned packet and any older packets are removed from the context's internal queue. Parameter Type/Description hCtx HCTX Identifies the context whose packets are being returned. wSerial UINT Serial number of the tablet event to return. lpPkt LPVOID Points to a buffer to receive the event packet. Return Value The return value is non-zero if the specified packet was found and returned. It is zero if the specified packet was not found in the queue. Comments The exact structure of the returned packet is determined by the packet infor¬mation that was requested when the context was opened. The buffer pointed to by lpPkts must be at least sizeof(PACKET) bytes long to pre-vent overflow. Applications may flush packets from the queue by calling this function with a NULL lpPkts argument. See Also The descriptions of the LOGCONTEXT (section 7.3.1) and PACKET (section 7.4.1) data structures. 5.2 Visibility Functions The functions in this section allow applications to control contexts' visibility, whether or not they are pro-cessing input, and their overlap order. 5.2.1 WTEnable Syntax BOOL WTEnable(hCtx, fEnable) This function enables or disables a tablet context, temporarily turning on or off the processing of packets. Parameter Type/Description hCtx HCTX Identifies the context to be enabled or disabled. fEnable BOOL Specifies enabling if non-zero, disabling if zero. Return Value The function returns a non-zero value if the enable or disable request was satis¬fied, zero otherwise. Comments Calls to this function to enable an already enabled context, or to disable an al¬ready disabled context will return a non-zero value, but otherwise do nothing. The context’s packet queue is flushed on disable. Applications can determine whether a context is currently enabled by using the WTGet function and examining the lcStatus field of the LOGCONTEXT struc¬ture. See Also The WTGet function in section 5.3.2, and the LOGCONTEXT structure in sec¬tion 7.3.1. 5.2.2 WTOverlap Syntax BOOL WTOverlap(hCtx, fToTop) This function sends a tablet context to the top or bottom of the order of over¬lapping tablet contexts. Parameter Type/Description hCtx HCTX Identifies the context to move within the overlap order. fToTop BOOL Specifies sending the context to the top of the overlap or-der if non-zero, or to the bottom if zero. Return Value The function returns non-zero if successful, zero otherwise. Comments Tablet contexts' input areas are allowed to overlap. The tablet interface main¬tains an overlap order that helps determine which context will process a given event. The topmost context in the overlap order whose input context encom¬passes the event, and whose event masks select the event will process the event. This function is useful for getting access to input events when the application's con-text is overlapped by other contexts. The function will fail only if the context argument is invalid. 5.3 Context Editing Functions This group of functions allows applications to edit, save, and restore contexts. 5.3.1 WTConfig Syntax BOOL WTConfig(hCtx, hWnd) This function prompts the user for changes to the passed context via a dialog box. Parameter Type/Description hCtx HCTX Identifies the context that the user will modify via the dialog box. hWnd HWND Identifies the window that will be the parent window of the dialog box. Return Value The function returns a non-zero value if the tablet context was changed, zero oth-erwise. Comments Tablet applications can use this function to let the user choose context attributes that the application doesn't need to control. Applications can control the editing of con¬text attributes via the lcLocks logical context structure member. Applications should consider providing access to this function through a menu item or command. See Also The LOGCONTEXT structure in section 7.3.1 and the context lock values in table 7.13. 5.3.2 WTGet Syntax BOOL WTGet(hCtx, lpLogCtx) This function fills the passed structure with the current context attributes for the passed handle. Parameter Type/Description hCtx HCTX Identifies the context whose attributes are to be copied. lpLogCtx LPLOGCONTEXT Points to a LOGCONTEXT data structure to which the context attributes are to be copied. Return Value The function returns a non-zero value if the data is retrieved successfully. Oth¬er¬wise, it returns zero. See Also The LOGCONTEXT structure in section 7.3.1. 5.3.3 WTSet (1.1 modified) Syntax BOOL WTSet(hCtx, lpLogCtx) This function allows some of the context's attributes to be changed on the fly. Parameter Type/Description hCtx HCTX Identifies the context whose attributes are being changed. lpLogCtx LPLOGCONTEXT Points to a LOGCONTEXT data structure containing the new context attributes. Return Value The function returns a non-zero value if the context was changed to match the passed context specification; it returns zero if any of the requested changes could not be made. Comments If this function is called by the task or process that owns the context, any context attribute may be changed. Otherwise, the function can change attributes that do not affect the format or meaning of the context's event packets and that were not speci-fied as locked when the context was opened. Context lock values can only be changed by the context’s owner. 1.1: If the hCtx argument is a default context handle returned from WTMgrDef-Context or WTMgrDefContextEx, and the lpLogCtx argument is WTP_LPDEFAULT, the default context will be reset to its initial factory default values. See Also The LOGCONTEXT structure in section 7.3.1 and the context lock values in table 7.13. 5.3.4 WTExtGet Syntax BOOL WTExtGet(hCtx, wExt, lpData) This function retrieves any context-specific data for an extension. Parameter Type/Description hCtx HCTX Identifies the context whose extension attributes are being retrieved. wExt UINT Identifies the extension tag for which context-specific data is being retrieved. lpData LPVOID Points to a buffer to hold the retrieved data. Return Value The function returns a non-zero value if the data is retrieved successfully. Oth¬er¬wise, it returns zero. See Also The extension definitions in Appendix B. 5.3.5 WTExtSet Syntax BOOL WTExtSet(hCtx, wExt, lpData) This function sets any context-specific data for an extension. Parameter Type/Description hCtx HCTX Identifies the context whose extension attributes are being modified. wExt UINT Identifies the extension tag for which context-specific data is being modified. lpData LPVOID Points to the new data. Return Value The function returns a non-zero value if the data is modified successfully. Oth¬er¬wise, it returns zero. Comments Extensions may forbid their context-specific data to be changed during the life¬time of a context. For such extensions, calls to this function would always fail. Extensions may also limit context data editing to the task of the owning window, as with the context locks. See Also The extension definitions in Appendix B, the LOGCONTEXT data structure in section 7.3.1 and the context locking values in table 7.13. 5.3.6 WTSave Syntax BOOL WTSave(hCtx, lpSaveInfo) This function fills the passed buffer with binary save information that can be used to restore the equivalent context in a subsequent Windows session. Parameter Type/Description hCtx HCTX Identifies the context that is being saved. lpSaveInfo LPVOID Points to a buffer to contain the save information. Return Value The function returns non-zero if the save information is successfully retrieved. Oth-erwise, it returns zero. Comments The size of the save information buffer can be determined by calling the WTInfo function with category WTI_INTERFACE, index IFC_CTXSAVESIZE. The save information is returned in a private binary data format. Applications should store the information unmodified and recreate the context by passing the save information to the WTRestore function. Using WTSave and WTRestore allows applications to easily save and restore ex-tension data bound to contexts. See Also The WTRestore function in section 5.3.7. 5.3.7 WTRestore Syntax HCTX WTRestore(hWnd, lpSaveInfo, fEnable) This function creates a tablet context from save information returned from the WTSave function. Parameter Type/Description hWnd HWND Identifies the window that owns the tablet context, and receives messages from the context. lpSaveInfo LPVOID Points to a buffer containing save information. fEnable BOOL Specifies whether the new context will immediately begin processing input data. Return Value The function returns a valid context handle if successful. If a context equivalent to the save information could not be created, the function returns NULL. Comments The save information is in a private binary data format. Applications should only pass save information retrieved by the WTSave function. This function is much like WTOpen, except that it uses save in¬formation for input instead of a logical context. In particular, it will generate a WT_CTXOPEN mes¬sage for the new context. See Also The WTOpen function in section 5.1.2, the WTSave function in section 5.3.6, and the WT_CTXOPEN message in section 6.2.1. 5.4 Advanced Packet and Queue Functions These functions provide advanced packet retrieval and queue manipulation. The packet retrieval functions require the application to provide a packet output buffer. To prevent overflow, the buffer must be large enough to hold the requested number of packets from the specified context. It is up to the caller to deter¬mine the packet size (by interrogating the context, if necessary), and to allocate a large enough buffer. Ap¬plications may flush packets from the queue by passing a NULL buffer pointer. 5.4.1 WTPacketsPeek Syntax int WTPacketsPeek(hCtx, cMaxPkts, lpPkts) This function copies the next cMaxPkts events from the packet queue of context hCtx to the passed lpPkts buffer without removing them from the queue. Parameter Type/Description hCtx HCTX Identifies the context whose packets are being read. cMaxPkts int Specifies the maximum number of packets to return. lpPkts LPVOID Points to a buffer to receive the event packets. Return Value The return value is the number of packets copied in the buffer. Comments The buffer pointed to by lpPkts must be at least cMaxPkts * sizeof(PACKET) bytes long to prevent overflow. See Also the WTPacketsGet function in section 5.1.4. 5.4.2 WTDataGet Syntax int WTDataGet(hCtx, wBegin, wEnd, cMaxPkts, lpPkts, lpNPkts) This function copies all packets with serial numbers between wBegin and wEnd in-clusive from the context's queue to the passed buffer and removes them from the queue. Parameter Type/Description hCtx HCTX Identifies the context whose packets are being returned. wBegin UINT Serial number of the oldest tablet event to return. wEnd UINT Serial number of the newest tablet event to return. cMaxPkts int Specifies the maximum number of packets to return. lpPkts LPVOID Points to a buffer to receive the event packets. lpNPkts LPINT Points to an integer to receive the number of packets ac-tually copied. Return Value The return value is the total number of packets found in the queue between wBegin and wEnd. Comments The buffer pointed to by lpPkts must be at least cMaxPkts * sizeof(PACKET) bytes long to prevent overflow. See Also The WTDataPeek function in section 5.4.3, and the WTQueuePacketsEx function in section 5.4.5. 5.4.3 WTDataPeek Syntax int WTDataPeek(hCtx, wBegin, wEnd, cMaxPkts, lpPkts, lpNPkts) This function copies all packets with serial numbers between wBegin and wEnd in-clusive, from the context's queue to the passed buffer without removing them from the queue. Parameter Type/Description hCtx HCTX Identifies the context whose packets are being read. wBegin UINT Serial number of the oldest tablet event to return. wEnd UINT Serial number of the newest tablet event to return. cMaxPkts int Specifies the maximum number of packets to return. lpPkts LPVOID Points to a buffer to receive the event packets. lpNPkts LPINT Points to an integer to receive the number of packets ac-tually copied. Return Value The return value is the total number of packets found in the queue between wBegin and wEnd. Comments The buffer pointed to by lpPkts must be at least cMaxPkts * sizeof(PACKET) bytes long to prevent overflow. See Also The WTDataGet function in section 5.4.2, and the WTQueuePacketsEx function in section 5.4.5. 5.4.4 WTQueuePackets (16-bit only) Syntax DWORD WTQueuePackets(hCtx) This function returns the serial numbers of the oldest and newest packets cur¬rently in the queue. Parameter Type/Description hCtx HCTX Identifies the context whose queue is being queried. Return Value The high word of the return value contains the newest packet's serial number; the low word contains the oldest. Comments This function is non-portable and is superseded by WTQueuePacketsEx. See Also The WTQueuePacketsEx function in section 5.4.5. 5.4.5 WTQueuePacketsEx Syntax BOOL WTQueuePacketsEx(hCtx, lpOld, lpNew) This function returns the serial numbers of the oldest and newest packets cur¬rently in the queue. Parameter Type/Description hCtx HCTX Identifies the context whose queue is being queried. lpOld UINT FAR * Points to an unsigned integer to receive the oldest packet's serial number. lpNew UINT FAR * Points to an unsigned integer to receive the newest packet's serial number. Return Value The function returns non-zero if successful, zero otherwise. 5.4.6 WTQueueSizeGet Syntax int WTQueueSizeGet(hCtx) This function returns the number of packets the context's queue can hold. Parameter Type/Description hCtx HCTX Identifies the context whose queue size is being re¬turned. Return Value The return value is the number of packet the queue can hold. See Also The WTQueueSizeSet function in section 5.4.7. 5.4.7 WTQueueSizeSet Syntax BOOL WTQueueSizeSet(hCtx, nPkts) This function attempts to change the context's queue size to the value specified in nPkts. Parameter Type/Description hCtx HCTX Identifies the context whose queue size is being set. nPkts int Specifies the requested queue size. Return Value The return value is non-zero if the queue size was successfully changed. Other¬wise, it is zero. Comments If the return value is zero, the context has no queue because the function deletes the original queue before attempting to create a new one. The application must continue calling the function with a smaller queue size until the function returns a non-zero value. See Also The WTQueueSizeGet function in section 5.4.6. 5.5 Manager Handle Functions The functions described in this and subsequent sections are for use by tablet manager applications. The functions of this section create and destroy manager handles. These handles allow the interface code to limit the degree of simultaneous access to the powerful manager functions. Also, opening a manager handle lets the application receive messages about tablet interface activity. 5.5.1 WTMgrOpen Syntax HMGR WTMgrOpen(hWnd, wMsgBase) This function opens a tablet manager handle for use by tablet manager and con¬figu-ration applications. This handle is required to call the tablet management func¬tions. Parameter Type/Description hWnd HWND Identifies the window which owns the manager handle. wMsgBase UINT Specifies the message base number to use when notifying the manager window. Return Value The function returns a manager handle if successful, otherwise it returns NULL. Comments While the manager handle is open, the manager window will receive context mes-sages from all tablet contexts. Manager windows also receive information change messages. The number of manager handles available is interface implementation-dependent, and can be determined by calling the WTInfo function with category WTI_INTERFACE and index IFC_NMANAGERS. See Also The WTInfo function in section 5.1.1, the WTMgrClose function in section 5.5.2, the description of message base numbers in section 6 and the context and in¬for¬ma-tion change messages in sections 6.2 and 6.3. 5.5.2 WTMgrClose Syntax BOOL WTMgrClose(hMgr) This function closes a tablet manager handle. After this function returns, the passed manager handle is no longer valid. Parameter Type/Description hMgr HMGR Identifies the manager handle to close. Return Value The function returns non-zero if the handle was valid; otherwise, it returns zero. 5.6 Manager Context Functions These functions provide access to all open contexts and their owners, and allow changing context de¬faults. Only tablet managers are allowed to manipulate tablet contexts belonging to other applica¬tions. 5.6.1 WTMgrContextEnum Syntax BOOL WTMgrContextEnum(hMgr, lpEnumFunc, lParam) This function enumerates all tablet context handles by passing the handle of each context, in turn, to the callback function pointed to by the lpEnumFunc pa¬rameter. The enumeration terminates when the callback function returns zero. Parameter Type/Description hMgr HMGR Is the valid manager handle that identifies the caller as a manager application. lpEnumFunc WTENUMPROC Is the procedure-instance address of the call-back function. See the following "Comments" section for details. lParam LPARAM Specifies the value to be passed to the callback func-tion for the application's use. Return Value The return value specifies the outcome of the function. It is non-zero if all con¬texts have been enumerated. Otherwise, it is zero. Comments The address passed as the lpEnumFunc parameter must be created by using the MakeProcInstance function. The callback function must have attributes equivalent to WINAPI. The callback function must have the following form: Callback BOOL WINAPI EnumFunc(hCtx, lParam) HCTX hCtx; LPARAM lParam; EnumFunc is a place holder for the application-supplied function name. The actual name must be exported by including it in an EXPORTS statement in the applica-tion's module-definition file. Parameter Description hCtx Identifies the context. lParam Specifies the 32-bit argument of the WTMgrContextEnum func-tion. Return Value The function must return a non-zero value to continue enumeration, or zero to stop it. 5.6.2 WTMgrContextOwner Syntax HWND WTMgrContextOwner(hMgr, hCtx) This function returns the handle of the window that owns a tablet context. Parameter Type/Description hMgr HMGR Is the valid manager handle that identifies the caller as a manager application. hCtx HCTX Identifies the context whose owner is to be returned. Return Value The function returns the context owner's window handle if the passed arguments are valid. Otherwise, it returns NULL. Comments This function allows the tablet manager to coordinate tablet context manage¬ment with the states of the context-owning windows. 5.6.3 WTMgrDefContext Syntax HCTX WTMgrDefContext(hMgr, fSystem) This function retrieves a context handle that allows setting values for the current default digit¬izing or system context. Parameter Type/Description hMgr HMGR Is the valid manager handle that identifies the caller as a manager application. fSystem BOOL Specifies retrieval of the default system context if non-zero, or the default digitizing context if zero. Return Value The return value is the context handle for the specified default context, or NULL if the arguments were invalid. Comments The default digitizing context is the context whose attributes are returned by the WTInfo function WTI_DEFCONTEXT category. The default system context is the context whose attributes are returned by the WTInfo function WTI_DEFSYSCTX category. Editing operations on the retrieved handles will fail if the new default contexts do not meet certain requirements. The digitizing context must include at least buttons, x, and y in its packet data, and must return absolute coordinates. 1.1: Editing the current default digitizing context will also update the device-spe¬cific default context for the device listed in the lcDevice field of the default con¬text’s LOGCONTEXT structure. See Also The WTInfo function in section 5.1.1 the WTMgrDefContextEx function in section 5.6.4, and the category and index definitions in tables 7.3 through 7.9. 5.6.4 WTMgrDefContextEx (1.1) Syntax HCTX WTMgrDefContextEx(hMgr, wDevice, fSystem) This function retrieves a context handle that allows setting values for the default digit¬izing or system context for a specified device. Parameter Type/Description hMgr HMGR Is the valid manager handle that identifies the caller as a manager application. wDevice UINT Specifies the device for which a default context handle will be returned. fSystem BOOL Specifies retrieval of the default system context if non-zero, or the default digitizing context if zero. Return Value The return value is the context handle for the specified default context, or NULL if the arguments were invalid. Comments The default digitizing contexts are contexts whose attributes are returned by the WTInfo function WTI_DDCTXS multiplexed category. The default system con-texts are contexts whose attributes are returned by the WTInfo function WTI_DSCTXS multiplexed category. Editing operations on the retrieved handles will fail if the new default contexts do not meet certain requirements. The digitizing context must include at least buttons, x, and y in its packet data, and must return absolute coordinates. See Also The WTInfo function in section 5.1.1, and the category and index definitions in tables 7.3 through 7.9. 5.7 Manager Configuration Functions These functions allow manager applications to replace the default context configuration dialog and to display a configuration dialog for each hardware device. 5.7.1 WTMgrDeviceConfig Syntax UINT WTMgrDeviceConfig(hMgr, wDevice, hWnd) This function displays a custom modal tablet-hardware configuration dialog box, if one is supported. Parameter Type/Description hMgr HMGR Is the valid manager handle that identifies the caller as a manager application. wDevice UINT Identifies the device that the user will configure via the dialog box. hWnd HWND Identifies the window that will be the parent window of the dialog box. If this argument is NULL, the function will return non-zero if the dialog is supported, or zero otherwise. Return Value The return value is zero if the dialog box is not supported. Otherwise, it is one of the following non-zero values. Value Meaning WTDC_CANCEL The user canceled the dialog without making any changes. WTDC_OK The user made and confirmed changes. WTDC_RESTART The user made and confirmed changes that require a sys-tem restart in order to take effect. The calling program should query the user to determine whether to restart. Restart Windows using the function call ExitWin-dows(EW_RESTARTWINDOWS, 0);. 5.7.2 WTMgrConfigReplace (16-bit only) Syntax BOOL WTMgrConfigReplace(hMgr, fInstall, lpConfigProc) This function allows a manager application to replace the default behavior of the WTConfig function. Parameter Type/Description hMgr HMGR Is the valid manager handle that identifies the caller as a manager application. fInstall BOOL Specifies installation of a replacement function if non-zero, or removal of the current replacement if zero. lpConfigProc WTCONFIGPROC Is the procedure-instance address of the new configuration function. This argument is ignored during a re¬moval request. Return Value The function return non-zero if the installation or removal request succeeded. Oth-erwise, it returns zero. Comments This function is non-portable and is superseded by WTMgrConfigReplaceEx. See Also The WTConfig function in section 5.3.1, and for a description of the configuration callback function, see the WTMgrConfigReplaceEx function in section 5.7.3. 5.7.3 WTMgrConfigReplaceEx Syntax BOOL WTMgrConfigReplaceEx(hMgr, fInstall, lpszModule, lpszCfgProc) This function allows a manager application to replace the default behavior of the WTConfig function. Parameter Type/Description hMgr HMGR Is the valid manager handle that identifies the caller as a manager application. fInstall BOOL Specifies installation of a replacement function if non-zero, or removal of the current replacement if zero. lpszModule LPCTSTR Points to a null-terminated string that names a DLL module containing the new configuration function. This argument is ignored during a re¬moval request lpszCfgProc LPCSTR Points to a null-terminated string that names the new configuration function. This argument is ignored during a re¬moval request. Return Value The function return non-zero if the installation or removal request succeeded. Oth-erwise, it returns zero. Comments The configuration callback function must have attributes equivalent to WINAPI. Only one callback function may be installed at a time. The manager handle passed with the removal request must match the handle passed with the corre¬sponding in-stallation request. Tablet managers that install a replacement context configuration function must re-move it before exiting. Callback BOOL WINAPI ConfigProc(hWnd, hCtx) HWND hWnd; HCTX hCtx; ConfigProc is a place holder for the application-supplied function name. The actual name must be exported by including it in an EXPORTS statement in the applica-tion's module-definition file. Parameter Description hWnd Identifies the window that will be the parent window of the dialog box. hCtx Identifies the context that the user will modify via the dialog box. Return Value The function returns a non-zero value if the tablet context was changed, zero oth-erwise. Comments The configuration function and resulting dialog box should analyze the lcLocks context structure member, and only allow editing of unlocked context attributes. See Also The WTConfig function in section 5.3.1. 5.8 Manager Packet Hook Functions These functions allow manager applications to monitor, record, and play back sequences of tablet packets. 5.8.1 WTMgrPacketHook (16-bit only) Syntax WTHOOKPROC WTMgrPacketHook(hMgr, fInstall, nType, lpFunc) This function installs or removes a packet hook function. Parameter Type/Description hMgr HMGR Is the valid manager handle that identifies the caller as a manager application. fInstall BOOL Specifies installation of a hook function if non-zero, or removal of the specified hook if zero. nType int Specifies the packet hook to be installed. It can be any one of the following values: Value Meaning WTH_PLAYBACK Installs a packet playback hook. WTH_RECORD Installs a packet record hook. lpFunc WTHOOKPROC Is the procedure-instance address of the hook function to be installed. See the "Comments" section under WTMgrPacketHookEx for details. Return Value When installing a hook, the return value points to the procedure-instance ad¬dress of the previously installed hook (if any). It is NULL if there is no previous hook; it is negative one if the hook cannot be installed. The application or library that calls this func¬tion should save this return value in the library's data segment. The fourth argument of the WTPacketHookDefProc function points to the location in memory where the library saves this return value. When removing a hook, the return value is the passed lpFunc if successful, NULL otherwise. Comments This function is non-portable and is superseded by WTMgrPacketHookEx and WTMgrPacketUnhook. See Also the WTMgrPacketHookEx function in section 5.8.2, and the WTMgrPacketUn-hook function in section 5.8.3. 5.8.2 WTMgrPacketHookEx Syntax HWTHOOK WTMgrPacketHookEx(hMgr, nType, lpszModule, lpszHookProc) This function installs a packet hook function. Parameter Type/Description hMgr HMGR Is the valid manager handle that identifies the caller as a manager application. nType int Specifies the packet hook to be installed. It can be any one of the following values: Value Meaning WTH_PLAYBACK Installs a packet playback hook. WTH_RECORD Installs a packet record hook. lpszModule LPCTSTR Points to a null-terminated string that names a DLL module containing the new hook function. See the following "Comments" section for details. lpszHookProc LPCSTR Points to a null-terminated string that names the new hook function. See the following "Comments" section for details. Return Value If the function succeeds, the return value is the handle of the installed hook func-tion. Otherwise, the return value is NULL. Comments Packet hooks are a shared resource. Installing a hook affects all applications using the interface. All Wintab hook functions must be exported functions residing in a DLL module. The following section describes how to support the individual hook functions. WTH_PLAYBACK Wintab calls the WTH_PLAYBACK hook whenever a request for an event packet is made. The function is intended to be used to supply a previously recorded event packet for a compatible context. The hook function must have attributes equivalent to WINAPI. The filter function must have the following form: Hook Function LRESULT WINAPI HookFunc(nCode, wParam, lParam); int nCode; WPARAM wParam; LPARAM lParam; HookFunc is a place holder for the library-supplied function name. The actual name must be exported by including it in an EXPORTS statement in the library's mod¬ule-definition file. Parameter Description nCode Specifies whether the hook function should process the mes¬sage or call the WTMgrPacketHookDefProc (if installed by WTMgrPacketHook)or WTMgrPacketHookNext (if installed by WTMgrPacketHookEx) function. If the nCode parame¬ter is less than zero, the hook function should pass the message to the appropriate function without further process¬ing. wParam Specifies the context handle whose event is being requested. lParam Points to the packet being processed by the hook function. Comments The WTH_PLAYBACK function should copy an event packet to the buffer pointed to by the lParam pa¬rameter. The packet must have been previously recorded by us-ing the WTH_RECORD hook. It should not modify the packet. The return value should be the amount of time (in milliseconds) Wintab should wait before pro¬cess¬ing the mes¬sage. This time can be computed by calculation the difference between the time stamps of the current and previous packets. If the function returns zero, the message is processed immediately. Once it returns control to Wintab, the packet continues to be processed. If the nCode parameter is WTHC_SKIP, the hook func-tion should prepare to return the next recorded event message on its next call. The packet pointed to by lParam will have the same structure as packets re¬trieved from the context normally. Wintab will validate the following packet items to en¬sure consistency: context handle, time stamp, and serial number. The remaining fields will be valid if the context used for playback is equivalent to the context from which the events were recorded. The WTH_PLAYBACK hook will not be called to notify it of the display or re¬moval of system modal dialog boxes. It is expected that applications playing back packets will also be playing back window event messages using Windows' own hook functions. While the WTH_PLAYBACK function is in effect, Wintab ignores all hardware in-put. WTH_RECORD The interface calls the WTH_RECORD hook whenever it processes a packet from a context event queue. The hook can be used to record the packet for later playback. The hook function must have attributes equivalent to WINAPI. The hook function must have the following form: Hook Function LRESULT WINAPI HookFunc(nCode, wParam, lParam); int nCode; WPARAM wParam; LPARAM lParam; HookFunc is a place holder for the library-supplied function name. The actual name must be exported by including it in an EXPORTS statement in the library's mod¬ule-definition file. Parameter Description nCode Specifies whether the hook function should process the mes¬sage or call the WTMgrPacketHookDefProc (if installed by WTMgrPacketHook)or WTMgrPacketHookNext (if installed by WTMgrPacketHookEx) function. If the nCode parame¬ter is less than zero, the hook function should pass the message to the appropriate function without further process¬ing. wParam Specifies the context handle whose event is being processed. lParam Points to the packet being processed by the hook function. Comments The WTH_RECORD function should save a copy of the packet for later play¬back. It should not modify the packet. Once it returns control to Wintab, the message con-tinues to be processed. The filter function does not require a return value. The packet pointed to by lParam will have the same structure as packets re¬trieved from the context normally. The WTH_RECORD hook will not be called to notify it of the display or re¬moval of system modal dialog boxes. It is expected that applications recording packets will also be recording window event messages using Windows' own hook functions. 5.8.3 WTMgrPacketUnhook Syntax BOOL WTMgrPacketUnhook(hHook) This function removes a hook function installed by the WTMgrPacketHookEx function. Parameter Type/Description hHook HWTHOOK Identifies the hook function to be removed. Return Value The function returns a non-zero value if successful, zero otherwise. See Also The WTMgrPacketHookEx function in section 5.8.2, and the WTMgrPack-etHookNext function in section 5.8.5. 5.8.4 WTMgrPacketHookDefProc (16-bit only) Syntax LRESULT WTMgrPacketHookDefProc(nCode, wParam, lParam, lplpFunc) This function calls the next function in a chain of packet hook functions. A packet hook function is a function that processes packets before they are re¬trieved from a context's queue. When applications define more than one hook function by using the WTMgrPacketHook function, Wintab places func¬tions of the same type in a chain. Parameter Type/Description nCode int Specifies a code used by the hook function to determine how to process the message. wParam WPARAM Specifies the word parameter of the message that the hook function is processing. lParam LPARAM Specifies the long parameter of the message that the hook function is processing. lplpFunc WTHOOKPROC FAR * Points to a memory location that con-tains the WTHOOKPROC returned by the WTMgrPacketHook function. Wintab changes the value at this location after an appli-cation unhooks the hook using the WTMgrPacketHook function. Return Value The return value specifies a value that is directly related to the nCode parameter. Comments This function is non-portable and is superseded by the WTMgrPacketHookNext function. See Also The WTMgrPacketHookNext function in section 5.8.5. 5.8.5 WTMgrPacketHookNext Syntax LRESULT WTMgrPacketHookNext(hHook, nCode, wParam, lParam) This function passes the hook information to the next hook function in the current hook chain. Parameter Type/Description hHook HWTHOOK Identifies the current hook. nCode int Specifies the hook code passed to the current hook function. wParam WPARAM Specifies the wParam value

21,887

社区成员

发帖
与我相关
我的任务
社区描述
从PHP安装配置,PHP入门,PHP基础到PHP应用
社区管理员
  • 基础编程社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧