请教:CUDA程序出现错误nvcc fatal: Could not open input file [问题点数:50分,结帖人shl6894]

一键查看最优答案

确认一键查看最优答案?
本功能为VIP专享,开通VIP获取答案速率将提升10倍哦!
Bbs1
本版专家分:0
结帖率 100%
Bbs5
本版专家分:2962
cuda 8.0 安装 nvcc -v错误
小白求教,电脑显卡 NVS5400M 安装cuda8.0后,配置好环境变量,在CMD中运行<em>nvcc</em> -v 结果如下: <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> <em>fatal</em> : No <em>input</em> <em>file</em>s specified; use option --help for more information 请问如何解决?
nvcc fatal : A single input file is required for a non-link phase when an outputfile is specified
参考:https://www.jianshu.com/p/1dc40d2b78c8<em>nvcc</em> <em>fatal</em> : A single <em>input</em> <em>file</em> is required for a non-link phase when an output<em>file</em> is specified具体的警告和报错是这样的:CMake Warning (dev) in ad-census_generated_main.c...
nvcc warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be remov
1、问题: 执行: $ make all -j8 <em>出现</em>如下提示: <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to supp...
matconvnet 编译错误 : nvcc fatal '-DNEDBUG': expected a number
matconvnet 编译<em>错误</em> 按方法Win10安装MatConvnet和Window环境MatConvNet安装编译cpu 版本matconvnet 通过,但gpu版本报错,如下 <em>错误</em>信息为 <em>nvcc</em> <em>fatal</em> : ‘-DNEDBUG’: expected a number 网上并示找到相关<em>错误</em>信息,虽然它说 参数’DNDEBUG’需要一个数。只在vl_compilenn.m 341行找到参...
A single input file is required for a non-link phase when an outputfile is specified
A single <em>input</em> <em>file</em> is required for a non-link phase when an output<em>file</em> is specified这里面多了一个 /<em>nvcc</em> -std=c++11 -c -o psroi_pooling_op.cu.o psroi_pooling_op_gpu.cu.cc -I D:\ProgramData\Miniconda3\envs\py...
解决nvcc找不到的问题(Ubuntu16.04 CUDA 8.0)
最近在linux上安装了<em>CUDA</em> 8.0,但是在安装pycuda时却提示找不到<em>nvcc</em>命令。 在terminal中输入<em>nvcc</em>,也是提示找不到command。但是可以确定的是,<em>CUDA</em>8.0,以及nvidia-cuda-toolkit已经从官方网站下载并正确安装。 于是网上找了教程,说是需要在terminal中输入sudo apt-get install nvidia-cuda-toolkit
Caffe-GPU编译问题:nvcc fatal : Unsupported gpu architecture 'compute_20'
解决方法:将build_win.cmd中的<em>CUDA</em>_ARCH_NAME=Auto改成<em>CUDA</em>_ARCH_NAME=Kepler然后<em>出现</em>新的报错,说.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\include\boost-1_61\boost\config\compiler\<em>nvcc</em>.hpp里的22行C1017<em>错误</em>,找到这个文...
nvcc fatal : redefinition of argument 'std'
如题,近日在cmake编译一个依赖Dlib的<em>程序</em>时报错<em>nvcc</em> <em>fatal</em> : redefinition of argument 'std' 检索发现一个解释的比较靠谱的回答,简单总结如下: 主要原因: <em>CUDA</em>_NVCC_FLAGS的编译参数中重复<em>出现</em>-std=c++11 解决办法: 找到dlib-19.x/dlib/CMakeLists.txt文件中list(APPEND <em>CUDA</em>_NVCC...
cuda8.0使用nvcc编译程序出现warning:The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated的解决办法
初学<em>CUDA</em>,使用的NVIDIA显卡是Tesla K80, 安装的是cuda8.0 写了一个简单的测试<em>程序</em>,使用<em>nvcc</em>编译,指令如下: <em>nvcc</em> cudaPrintDeviceInfo.cu -o cudaPrintDeviceInfo 本以为会很顺利地生成执行文件。但还是<em>出现</em>了warning: <em>nvcc</em> warning : The 'compute_20', 'sm_20', and '
nvcc fatal : A single input file is required for a non-link phase when an output file is specified
正在执行自定义生成步骤 <em>nvcc</em> <em>fatal</em> : A single <em>input</em> <em>file</em> is required for a non-link phase when an output <em>file</em> is
Matlab通过mex调用CUDA的方法
最近有使用Matlab通过mex调用<em>CUDA</em>加速视频处理的需求,于是折腾了一下,网上的说法可谓千奇百怪众说纷纭,却没有能用的。经过六个多小时的反复搜索和尝试,本人终于成功编译运动了了matlab的mex<em>CUDA</em>例程:mexGPUExample.cu。1.软件环境这个过程涉及三个环境:Visual Studio、Cuda Toolkit和Matlab。其中Cuda依赖Visual Studio、Mat
ould not set up the env for vs using 'C:/Program Files (x86)/../vcvars32.bat
抱歉,因为题目长度的问题,所以只能进行缩写了。 在笔者进行PCL环境编译的时候,发现报错:<em>nvcc</em> <em>fatal</em>   : <em>Could</em> not set up the environment for Microsoft Visual Studio using 'C:/Program Files (x86)/Microsoft Visual Studio 10.0/VC/bin/../../VC/bin
CUDA NVCC 安装指南
<em>CUDA</em>2.3 X32 + Windows XP 32bit + Visual Studio 2005 + Visual assist安装指南 1. 安装<em>CUDA</em> Driver,toolkit,SDK
vi- mean:nvcc fatal : redefinition of argument 'std'
(  set (<em>CUDA</em>_NVCC_FLAGS &quot;${<em>CUDA</em>_NVCC_FLAGS} ......................................................  )从CMakeList.txt中删了就好了。
windows+python3.5+anaconda编译(安装)text-detection-ctpn项目心得
此项目用于中文OCR,项目地址https://github.com/eragonruan/text-detection-ctpn。该项目基于linux平台,采用python2.7,因此在windows下想要玩转有无数大坑。setuprequirements: tensorflow1.3, cython0.24, <em>open</em>cv-python, easydict,(recommend to insta...
CUDA 安装失败 卡在65%处报错,提示不能创建chrome_elf.dll
<em>出现</em>这个问题,应该是系统的问题,换一个系统版本安装吧
在py-faster-rcnn/lib下make报错 EnvironmentError: The CUDA lib64 path could not be located in /usr/lib64
报错: Traceback (most recent call last): File "setup.py", line 59, in <em>CUDA</em> = locate_cuda() File "setup.py", line 56, in locate_cuda raise EnvironmentError('The <em>CUDA</em> %s path could not be
关于nvcc fatal : Value 'sm_20' is not defined for option 'gpu-architecture'的问题
关于<em>nvcc</em> <em>fatal</em> : Value ‘sm_20’ is not defined for option ‘gpu-architecture’的问题先说明配置Ubuntu16.04 + <em>CUDA</em>9.0,GeForce 820M我是在运行<em>CUDA</em>代码的过程中遇到的这个问题,采用<em>nvcc</em>编译时报错<em>nvcc</em> <em>fatal</em> : Value ‘sm_20’ is not defined for option
chrome 缺少chrome_elf.dll
电脑又一次莫名其妙的<em>出现</em>这个问题,上次怎么解决的又忘了,有去百度浪费了不少时间,这次就来做个笔记吧 网上说下载 chrome_elf.dll文件复制到下面的目录中,不过我是直接把chrome安装目录里面的 chrome_elf.dll文件拷过去的 看到文献说不同系统复制到不同的文件夹名录中,我的系统是64的,但是我要复制到System32中才可以,不知道是不是因为chrome是32位的 32...
基于CUDA的Theano GPU加速环境配置 GPU没有反应。。。求解答。。
spyder下面的theano运行不能连接gpu,一直是cpu,不知哪里<em>出现</em>问题,求高手解答。。。。 测试用例: from theano import function, config, shared
解决类似nvcc warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated....等问题
编译GPU-caffe时会<em>出现</em><em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning)类似的问题,这是由
nvcc fatal :redefinition of argument "compiler-binder"
在centos 6.4 的64位系统下,装了cuda 5.5 版本,安装完成之后显示 dirver ,toolkit,什么的都安装了。环境变量也添加了 在cmake 之后,点make的时候,显示出错了
CUDA编译出错,nvcc fatal : Unknown option 'fpreprocessed'
cmake_minimum_required(VERSION 2.8) PROJECT(FIRST_<em>CUDA</em>) find_package(<em>CUDA</em> REQUIRED) find_package(OpenCV 3.0 REQUIRED) set(<em>CUDA</em>_NVCC_FLAGS -arch=compute_60;-code=sm_61;-G;-g) include_directories($...
CUDA nvcc -v 错误
<em>CUDA</em> 测试 版本  使用命令 <em>nvcc</em> -v <em>出现</em><em>错误</em> 此时需要 使用命令 <em>nvcc</em> --version
linux下theano/tensorflow安装cuda支持gpu
本人在安装过程中碰到很多问题,一一记录下来 1.theano运行gpu,测试代码如下 vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config
完美解决cuda安装 could not find compatible graphics hardware问题
为安装tensorflow-gpu,真是踩了很多坑。我的笔记本安装cuda10.0没问题,但是tensorflow-gpu怎么也安不上,放弃。改安装cuda9.0但是显示找不到图像硬盘,遂youtube翻到解决方案。 设备管理器–显示适配器–详细信息–硬件id中找到硬件id,保存到一个txt文件中备用。 <em>出现</em>cuda安装问题的页面不要关,最小化。找到cuda/display.driver文...
nvcc fatal : Unsupported gpu architecture 'compute_11'
使用VS编译OpenCV编译源代码时候,对Cmake生成的工程文件编译,会<em>出现</em> <em>nvcc</em> <em>fatal</em> : Unsupported gpu architecture 'compute_11' 问题。原因是<em>CUDA</em>7.5不支持较为古老的显卡版本,因此1.1,2.0,2.1,之类的显卡选项是多余的。
chrome 缺少chrome_elf.dll文件下载
chrome 打开提示缺少chrome_elf.dll文件 需重装(然并卵),所以上传一个以备不测 相关下载链接://download.csdn.net/download/weixin_4110057
NVCC - host compiler targets unsupported OS
Using <em>CUDA</em> with Visual Studio 2017   I'm trying to install <em>CUDA</em>, but I get a message saying &quot;No supported version of visual studio was found&quot;. I think that this is because I am using Visual Studio 2...
Win10 X64安装CUDA后使用nvcc -V报错
Win10 X64,处理器i5-7200,GPU:NVIDIA GF930MX <em>CUDA</em>版本:cuda_10.0.130_411.31_win10.exe 参考网上教程,https://blog.cs
MatConvNet解读:pool_gpu.cu
文件位置:matconvnet-1.0-beta20\matlab\src\bits\impl\pooling_gpu.cu这里摘抄了一小段,这段代码主要是完成pooling层的反向计算,其实pooling层的反向计算就是直接把残差映射到最大值的那个位置,下面是实现E:\code\20160820_matconvnet\matconvnet-1.0-beta20\matlab\src\bits\i
chrome 缺少chrome_elf.dll文件
chrome 打开提示缺少chrome_elf.dll文件 需重装(然并卵),所以上传一个以备不测
no input file specified 解决方法
apache No <em>input</em> <em>file</em>specified,今天是我们配置apache RewriteRule时<em>出现</em>这种问题,解决办法很简单如下 打开.htaccess 在RewriteRule 后面的index.php教程后面添加一个“?” 完整代码如下 .htaccess RewriteEngine on RewriteCond $1 !^(index.php|images...
Caffe-GPU编译问题:nvcc fatal : Unsupported gpu architecture 'compute_20'
环境: Ubuntu 16.04  OpenCV 3.3 Cuda 9.0 编译<em>出现</em>问题 NVCC src/caffe/layers/bnll_layer.cu <em>nvcc</em> <em>fatal</em> : Unsupported gpu architecture 'compute_20' Make<em>file</em>:594: recipe for target '.build_release/cuda/
【代码问题】MatConvNet+VS2017编译找不到cl.exe错误
用vl_compilenn做普通的CPU编译报错: 'cl.exe' 不是内部或外部命令,也不是可运行的<em>程序</em> 或批处理文件。 <em>错误</em>使用 vl_compilenn&gt;check_clpath (line 656)Unable to find cl.exe 环境:Win10+VS2017+Matlab2017b+MatConvNet1.25 很明显是找不到cl.exe的位置 将...
【问题解决】__nvcc fatal : The version ('10.0') of the host compiler ('Apple clang') is not supported__
简直太太太激动了! 本来在mac上安装GPU版的pytorch,然后在安装CUBA时报出了这个<em>错误</em>: <em>nvcc</em> <em>fatal</em> : The version (‘10.0’) of the host compiler (‘Apple clang’) is not supported 然而非常致命的是我的mac版本是10.14 Mojave, 本来博客主给的解决方法是 (1)下载Command L...
cannot open input file 'xx.cu.obj'
<em>CUDA</em>编译时<em>出现</em>很烦人的这个问题:A single <em>input</em> <em>file</em> is required for a non-link phase when an output<em>file</em> is specified 看命令行往往都不能发现什么问题 最好的办法: 用记事本打开.vcproj这个文件 会发现链接库那些地方的目录是有问题的 以这次为例  就发现了很多"&quot;"这
ubantu16.04安装caffe,最后运行测试的时候出现问题,求高手解答
CXX src/caffe/layers/cudnn_pooling_layer.cpp CXX src/caffe/layers/spp_layer.cpp CXX src/caffe/layers/relu_layer.cpp CXX src/caffe/layers/<em>input</em>_layer.cpp CXX src/caffe/layers/scale_layer.cpp CXX src/caffe/layers/bias_layer.cpp CXX src/caffe/layers/cudnn_lcn_layer.cpp CXX src/caffe/layers/cudnn_tanh_layer.cpp CXX src/caffe/layers/cudnn_sigmoid_layer.cpp CXX src/caffe/layers/split_layer.cpp CXX src/caffe/layers/inner_product_layer.cpp CXX src/caffe/layers/reshape_layer.cpp CXX src/caffe/layers/threshold_layer.cpp CXX src/caffe/layers/concat_layer.cpp CXX src/caffe/layers/tanh_layer.cpp CXX src/caffe/layers/embed_layer.cpp CXX src/caffe/solver.cpp CXX src/caffe/internal_thread.cpp CXX src/caffe/solvers/nesterov_solver.cpp CXX src/caffe/solvers/adam_solver.cpp CXX src/caffe/solvers/adagrad_solver.cpp CXX src/caffe/solvers/adadelta_solver.cpp CXX src/caffe/solvers/rmsprop_solver.cpp CXX src/caffe/solvers/sgd_solver.cpp CXX src/caffe/data_transformer.cpp CXX src/caffe/blob.cpp NVCC src/caffe/util/math_functions.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/util/im2col.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/split_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/cudnn_softmax_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/cudnn_lcn_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/bias_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/prelu_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/crop_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/contrastive_loss_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/log_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/hdf5_data_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/power_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/tanh_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/absval_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/softmax_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/elu_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/scale_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/slice_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/im2col_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/conv_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/layers/cudnn_lrn_layer.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). NVCC src/caffe/solvers/nesterov_solver.cu <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). <em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). LD -o .build_release/lib/libcaffe.so.1.0.0 CXX/LD -o .build_release/test/test_all.testbin src/caffe/test/test_caffe_main.cpp .build_release/tools/caffe make: .build_release/tools/caffe: Command not found Make<em>file</em>:532: recipe for target 'runtest' failed make: *** [runtest] Error 127 minglei@minglei:~/caffe$
解决办法:ImportError: No module named pycuda.driver
Python2: sudo apt-get -y --force-yes install python-pycuda Python3: sudo apt-get -y --force-yes install python3-pycuda
【OpenVINO】Permission denied: .\\frozen_darknet_yolov3_model.bin
在将tensorflow的pb文件转换成OpenVINO支持的tensorflow IR文件时报错 PermissionError: [Errno 13] Permission denied: 'C:\\Program Files (x86)\\IntelSWTools\\<em>open</em>vino\\deployment_tools\\model_optimizer\\.\\frozen_darkne...
ERROR: a 'NAMESPACE' file is required 的解决方案
在利用R自己写一个R源文件的时候,具体参见上一篇博文,<em>出现</em> 解决方案相关网页: http://stackoverflow.com/questions/17196225/error-a-namespace-<em>file</em>-is-required http://stackoverflow.com/questions/10239213/working-with-package-wit
fatal singal 11
当看到这个error信息,首先是百度,后边结合自己的解决方案和论坛说法:<em>出现</em>这个<em>错误</em>主要是多线程操作的缘故。 遇到的情景:   1.客户方遇到的一个问题:集成公司的音视频能力。两个端建立视频通话,然后挂断,这样反复操作几次。<em>程序</em>会在一次挂断后奔溃,log(......<em>fatal</em> singal 11....);    分析:每次都是挂断后奔溃,则定位是挂断后的处理代码的问题。      解决...
报错: nvcc fatal : Path to libdevice library not specified
实验室有台机器的环境估计是弄乱了, 执行如下命令的时候: pip install --verbose --no-cache-dir torch-scatter 报错如下: unable to execute '/usr/local/bin/bin/<em>nvcc</em>': No such <em>file</em> or directory error: command '/usr/local/bin/bin/<em>nvcc</em>' f...
想调试cuda程序,配置EmuDebug模式出错
我想按照《深入浅出》这篇文档进行cuda 的仿真模拟,希望能够用调试cuda<em>程序</em>。 原文如下: 如果想要使用软件仿真的模式,可以新增两个额外的设定: o EmuRelease 模式:"$(<em>CUDA</em>_B
WIN10系统下CUDA8.0以及CUDA5.1配置教程
01 为什么要下载<em>CUDA</em>8.0? 随着GPU的迅速发展,从9系列到10系列再到目前的20系列,GPU能够完成越来越多的计算任务,甚至已经超越了CPU的计算性能,因此显卡厂商NVIDIA发布了一种新的并行计算架构,<em>CUDA</em>(Compute Unified Device Architecture),通过使用GPU来加速复杂的计算问题,例如深度学习网络框架。研究证明,<em>CUDA</em>的使用能够提升网络框架学习...
请问关于nvcc编译的问题~~~
一个<em>CUDA</em>的源文件是通过<em>CUDA</em>fe分离成cpu端和gpu端代码的吧,cpu端的代码就直接通过vs的c编译器编译成了.obj文件吗?然后gpu端的代码通过<em>nvcc</em>编译器后生成了什么文件啊?gpu端生
cmake编译后出现无效指令/Wno-deprecated报错
解决方法一: 打开项目—&gt;属性—&gt;c/c++—&gt;命令行删除其他选项中的/Wno-deprecated 方法二:如果其它选项中没有/Wno-deprecated,则查看cmakelist.txt文件中的add_definitions是否存在/Wno-deprecated,如果有则删除重新编译 ...
fatal error LNK1181: 无法打开输入文件“.\Debug\matrixMul.cu.obj”
你好! 我编的cuda代码在visual studio 2008 emudebug模式下可以运行,但是在debug模式下就会<em>出现</em> <em>fatal</em> error LNK1181: 无法打开输入文件“.\Deb
【matconvnet】故障排除:Error using mex nvcc fatal : Unsupported gpu architecture 'compute_52'
在matlab中编译matconvnet的时候<em>出现</em>了“Error using mex <em>nvcc</em> <em>fatal</em>   : Unsupported gpu architecture 'compute_52'”这个<em>错误</em>,怎么办呢? 环境:ubuntu 14.04,matlab2014a, 师兄们装好了cuda之类的东西,之前用着都没问题。 然后我新下载了一个matconvnet,1.7版的,要编译一个G
解决darknet编译中nvcc fatal : Path to libdevice library not specified问题
尝试各种方法未果(添加cuda lib路径) 最后使用一个暴力的方法,在编译文件里将<em>nvcc</em>换成<em>nvcc</em>原地址/usr/local/cuda-9.0/bin/<em>nvcc</em> 编译成功
This is a non-fatal error, but certain annotation metadata may be unavailabl
为什么80%的码农都做不了架构师?&gt;&gt;&gt; ...
用Pycharm调试TensorFlow模型报错解决办法
本人在用Pycharm调试Yolo3模型时,报错,<em>错误</em>如下:调试2018-04-18 15:12:10.265921: E C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_dnn.cc:385] could not create cudnn handle: C...
2019-02-21 18:36:53.481823: E C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\3 6\tensorflow\stream...
UnknownError (see above for traceback): Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above. Cou...
PyNio读取数据出现file format not supported or file is corrupted
ncl 转到python平台已经有一段时间了,从安装到读文件,真的是步步艰辛哪!摸索许久,也终于有了点心得,以前在这个平台得到许多帮助,现在作为第一批吃螃蟹的人(不是第一批也算比较早吧!),我也来贡献一下自己小小的力量吧! 1、就目前来说,PyNIOn ,PyNGL这两个包只能安装在linux系统下,与python能不能安装在windows下无关,即使是VS下的powershell即使有着类...
NVIDIA GPU 计算能力
Tesla V100# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4# ARCH= -gencode arch=compute_61,code=sm_61 -gencode ar...
anaconda2.5+pycharm+theano环境配置
python怕不是最难的是配置环境吧。。。。  已经被折腾好几天了。。不写不快!! 电脑:win10(64位) Step1:安装anaconda。 下载链接:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 我下的是:Anaconda2-2.5.0-Windows-x86_64.exe Step2:安装minGW,libpyth...
Ubantu16.04下安装CUDA10.0和cudnn10.0(亲测可用,避坑指南)
Ubantu16.04下安装<em>CUDA</em>10.0和cudnn10.0 安装时候,最好同时有两台电脑,这样方便查阅 一些东西,不至于这个那个找不到了 必备的安装包 <em>CUDA</em>10.0下载地址 cudnn10.0下载地址,需要说明的是cudnn下载需要注册。 完成之后可在Download中看到 在Downloads中,打开终端 输入如下命令 ls ——查看安装包 sudo dpkg -i cuda-r...
Unsupported gpu architecture 'compute_11'解决方法
环境背景:由于项目需要,在ubuntu service 14.04 下搭建 OpenCL +OpenCV 环境, 前期安装了 <em>CUDA</em>7.0 ,GPU为 NVIDIA TITAN 。问题描述:按照网上教程安装OpenCV ,在make 时<em>出现</em><em>错误</em>,<em>错误</em>提示如下:<em>错误</em>提示<em>nvcc</em> <em>fatal</em>   : Unsupported gpu architecture 'compute_11'CMake Err...
NVCC CUDA编译流程
NVCC <em>CUDA</em>编译流程 (2012-09-23 17:00:13) 转载▼ 标签: 杂谈 分类: <em>CUDA</em>学习 一、<em>CUDA</em>编译流程简介 Nvcc是一种编译器驱动,通过命令行选项可以在不同阶段启动不同的工具完成编译工作,其目的在于隐藏了复杂的<em>CUDA</em>编译细节,并且它不是一个特殊的<em>CUDA</em>编译驱动而是在模仿一般的通用编译驱动如g
TensorRT配置
Using username &quot;sinc-lab&quot;. sinc-lab@115.156.132.2's password: Welcome to Ubuntu 16.04.5 LTS (GNU/Linux 4.4.0-21-generic x86_64) * Documentation: https://help.ubuntu.com * Management: https://...
python用GPU的CUDA加速时报错:nvcc fatal : Cannot find compiler 'cl.exe' in PATH
解决方法: 将cl.exe的路径添加到环境变量的path中然后重启计算机(重启才会生效)
nvcc fatal : Value 'sm_20' is not defined for option 'gpu-architecture'
解决方案: 在make<em>file</em>文件中 将sm_20 改为 sm_60 NVCCOPTIONS := --gpu-architecture sm_60  
总是gcc: fatal error: input file ‘\xe6\x9c\xaa\xe5\x90\x8d’ is the same as output file报错怎么办呀
萌新<em>请教</em>! 刚装了Linux系统,从Dev 换到了geany 然后每个<em>程序</em>都报下面的错 gcc -Wall -o "未名" "未名" (在目录 /home/ch02i7/文档 中) gcc: <em>fatal</em> error: <em>input</em> <em>file</em> ‘\xe6\x9c\xaa\xe5\x90\x8d’ is the same as output <em>file</em> compilation terminated. 编译失败。 这样子。 就算我打书上的代码也报错。 ``` #include enum COLOR{RED,YELLOW,GREEN,NUMCOLORS}; int main(int argc, char **argv) { int color = -1; char* colornames[NUMCOLORS]={"red","yellow","green"}; char* colorname = NULL; printf("请输入你喜欢颜色的代号\n"); scanf("%d",&color); if(color>-1 && color,colorname); return 0; } ``` 求助 xuexue
PCL与CUDA混合编译出现的失败
当在cmakelist中同时含有PCL、<em>CUDA</em> 可能<em>出现</em>一下<em>错误</em> 问题:<em>nvcc</em> <em>fatal</em>   : A single <em>input</em> <em>file</em> is required for a non-link phase when an output<em>file</em> is specified 在pcl 下放加入: get_directory_property(dir_defs DIRECTORY ${CMA
pycuda报错cuMemFree failed
报错内存释失败:Traceback (most recent call last): File "filter_cuda.py", line 103, in bilateral = Bilateral_filter(img,template_size,sigma[0],sigma[1]) File "filter_cuda.py", line 93, in Bilateral_filter block=(template_size,template_size,3),grid=(rows,cols)) File "/usr/local/lib/python3.5/dist-packages/pycuda/driver.py", line 405, in function_call Context.synchronize() pycuda._driver.LogicError: cuCtxSynchronize failed: an illegal memory access was encountered Py<em>CUDA</em> WARNING: a clean-up operation failed (dead context maybe?) cuMemFree failed: an illegal memory access was encountered Py<em>CUDA</em> WARNING: a clean-up operation failed (dead context maybe?) cuMemFree failed: an illegal memory access was encountered Py<em>CUDA</em> WARNING: a clean-up operation failed (dead context maybe?) cuMemFree failed: an illegal memory access was encountered Py<em>CUDA</em> WARNING: a clean-up operation failed (dead context maybe?) cuMemFree failed: an illegal memory access was encountered Py<em>CUDA</em> WARNING: a clean-up operation failed (dead context maybe?) cuModuleUnload failed: an illegal memory access was encountered ``` import os,math,cv2,numpy from PIL import Image import numpy as np import skimage import pycuda.autoinit import pycuda.driver as drv from pycuda.compiler import SourceModule from timeit import default_timer as timer mod = SourceModule(""" #include __global__ void Gauss_cuda(int ***img,int ***im,float **disTemplate,int template_size) { int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; int z = threadIdx.z; int count = 0; for(int i=x;i.format(template_size,sigma_g),Gauss) ```
nvcc warning : The ‘compute_20’, ‘sm_20’, and ‘sm_21’
消除NVCC警告在这里 -D<em>CUDA</em>_NVCC_FLAGS=--Wno-deprecated-gpu-targets用于指定<em>CUDA</em>编译器(<em>nvcc</em>)的编译选项,如果不指定--Wno-deprecated-gpu-targets选项则在编译Caffe时会产生如下编译警告 <em>nvcc</em> warning : The ‘compute_20’, ‘sm_20’, and ‘sm_21’ architect...
nvcc warning : The ‘compute_20’, ‘sm_20’, and ‘sm_21’ architectures are deprecated, and may be remov
Q1:<em>nvcc</em> warning : The ‘compute_20’, ‘sm_20’, and ‘sm_21’ architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). 在这里 -D<em>CUDA</em>_NVCC_FL
Caffe编译的时候出现warning: The 'compute_20' and 'sm_20' architectures are deprecated怎么办
至于为什么会<em>出现</em>这种警告,如下网站回答的较好. http://stackoverflow.com/questions/15714360/compiling-cuda-program-for-a-geforce-310-compute-capability-1-2-with-unmatched 我的解决办法简单粗暴,在make<em>file</em>.config 文件中 删除相关的行.即可 搜索中文页面没有直
Ubuntu16:cmake生成Makefile编译caffe过程(OpenBLAS/CPU+GPU)塈解决nvcc warning:The 'compute_20', 'sm_20'
之前在ubuntu14下实现了Caffe编译(参见去年写的博客 《 Ubuntu14:cmake生成Make<em>file</em>编译caffe过程(OpenBLAS/CPU only)》)。 最近将系统升级到ubuntu16,新电脑显示也支持<em>CUDA</em>了,重新编译Caffe时发现还依赖库还是有点不同,在这里记下来。硬件配置神舟Z7M-SL7D2笔记本 CPU Core i7-6700HQ(含集成显卡)
cuda环境下安装opencv出现nvcc warning : The 'compute_11'
警告打印: <em>nvcc</em>warning:The'compute_11','compute_12','compute_13','sm_11','sm_12',and'sm_13'architecturesaredeprecated,andmayberemovedinafuturerelease. 找到cmake后产生的OpencvConfig.c...
error MSB6006: “cmd.exe”已退出,代码为 -1。
1>------ 已启动生成: 项目: draw, 配置: Debug x64 ------ 1>生成启动时间为 2011/11/16 13:30:34。 1>CustomBuild: 1> Perf
CMake生成VS2012工程报错 error MSB6006: “cmd.exe”已退出,代码为 -1073741819
研究OpenGl,在官网下了freeglut 3.0的源码,然后用CMake生成了vs2012的工程,结果编译报错,不知道怎么解决。,百度了好久没找到方法
OPENCV2.4.9+CUDA6.5+VS2013 64位系统环境搭建
本文对<em>open</em>cv的gpu部分(<em>open</em>cv+cuda+vs2013)搭建需求者提供参考,让大家少走一些弯路。
怎么解决redefinition of "***"?
有一小<em>程序</em>,在VC下编译通过,在DEV-C++下也通过,到linux下,在KDE2.0下死活不能编译通过。 主要是下面这个问题 a.h #ifndef _A_H_ #define _A_H_ stru
Xcode 编译错误 之 redefinition of ‘...’
编译工程的时候如遇到 报redefinition of classXXX的错,但是确实是采用#import而不是#include包含头文件的时候,且该导的库都导入了的话,请从Finder里看看整个工程目录下是不是有两个同名的头文件...有的话这就是罪魁祸首,删之。
error: redefinition of ‘xxx’问题的解决
写点基础的东西。C语言初学者一般会遇到重复定义的问题,比如:message.h:36:16: error: redefinition of 'struct MSG_SERVOCTRL'message.h:36:16: note: originally defined heremessage.h:40:2: error: conflicting types for 'servoctrl'messag
Warp-CTC
https://github.com/baidu-research/warp-ctc/blob/master/README.zh_cn.md Warp-CTC是一个可以应用在CPU和GPU上高效并行的CTC代码库 (library) 介绍 CTCConnectionist Temporal Classification作为一个损失函数,用于在序列数据上进行监督式学习,不需要对齐输入数据及
ORNL SHOC(CUDA & OpenCL) 编译简记
先说结果,我编译结果是<em>CUDA</em>未编译成功,OpenCL反而成功了。若有编译<em>CUDA</em>成功的可以交流一下。不过貌似这不大影响我测试NVIDIA GPU及集群的结果吧。 一、ORNL简介: ORNL是橡树岭国家实验室(Oak Ridge National Laboratory,简称ORNL)是美国能源部所属最大的科学和能源研究实验室,成立于1943年,现由田那西大学和Battelle纪念研究所共同管理...
请问一下,这个是什么问题“error: expected a ")"
请问一下:这些<em>错误</em>是什么原因?我仔细检查过第一个问题不是符号问题? 这是<em>错误</em>原因: "volume.c", line 7: error: expected a ")" "volume.c", line
出现这样的错误fatal error C1083: Cannot open include file: 'student.h': No such file or
#include    #include "student.h" #include "dbstudent.h"   void main()   {    int choice=
关于GCC优化选项打开后编译出错的问题
当用GCC编译代码的时候,为什么指定优化等级就会报错? 测试用的c代码肯定是没有问题的,就是打印一个字符而已 #include void main(){ printf("%d\n"
C/C++常见gcc编译链接错误解决方法
除非明确说明,本文内容仅针对x86/x86_64的Linux开发环境,有朋友说baidu不到,开个贴记录一下(加粗字体是关键词): 用“-Wl,-Bstatic”指定链接静态库,使用“-Wl,-Bdynamic”指定链接共享库,使用示例: -Wl,-Bstatic -lmysqlclient_r -lssl -lcrypto -Wl,-Bdynamic -lrt -Wl,-Bdynam
错误。">编译darknet_ros 报/usr/lib/gcc/x86_64-linux-gnu/4.8/include/stddef.h(432): error: expected a ";"错误
[ 5%] Building NVCC (Device) object CMakeFiles/nheqminer_cuda_tromp.dir///cuda_tromp/nheqminer_cuda_tromp_generated_equi_miner.cu.o<em>nvcc</em> warning : The 'compute_20', 'sm_20', and 'sm_21' architectures a...
Caffe安装填坑大全
1.系统Ubuntu18.04 我一开始安装的是cuda9.1,后来发现tensorflow目前较大支持到cuda9.0,不支持cuda9.1。如果用cuda9.1需要自己编译整个tensorflow工程,因为我接下来还打算安装tensorflow,所以想了想,决定重新将cuda和cudnn升级到cuda9.0+cudnn7.0。 2.cuda安装查看: https://blog.csdn....
CUDA-NVIDIA编程实战
NVIDIA <em>CUDA</em> Getting Started Guide for Microsoft Windows 1. Introduction <em>CUDA</em>® is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in
请教一个cuda编译的问题
编译一个cuda<em>程序</em>,到下面就停住报错了: 1>tmpxft_00001674_00000000-3_reconstruction.cudafe1.gpu 1>tmpxft_00001674_0000
郁闷了两天了,找不到解决办法,哪位牛人版帮忙解决下?
1>------ 已启动生成: 项目: cuSVMTrain, 配置: Release Win32 ------ 2>------ 已启动生成: 项目: cuSVMPredict, 配置: Relea
求助,怎么生成nvmex的需要的.o文件对象文件?很郁闷啊
我想要matlab2011a执行一个max <em>file</em>s。cuda已经装好,mex编译,已经确定matlab和vs连接完好。 用mex编译.c文件也可以了。现在想用nvmex编译.cu文件。目前直接运行
cudpp库
cudpp库是一个cuda库,其提供了一些cuda并行算法的实现。比如scan, radix_sort, reduce等。cudapp2.2版本的radix_sort 是使用thrust::stable_sort 实现的(在源码中,以前的radix_sort代码都被注释掉了),经过统计,thrust::stable_sort 几乎不需要开辟额外内存。
common errors while programming CUDA
Unknown Error (often doesn't show up unless you call cutilSafeCall) Writing out of bounds: Check that each of your arrays has been initialized to appropriate sizes. ESPECIALLY SHARED MEMORY. D
CUDA编译(一)---使用nvcc编译cuda
<em>CUDA</em>编译(一)—使用<em>nvcc</em>编译cuda <em>nvcc</em>介绍 示例 <em>nvcc</em>介绍 <em>nvcc</em>是编译cuda<em>程序</em>的编译器,CDUA C是在C语言上的扩展,所以它依赖C编译器(C编译器在window下是cl.exe,在Linux下是gcc)。因此我们编译<em>CUDA</em><em>程序</em>必须依靠编译器<em>nvcc</em>。 其实,<em>nvcc</em>编译cuda<em>程序</em>和g++编译c++<em>程序</em>是差不多的。在我的其它博客中也写了有关g++编译...
Ubuntu 16.04+CUDA 9.1+cuDNN v7+OpenCV 3.4.0+Caffe+PyCharm 完全安装指南,国内最全!(适用CUDA 9.0)
原创博客,转载请说明出处!   (本人第一篇博客,用心之作,有用求赞)     首先得感谢一篇博客的作者yhao:点击打开链接 (http://blog.csdn.net/yhaolpz/article/details/71375762) 他提供了很详细的基于<em>CUDA</em> 8.0 的安装过程。由于我需要安装的是<em>CUDA</em> 9.1+cuDNN v7+OpenCV 3.4.0,照搬<em>CUDA</em> 8.0
ubuntu 上NVIDIA驱动和CUDA9.0 的坑之一二
1 参考链接[1] NVIDIA 官方<em>CUDA</em>安装文档: http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html[2] NVIDIA  对XFree86 下安装驱动的说明: http://us.download.nvidia.com/XFree86/Linux-x86/319.12/README/installdri...
Windows 10配置CUDA 9.2
blockIdx.x和maxGridSize.x的关系 在看《<em>CUDA</em> by Example》第四章的时候有这样一句话:If you would like to see how easy it is to generate a massively parallel application, try changing the 10 in the line #define N 10 to 10000...
Miscellaneous Errors
 Miscellaneous Errors “<em>nvcc</em> <em>fatal</em>   : Value ‘sm_52′ is not defined for option ‘gpu-architecture'” This is caused by the Toolkit not being able to handle the architecture code automatical
动态规划入门到熟悉,看不懂来打我啊
持续更新。。。。。。 2.1斐波那契系列问题 2.2矩阵系列问题 2.3跳跃系列问题 3.1 01背包 3.2 完全背包 3.3多重背包 3.4 一些变形选讲 2.1斐波那契系列问题 在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n&gt;=2,n∈N*)根据定义,前十项为1, 1, 2, 3...
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
oracle数据库产品技术培训下载
oracle数据库产品技术培训,oracle数据库产品技术培训 相关下载链接:[url=//download.csdn.net/download/sznewcasecn/3692962?utm_source=bbsseo]//download.csdn.net/download/sznewcasecn/3692962?utm_source=bbsseo[/url]
数据结构 排序下载
课程设计等 相关下载链接:[url=//download.csdn.net/download/oqqron123/4972456?utm_source=bbsseo]//download.csdn.net/download/oqqron123/4972456?utm_source=bbsseo[/url]
algorithms 4th英文版pdf下载
algorithms 4th 原书英文版pdf 相关下载链接:[url=//download.csdn.net/download/striver_jt/9241813?utm_source=bbsseo]//download.csdn.net/download/striver_jt/9241813?utm_source=bbsseo[/url]
相关热词 c# id读写器 c#俄罗斯方块源码 c# linq原理 c# 装箱有什么用 c#集合 复制 c# 一个字符串分组 c++和c#哪个就业率高 c# 批量动态创建控件 c# 模块和程序集的区别 c# gmap 截图
我们是很有底线的