spring + mybaits ORA-12519, TNS:no appropriate service handler found 急!!谢谢帮忙,在线等

Java > Web 开发 [问题点数:40分,结帖人jjoott]
等级
本版专家分:10
结帖率 100%
等级
本版专家分:10
等级
本版专家分:2728
等级
本版专家分:10
等级
本版专家分:10
jjoott

等级:

SSM框架——详细整合教程(Spring+SpringMVC+MyBatis)

使用SSM(Spring、SpringMVC和Mybatis)已经有三个多月了,项目在技术上已经没有什么难点了,基于现有的技术就可以实现想要的功能,当然肯定有很多可以改进的地方。之前没有记录SSM整合的过程,这次刚刚好基于自己的...

ora--12154 :TNS :could not resolve the connect identifier specified 错误处理

ora--12154 :TNS :could not resolve the connect identifier specified 错误处理   今天碰到一个情况,有一台机器用PLSQL连接数据库怎么也连不上,一直报这个错:ora--12154 :TNS :could not resolve the ...

Mybatis Oracle insert ORA-00904: "字段名": 标识符无效

oracle ORA-00904: "字段名": 标识符无效 solution: 1.字段不存在,拼写错误 2.建表示字段名有引号,drop table重建即可 以上是诸位前辈,总结的经验。 如果以上都不是, 哥们,洗把脸回来,眯一会儿,你看你的...

Mybatis报错 java.sql.SQLSyntaxErrorException: ORA-00911: 无效字符

java.sql.SQLSyntaxErrorException: ORA-00911: 无效字符 我将sql放到工具里面直接测试是OK的 但是代码里面却报错了,很神奇的问题啊,网上各种找原因和解决方案,最终发现mybatis里面的sql末尾是不能加;的 ...

Oracle ORA-00904:"xxx": 标识符无效

情境:select 一个表的内容时出现。 原因:当你想直接列某一列的数据时,因为大小问题引擎没有找到对应的字段。因为源表的字段名小写的,所以你在想列出字段时,必须指明列出的字段是小写的。 ...

使用springboot+springmvc+mybaits-spring+mybatis-generator开发

使用springboot+springmvc+mybatis-generator开发web程序,也算是自己参考网上的知识自己写出来的吧,里面还很多东西值得深究学习 使用IDEA和MAVEN新建springboot项目:具体怎么新建网上很多 使用maven就看一下pom...

java.sql.SQLSyntaxErrorException: ORA-00942: 表或视图不存在

 java.sql.SQLSyntaxErrorException: ORA-00942: 表或视图不存在 在 Oracle 数据库执行时也报错,重写一遍SQL后问题解决,为什么尼   同事把 m_air_office 写成 m_air_offcie 啦    ...

Mybatis连接MySQL时报错:ORA-00942: 表或视图不存在

异常信息如下: ### The error may involve defaultParameterMap ### The error occurred while setting parameters ### SQL: select * from person ...### Cause: java.sql.SQLSyntaxErrorException: ORA-0094...

java.sql.SQLSyntaxErrorException: ORA-00909: 参数个数无效

mybatis写like语句,照着网上的方法,试了好几种都报错 <if test="fdClassTime!=null and fdClassTime!=''"> and a.FD_CLASS_TIME like CONCAT('%',#{fdClassTime},'%') <...然后又在网上搜解决方法...

java mybaits做查询的时候ORA-00942: 表或视图不存在。但表是存在的

本项目用SSM框架写的。select * from t_menu where pid = #{id} mybatis的查询语句 同样的代码,更改数据库配置文件到Mysql数据库中,建个同样的表格,发送 ... 但是,更改成Oracle数据库,其他不变发送同样的请求就报...

java.sql.SQLException: ORA-01858: 在要求输入数字处找到非数字字符

开发环境:SpringMVC、MyBatis、Oracle 今天写小组项目在插入这段代码的时候爆发了这个异常INSERT INTO TRAIN_DIRECTION (TRAIN_DIRECT_ID, ENTER_ID, DIRECT_ID, ADDRESS, DIRECTION, ATTACH_ID, ...

SSM(springMVC+spring+mybatis)旅游网站项目源码,课程设计(毕业设计)

最近在翻文件的时候发现大四时的毕业设计,一个旅游网站,虽然代码写得很烂,但还是可以跑起来,想着删了还不如分享一下,毕竟我也觉得做毕设是真的无聊又浪费时间......... 整体功能图(其实是做得很敷衍,大部分都...

解决ORA-01843:无效的月份的方法

(1)多加一个参数NLS_DATE_LANGUAGE = AMERICAN  select to_date( '01-Oct-2014' ,'DD-MON-YYYY','NLS_DATE_LANGUAGE = AMERICAN') from dual  (2)修改注册表,修改NLS_LANG的值

Spring boot +Mybaits

Spring boot 配置Mybaits也是相当的简单 Maven集成 mysql mysql-connector-java 5.7.6--> org.mybatis.spring.boot mybatis-spring-bo

Mybatis,oracle,ORA-00933: SQL 命令未正确结束

批量插入时,如果没有主键,一定要显式指定useGeneratedKeys为false,否则会报: SQL 命令未正确结束

Mybatis源码解析之SpringBoot集成mybatis-spring-boot-starter分析

Mybatis源码解析之核心类分析 Mybatis源码解析之初始化分析 Mybatis源码解析之执行流程解析 Mybatis源码解析之数据库连接和连接池 Mybatis源码解析之事务管理 Mybatis源码解析之缓存机制(一):一级缓存 ...

spring boot+mybatis-plus 踩坑记 Invalid bound statement (not found)

最近搭了个spring boot+mybatis-plus项目, 发现自己写的sql可以执行,但是引用mybatis-plus 里的封装的基础方法就会报Invalid bound statement (not found)。。。 因为用了大量标签,减少代码,所以一直怀疑是不是...

Caused by:java.sql.SQLException:ORA-01008:并非所有变量都已绑定

1、错误描述 Caused by:java.sql.SQLException:ORA-01008:并非所有变量都已绑定 2、错误原因 3、解决办法

Mybatis万字教程

Mybatis教程。Mybatis万字详细教程。Mybatis是一款优秀的持久层框架。其封装了JDBC操作, 免去了开发人员编写JDBC 代码以及设置参数和获取结果集的重复性工作。通过编写简单的 XML 或Java注解即可映射数据库CRUD操作...

MyBatis配置文件mybatis-config详解

MyBatis配置文件mybatis-config.xml内容详解 文章目录MyBatis配置文件mybatis-config.xml内容详解一、略解mybatis-config.xml二、详解mybatis-config.xml1. configuration2. properties3. settings4....

MyBatis 快速入门和重点详解

1.定义 MyBatis 是一款优秀的持久层框架,它支持定制化 SQL、存储过程以及高级映射。MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集。MyBatis 可以使用简单的 XML 或注解来配置和映射原生信息...

华为机考题库(全)

包括招聘的机考题,及面试过程中会问到的数据结构的相关内容,排序算法全部包括并且有改进算法,一点点改进可以让你表现的与众不同,如果好的话给点评价吧亲

最新的xshell6与xftp.zip(持续更新!)

Xshell6与Xftp 中文版(最新版免密匙), Xshell6与Xftp 中文版(最新版免密匙), Xshell6与Xftp 中文版(最新版免密匙), Xshell6与Xftp 中文版(最新版免密匙)

Notepad++ 7.9.1

notepad++是一个免费的、开放源码的文本和源代码编辑器。notepad++是用c++编程语言编写的,它以减少不必要的功能和简化过程而自豪,从而创建了一个轻便高效的文本记事本程序。实际上,这意味着高速和易访问的、用户友好的界面。 notepad++已经存在了将近20年,没有任何迹象表明它的受欢迎程度会下降。记事本绝对证明了你不需要投资在昂贵的软件来编写代码从舒适的自己的家。自己尝试一下,你就会明白为什么Notepad能坚持这么久。

深入浅出C语言视频教程(配套完整习题 + 源代码)

深入浅出C语言编程视频培训课程从C语言入门开始学习,C语言无敌猎手林世霖老师手把手带你猎杀Linux下C编程技术,手握尖刀准备战斗! 以下特色绝对让你留下膝盖: 1,涵盖标准C语言开发核心技术,并且覆盖GNU扩展语法,图

Python实现自动化办公.txt

Python实现自动化办公视频教程:Excel处理、PDF转换、Word和PPT自动生成、Web自动处理。

垃圾分类数据集及代码

资源说明: 数据集主要包括6类图片:硬纸板、纸、塑料瓶、玻璃瓶、铜制品、不可回收垃圾 代码运行说明: 1、 安装运行项目所需的python模块,包括tensorflow | numpy | keras | cv2 2、 train.py用于训练垃圾分类模型,由于训练的数据量过于庞大,因此不一并上传 3、 predict.py用于预测垃圾的类别,首先运行predict.py,然后输入需要预测的文件路径,即可得到结果。

Visio_2016

visio_2016下载安装,亲测可用,不需要破解,而且无秘钥。简单方便实用

个人简历模板

优质简历模板,目前最前全的模板收藏,需要换工作的小伙伴们可以试试

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

相关热词 c# linq查询 c#接口 opencv c# 常量 类型 c#gdal存储图片 c#与sql的 优势 c# 子窗口访问父窗口 c# 替换br c#写串口接收程序 c#存储库 c#的contains