Windows下实现FIFO(先进先出的管道)功能

wdy9927 2010-07-20 11:51:39
在linux下使用mkfifo创建的文件属于fifo,两个进程对这个fifo操作,一个进程写,一个进程读。
读进程会将刚才写进程写入的东西读出来,而写进程在没有读进程不能往fifo写入,这样就保证了这个fifo文件不会增大。


在windows下如何实现这样的功能?

有人说用socket,但这样不就得在本地建一个server一个client?端口也是个麻烦,在程序中写死,一旦在本地端口被占用,怎么办??

...全文
1195 13 打赏 收藏 转发到动态 举报
写回复
用AI写文章
13 条回复
切换为时间正序
请发表友善的回复…
发表回复
ghlpj 2011-11-19
  • 打赏
  • 举报
回复
比本机的SOCKET如何?
wdy9927 2010-08-24
  • 打赏
  • 举报
回复
项目耽搁了,决定用pipe试试。

liyinlei 2010-07-22
  • 打赏
  • 举报
回复
管道 的通讯速率还是很快的,可以达到 几百M/S
liyinlei 2010-07-20
  • 打赏
  • 举报
回复
可以通过 内存映射文件 来实现内存共享 CreateFileMapping MapViewOfFile
一边只写,一边只读。

写完给另一个进程一个事件信号,通知它可以读了, 读的进程同样也可以通过event可以通知写的进程。 使用有名Event就可以了。
Eleven 2010-07-20
  • 打赏
  • 举报
回复
再说了,即使用两个进程去做,进程之间通讯的方式也很多啊,不局限于上面说的那两个
Eleven 2010-07-20
  • 打赏
  • 举报
回复
在linux下使用mkfifo创建的文件属于fifo,两个进程对这个fifo操作,一个进程写,一个进程读。
读进程会将刚才写进程写入的东西读出来,而写进程在没有读进程不能往fifo写入,这样就保证了这个fifo文件不会增大。
--------------------------------------------
你为什么不在同一个进程的两个线程中去做读和写的操作呢?为什么要放到两个进程中去做呢?
wdy9927 2010-07-20
  • 打赏
  • 举报
回复
[Quote=引用 3 楼 liyinlei 的回复:]

可以用管道 Pipe, 或是用消息队列MSMQ
[/Quote]
是音视频数据,数据量非常大,恐怕不行吧,并且是2个进程。



[Quote=引用 4 楼 visualeleven 的回复:]

在服务上的socket通讯端口一般都是规定好的,不会随意修改的
[/Quote]
2个进程都在本地,所以端口可以指定,就怕在本地被占用。
Eleven 2010-07-20
  • 打赏
  • 举报
回复
在服务上的socket通讯端口一般都是规定好的,不会随意修改的
liyinlei 2010-07-20
  • 打赏
  • 举报
回复
可以用管道 Pipe, 或是用消息队列MSMQ
wdy9927 2010-07-20
  • 打赏
  • 举报
回复
可是,我的client端不知道被分配的端口是什么。

两个进程,没法通知。

Eleven 2010-07-20
  • 打赏
  • 举报
回复
端口你可以写addr.sin_port = 0就可以了,socket会选择一个未被占用的端口来是使用
liyinlei 2010-07-20
  • 打赏
  • 举报
回复
要做缓存。 这些是如何通讯的技术, 怎么保证读写是自己来做逻辑。

UDP和 内存共享都是可以保证通讯大数据量的。
wdy9927 2010-07-20
  • 打赏
  • 举报
回复
[Quote=引用 6 楼 visualeleven 的回复:]

在linux下使用mkfifo创建的文件属于fifo,两个进程对这个fifo操作,一个进程写,一个进程读。
读进程会将刚才写进程写入的东西读出来,而写进程在没有读进程不能往fifo写入,这样就保证了这个fifo文件不会增大。
--------------------------------------------
你为什么不在同一个进程的两个线程中去做读和写的操作呢?为什么要放到两个进程中……
[/Quote]
是两个独立的程序
实际上一个程序是音视频采集,另一个是播放器。
不想让音视频采集的程序与播放器有任何的联系,因为播放器是可能换的。



[Quote=引用 8 楼 liyinlei 的回复:]

可以通过 内存映射文件 来实现内存共享 CreateFileMapping MapViewOfFile
一边只写,一边只读。

写完给另一个进程一个事件信号,通知它可以读了, 读的进程同样也可以通过event可以通知写的进程。 使用有名Event就可以了。
[/Quote]
音视频数据量非常大,并且在不断的写,恐怕不行。在读的时候,又写进来了。

三、实验内容与要求 1、熟悉windows的编程接口,使用系统调用编程实现将参数1对应文件1.txt和参数2对应文件2.txt的内容合并到参数3对应文件zong.txt中(上传文件名为学号后5位ex0701.c)。 2、使用windows提供的命令将文件1.txt和文件2.txt的内容合并到文件total.txt中 (请将实现的操作命令写入下题批处理文件的第一行)。 3、主管助理小张经常接收公司员工发来的文件,开始为了节省时间,小张将下载的文件都保存在文件夹xiazai中(文件名如图1所示,下载后直接解压即可),这样不便于后期的统计和分类管理,现在领导要求必须为所有员工(90人)每人单独建立一个文件夹(以员工工号命名10201、10202......10290),然后将他们提交的文件分别剪切到各自对应的文件夹中(如图2所示)。于是小张开始为7名员工建立文件夹,再一个一个的去做……同学们想想有没有一种方法能快速完成所要求的操作呢? 请熟悉windows的命令接口,使用windows提供的常用命令copy、md、del等编写一个批处理文件(上传文件名为学号后5位ex0703.bat),实现所要求的功能: 1、启动linux系统或通过windows telnet到linux。 2、用huas用户名和密码123456登入系统中。 3、打开一终端窗口(在linux桌面上单击右键,选择从终端打开)。然后在其中输入以下命令实验。 4、熟悉常用操作命令. 5、编辑如下源代码(实验教材P86 1.进程的创建)并保存 二、实验目的 (1)加深对进程概念的理解,明确进程和程序的区别。 (2)分析进程竞争资源现象,学习解决进程互斥的方法。 (3了解Linux系统中进程通信的基本原理。 三、实验内容与要求 (1)任务一:编写一段程序,使其实现进程的软中断通信。 要求:使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按DEL键);当捕捉到中断信号后,父进程用系统调用Kill()向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child Processll is Killed by Parent! Child Processl2 is Killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止 Parent Process is Killed! (2)任务二:在上面的程序中增加语句signal (SIGNAL, SIG-IGN)和signal (SIGQUIT, SIG-IGN),观察执行结果,并分析原因。 (3)任务三:进程的管道通信 编制一段程序,实现进程的管道通信。 使用系统调用pipe()建立一条管道线;两个子进程P1和P2分别向管道中写一句话: Child 1 is sending a message! Child 2 is sending a message! 而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。 要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。 二、实验目的 自行编制模拟程序,通过形象化的状态显示,加深理解进程的概念、进程之间的状态转换及其所带来的PCB内容 、组织的变化,理解进程与其PCB间的一一对应关系。 三、实验内容与要求 1)设计并实现一个模拟进程状态转换及其相应PCB内容、组织结构变化的程序。 2)独立编写、调试程序。进程的数目、进程的状态模型(三状态、五状态、七状态或其它)以及PCB的组织形式可自行选择。 3)合理设计与进程PCB相对应的数据结构。PCB的内容要涵盖进程的基本信息、控制信息、资源需求及现场信息。 4)设计出可视性较好的界面,应能反映出进程状态的变化引起的对应PCB内容、组织结构的变化。 二、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 三、实验内容与要求 通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命中率的影响。页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。 计算并输出下属算法在不同内存容量下的命中率。  先进先出的算法(FIFO); 最近最少使用算法(LRU) 二、实验目的 死锁会引起计算机工作僵死,因此操作系统中必须防止。本实验的目的在于使用高级语言编写和调试一个系统动态分配资源的简单模拟程序,了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生,以加深对课堂上所讲授的知识的理解。 三、实验内容与要求 设计有n个进程共享m个系统资源的系统,进程可动态的申请和释放资源,系统按各进程的申请动态的分配资源。 系统能显示各个进程申请和释放资源,以及系统动态分配资源的过程,便于用户观察和分析。 四、算法描述(含数据结构定义)或流程图 (一) 数据结构 1. 可利用资源向量Available ,它是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源的数目,其初始值是系统中所配置的该类全部可用资源数目。其数值随该类资源的分配和回收而动态地改变。如果Available(j)=k,标是系统中现有Rj类资源k个。 2. 最大需求矩阵Max,这是一个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max(i,j)=k,表示进程i需要Rj类资源的最大数目为k。 3. 分配矩阵Allocation,这是一个n×m的矩阵,它定义了系统中的每类资源当前一分配到每一个进程的资源数。如果Allocation(i,j)=k,表示进程i当前已经分到Rj类资源的数目为k。Allocation i表示进程i的分配向量,有矩阵Allocation的第i行构成。 4. 需求矩阵Need,这是一个n×m的矩阵,用以表示每个进程还需要的各类资源的数目。如果Need(i,j)=k,表示进程i还需要Rj类资源k个,才能完成其任务。Need i表示进程i的需求向量,由矩阵Need的第i行构成。 上述三个矩阵间存在关系:Need(i,j)=Max(i,j)-Allocation(i,j)。 (二) 银行家算法 Request i 是进程Pi 的请求向量。Request i (j)=k表示进程Pi请求分配Rj类资源k个。当Pi发出资源请求后,系统按下述步骤进行检查: 1. 如果Request i ≤Need,则转向步骤2;否则,认为出错,因为它所请求的资源数已超过它当前的最大需求量。 2. 如果Request i ≤Available,则转向步骤3;否则,表示系统中尚无足够的资源满足Pi的申请,Pi必须等待。 3. 系统试探性地把资源分配给进程Pi,并修改下面数据结构中的数值: 二、实验目的 磁盘是高速、大容量、旋转型、可直接存取的存储设备。它作为计算机系统的辅助存储器,担负着繁重的输入输出工作,在现代计算机系统中往往同时会有若干个要求访问磁盘的输入输出要求。系统可采用一种策略,尽可能按最佳次序执行访问磁盘的请求。由于磁盘访问时间主要受寻道时间T的影响,为此需要采用合适的寻道算法,以降低寻道时间。本实验要求模拟设计一个磁盘调度程序,观察调度程序的动态运行过程。通过实验来理解和掌握磁盘调度的职能。 三、实验内容与要求 分别模拟如下磁盘调度算法,对磁盘进行移臂操作:  先来先服务算法  最短寻道优先算法 1. 假设磁盘只有一个盘面,并且磁盘是可移动头磁盘。 2. 磁盘是可供多个进程共享的存储设备,但一个磁盘每个时刻只能为一个进程服务。当有进程在访问某个磁盘时,其它想访问该磁盘的进程必须等待,直到磁盘一次工作结束。当有多个进程提出输入输出请求而处于等待状态时,可用磁盘调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。为此设置“驱动调度”进程。 3. 由于磁盘与处理器是并行工作的,所以当磁盘在为一个进程服务时,占有处理器的其它进程可以提出使用磁盘(这里我们只要求访问磁道),即动态申请访问磁道,为此设置“接受请求”进程。 4. 为了模拟以上两个进程的执行,可以考虑使用随机数来确定二者的允许顺序,参考程序流程图。 5. “接受请求”进程建立一张“进程请求I/O”表,指出等待访问磁盘的进程要求访问的磁道,表的格式如下: 进程名 要求访问的磁道号 6. 磁盘调度的功能是查“请求I/O”表,当有等待访问的进程时,按磁盘调度算法从中选择一个等待访问的进程,按其指定的要求访问磁道。流程图中的“初始化”工作包括:初始化“请求I/O”表,设置当前移臂方向;当前磁道号。并且假设程序运行前“请求I/O”表中已有若干进程(4~8个)申请访问相应磁道。
1、图书管理系统 以UNIX系统文件部分系统调用为基础设计一个简易的图书管理系统。要求实现:图书的录入、查询、借阅、清理、统计等功能、还要实现对每天的借阅情况进行统计并打印出统计报表,操作界面要尽量完善。图书资料信息必须保存在文件中。 2、信号通信与进程控制 (l)进程的创建:编写一段程序,使用系统调用fork()创建两个或多个子进程。当此程序运行时,在系统中有一个父进程和其余为子进程在活动。 (2)进程的控制:在程序中使用系统调用lockf()来给每一个进程加锁,实现进程之间的互斥。 (3)进程通信:①软中断通信;②在程序中使用实例signal(SIGINT,SIG_IGN)和signal(SIGQUIT,SIG_IGN)进行通信操作,观察执行结果,并分析原因。 (4)软中断的捕获与重定义。首先定义一个服务函数function(),然后利用signal(sig,function)系统调用来实现中断的捕获与改道。 (5)使用操作系统保留给用户的信号SIGUSR1和SIGUSR2进行通信。 (6)扩展程序,使之成为信号或事件驱动的应用程序。 3、管道通信 利用UNIX系统提供的管道机制实现进程间的通信。 (1)管道通信。利用pipe()和lockf()系统调用,编写程序,实现同族进程间的通信。使用系统调用pipe()建立一条管道线;创建子进程P1、P2、…。子进程Pi分别向管道各写信息,而父进程则从管道中读出来自于各子进程的信息,实现进程家族间无名管道通讯。 扩展之,使之成为客户/服务器模式,并完成一定的任务(自己定义)。 (2)命名管道通信:利用mkfifo(name,mode)或mknod(name,mode,0)创建一个命名管道,然后利用它和文件部分系统调用实现不同进程间的通信。 改造之,使之成为客户/服务器模式,并完成一定的任务(自己定义)。 4、进程间通信(IPC):消息机制 (1)消息的创建、发送和接收 使用系统调用msgget(),msgsnd(),msgget(),及msgctl()编制一长度为1K的消息发送和接收的程序。 1)为了便于操作和观察结果,用一个程序作为“引子”,先后fork()两个子进程,SERVER和CLIENT,进行通信。SERVER和CLIENT也可分别为2个各自独立的程序。 2)SERVER端建立一个Key为175的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER。SERVER每接收到一个消息后显示一句“(server)received”。 3)CLIENT端使用key为175的消息队列,先后发送类型从10到1的消息,然后退出。最后的一个消息,即是SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client)sent”。 4)父进程在SERVER和CLIENT均退出后结束。 (2)功能扩展:在sever端创建一个服务函数,从而实现C/S通讯 要求SERVER每接收到一次数据后不仅仅显示“(server)received”,而是做一些其它事情,比如读取或查询某个文件,或者执行一个shell命令等。此功能可由设计者自己定义。 在此基础上可以扩展客户端,比如设计一个菜单界面,接收不同的选项,并发送到服务器端,请求对方提供服务。 5、进程间通信(IPC):共享内存机制 (1) 共享存储区的创建,附接和断接 使用系统调用shmget(),shmat(),msgdt(),shmctl(),编制一长度为1K的消息发送和接收的程序。 1)为了便于操作和观察结果,用一个程序作为“引子”,先后fork()两个子进程,SERVER和CLIENT,进行通信。SERVER和CLIENT也可分别为2个各自独立的程序。 2)SERVER端建立一个Key为375的共享区,并将第一个字节置为-1,作为数据空的标志,等待其他进程发来的消息。当该字节的值发生变化时,表示收到了信息,并进行处理。然后再次把它的值设为-1。如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER。SERVER每接收到一次数据后显示“(server)received”。 3)CLIENT端建立一个Key为375的共享区,当共享取得第一个字节为-1时,SERVER端空闲,可发送请求。CLIENT随即填入9到0。期间等待Server端的再次空闲。进行完这些操作后,CLIENT退出。CLIENT每发送一次数据后显示“(client)sent”。 4)父进程在SERVER和CLIENT均退出后结束。 (2)功能扩展:在sever端创建一个服务函数,从而形成C/S通讯模式 要求SERVER每接收到一次数据后不仅仅显示“(server)received”,而是做一些其它事情,比如读取或查询某个文件等。此功能可由设计者自己定义。 在此基础上可以扩展客户端,比如设计一个菜单界面,接收不同的选项,并发送到服务器端,请求对方提供服务。 6、文件加密存储 利用文件系统的系统调用编程对文件的内容进行加、解密。 要求程序从环境的命令行携带4个参数。第一个是文件名,第二个是操作方式,第三个是密钥,第四个是加密钥循环使用长度。其中后两个参数是可以忽略,但对忽略的情况要提供缺省值。 要求最后实现对文件的加密转储,或通过改道的办法进行转储。对于已加密的文件可以进行解密显示或解密后转储。形成加密或解密文件后要删除原来的文件。 建议加密过程使用按字符进行异或的方式处理,也可以是仿射加密方式,比如把所有的字符做一个平移变换:A-A+C(A为任意字母表中的字母,C为常数,为了防止越界或溢出,可以改造其为A-(A+C)MOD 256),这里要提醒的是,要注意逆变换。 建议,设计者也提供自己的加密方式。 7、存储管理 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。本设计的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。要求: (1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: ①50%的指令是顺序执行的;②25%的指令是均匀分布在前地址部分;③25%的指令是均匀分布在后地址部分。 具体的实施方法是:①在[0,319]的指令地址之间随机选取一起点m;②顺序执行一条指令,即执行地址为m+l的指令;③在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’;④顺序执行一条指令,其地址为m’+1;⑤在后地址[m’+2,319]中随机选取一条指令并执行;⑥重复上述步骤①~⑤,直到执行320次指令。 (2)将指令序列变换成为页地址流。设:①页面大小为1K;②用户内存容量为4页到32页;③用户虚存容量为32K。 在用户虚存中,按每页存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为: 第0条~第9条指令为第0页(对应虚存地址为[0,9]); 第10条~第19条指令为第1页(对应虚存地址为[10,19]); … … … 第310条~第319条指令为第31页(对应虚存地址为[310,319])。 按以上方式,用户指令可组成32页。 (3)计算并输出下述各种算法在不同内存容量下的命中率(要为以下各种算法定义数据结构)。 ①先进先出的算法(FIFO); ②最近最少使用算法(LRU); ③最近最不经常使用算法(NUR/NRU/CLOCK)。 命中率=1-页面失效次数/页地址流长度 在本设计中,页地址流长度为320,页面失效次数为每次访问相应指令时,该指令所对应的页不在内存的次数。 (4)关于随机数产生办法,Linux/UNIX系统提供函数srand()和rand(),分别进行初始化和产生随机数。例如:srand()语句可初始化一个随机数: a[0]=10*rand()/32767*319+1, a[1]=10*rand()/32767*a[0]; … … … 语句可用来产生a[0]、a[1]、…中的随机数。 8、shell程序模拟设计 shell是UNIX系统的命令解释程序。Shell的基本功能是:命令解释执行、shell编程、系统环境设置、文件名替换、I/O重定向、连通管道建立。试按照shell程序的基本功能,利用UNIX系统提供的进程控制的系统调用,设计一个程序来模拟shell功能。要求至少要做到: 1)从终端键盘接收命令,若是合法,则执行之; 2)设置一条内部命令,比如print,用于显示被执行命令的返回状态和它自己的参数; 3)实现shell命令替换。 9、Windows文件系统分析 在Linux系统下,使用与文件相关的系统调用实现对物理设备文件的读写,参照Linux系统源代码,对不同介质上的FAT格式文件系统进行分析。要求在Linux环境下设计出C语言程序,实现以下功能: 1)分析DOS/Windows系统引导记录DBR(DOS Boot Record)和引导机制; 2)通过DBR中的BPB(BIOS Parameter Block)信息分析,构建相关信息的数据结构,比较FAT16、FAT32和VFAT等文件系统的区别与联系。 3)至少要实现对给出第一FAT入口文件的只读访问。 4)建议根据文件名读取文件。 10、UNIX/Linux文件系统分析 在Linux系统下,使用与文件相关的系统调用实现对物理设备文件的读写,参照Linux系统源代码以及Grub系统的源代码,对不同介质上的FAT格式文件系统进行分析。要求在Linux环境下设计出C语言程序,实现以下功能: 1)分析UNIX SysV/Linux系统引导记录的作用; 2)分析UNIX SysV/Linux的超级块及其结构,并建立相关数据结构,通过编程实现UNIX SysV/Linux文件系统内各部分的定位。 3)至少要实现对给定i节点文件的只读访问。 4)建议根据文件名读取文件。

16,471

社区成员

发帖
与我相关
我的任务
社区描述
VC/MFC相关问题讨论
社区管理员
  • 基础类社区
  • Web++
  • encoderlee
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告

        VC/MFC社区版块或许是CSDN最“古老”的版块了,记忆之中,与CSDN的年龄几乎差不多。随着时间的推移,MFC技术渐渐的偏离了开发主流,若干年之后的今天,当我们面对着微软的这个经典之笔,内心充满着敬意,那些曾经的记忆,可以说代表着二十年前曾经的辉煌……
        向经典致敬,或许是老一代程序员内心里面难以释怀的感受。互联网大行其道的今天,我们期待着MFC技术能够恢复其曾经的辉煌,或许这个期待会永远成为一种“梦想”,或许一切皆有可能……
        我们希望这个版块可以很好的适配Web时代,期待更好的互联网技术能够使得MFC技术框架得以重现活力,……

试试用AI创作助手写篇文章吧