TI OMAP 3530 编译问题?

井中月_QCJ 2011-10-08 06:21:36
请各位朋友们帮忙!先谢谢了!

TI OMAP 3530 编译有问题?错误如下。。。。

F:\WINCE600\public\common\oak\lib\ARMV4I\retail\usbd_lib.lib F:\WINCE600\OSDesigns\EVM_3530\EVM_3530\Wince600\EVM_OMAP3530_ARMV4I\cesysgen\sdk\lib\ARMV4I\retail\coredll.lib F:\WINCE600\public\common\oak\lib\ARMV4I\retail\corelib0.lib F:\WINCE600\OSDesigns\EVM_3530\EVM_3530\Wince600\EVM_OMAP3530_ARMV4I\cesysgen\oak\lib\ARMV4I\retail\corelib1.lib
F:\WINCE600\OSDesigns\EVM_3530\EVM_3530\Wince600\EVM_OMAP3530_ARMV4I\cesysgen\oak\lib\ARMV4I\retail\usbd.exp
usbd.exp : error LNK2001: unresolved external symbol HcdDeviceSuspendeResumed
F:\WINCE600\OSDesigns\EVM_3530\EVM_3530\Wince600\EVM_OMAP3530_ARMV4I\cesysgen\oak\target\ARMV4I\retail\usbd.dll : fatal error LNK1120: 1 unresolved externals
NMAKE : fatal error U1077: 'link' : return code '0x460'
Stop.
NMAKE : fatal error U1077: 'F:\WINCE600\sdk\bin\i386\nmake.exe' : return code '0x2'
Stop.
...全文
199 7 打赏 收藏 转发到动态 举报
写回复
用AI写文章
7 条回复
切换为时间正序
请发表友善的回复…
发表回复
井中月_QCJ 2011-10-13
  • 打赏
  • 举报
回复
通过查找 HcdDeviceSuspendeResumed ,找到相应的文件,发现该文件和对应的LIB和DLL中没有该函数,并且USB目录下文件的时间戳不一样,
个人认为是:没有打相应的补丁!

最后重新装了WINCE6和相应的补丁。
安装WINCE6时建议参考:深圳市坚恒天科技的
《Windows Embedded CE 6.0 R3 升级指导》
一定要按照上面的步骤一步步操作,否则等着你的时一次又一次的编译失败!

安装完成后,一定先测试一下环境是否能用,在ARMV4的模拟器下能否通关!然后再加上3530的BSP进行编译!
paul_chao 2011-10-11
  • 打赏
  • 举报
回复
找了一下電腦, 發現這個FUNCTION是在 %_WINCEROOT%\PUBLIC\COMMON\OAK\DRIVERS\USB\USBD\usbddrv.cpp, 而且是不知裝了哪一個 Update 後進來的, 所以 LZ 裝到最新的 Update 後, Build 即可通過.

Paul, Chao @ Techware
井中月_QCJ 2011-10-09
  • 打赏
  • 举报
回复
再UP一下!
codesnail 2011-10-08
  • 打赏
  • 举报
回复
建议检查是否包含需要的头文件,是否设置相应的lib环境变量。
woshi_ziyu 2011-10-08
  • 打赏
  • 举报
回复
xuguod20042576 2011-10-08
  • 打赏
  • 举报
回复
你先sysgen一下
井中月_QCJ 2011-10-08
  • 打赏
  • 举报
回复
自己UP一下!
二.DSP的C语言同主机C语言的主要区别? 1)DSP的C语言是标准的ANSI C,它不包括同外设联系的扩展部分,如屏幕绘图等。但在CCS中,为了方便调试,可以将数据通过prinf命令虚拟输出到主机的屏幕上。   2)DSP的C语言的编译过程为,C编译为ASM,再由ASM编译为OBJ。因此C和ASM的对应关系非常明确,非常便于人工优化。   3)DSP的代码需要绝对定位;主机的C的代码有操作系统定位。   4)DSP的C的效率较高,非常适合于嵌入系统。   三.DSP发展动态 1.TMS320C2000 TMS320C2000系列包括C24x和C28x系列。C24x系列建议使用LF24xx系列替代C24x系列,LF24xx系列的价格比C24x便宜,性能高于C24x,而且LF24xxA具有加密功能。 C28x系列主要用于大存储设备管理,高性能的控制场合。   2.TMS320C3x TMS320C3x系列包括C3x和VC33,主要推荐使用VC33。C3x系列是TI浮点DSP的基础,不可能停产,但价格不会进一步下调。   3.TMS320C5x TMS320C5x系列已不推荐使用,建议使用C24x或C5000系列替代。   4.TMS320C5000 TMS320C5000系列包括C54x和C55x系列。其中VC54xx还不断有新的器件出现,如:TMS320VC5471(DSP+ARM7)。 C55x系列是TI的第三代DSP,功耗为VC54xx的1/6,性能为VC54xx的5倍,是一个正在发展的系列。 C5000系列是目前TI DSP的主流DSP,它涵盖了从低档到中高档的应用领域,目前也是用户最多的系列。   5.TMS320C6000 TMS320C6000系列包括C62xx、C67xx和C64xx。此系列是TI的高档DSP系列。其中C62xx系列是定点的DSP,系列芯片种类较丰富,是主要的应用系列。 C67xx系列是浮点的DSP,用于需要高速浮点处理的领域。 C64xx系列是新发展,性能是C62xx的10倍。   6.OMAP系列是TI专门用于多媒体领域的芯片,它是C55+ARM9,性能卓越,非常适合于手持设备、Internet终端等多媒体应用。   四.5V/3.3V如何混接? TI DSP的发展同集成电路的发展一样,新的DSP都是3.3V的,但目前还有许多外围电路是5V的,因此在DSP系统中,经常有5V和3.3V的DSP混接问题。在这些系统中,应注意: 1)DSP输出给5V的电路(如D/A),无需加任何缓冲电路,可以直接连接。 2)DSP输入5V的信号(如A/D),由于输入信号的电压》4V,超过了DSP的电源电压,DSP的外部信号没有保护电路,需要加缓冲,如 74LVC245等,将5V信号变换成3.3V的信号。 3)仿真器的JTAG口的信号也必须为3.3V,否则有可能损坏DSP。   五。为什么要片内RAM大的DSP效率高? 目前DSP发展的片内存储器RAM越来越大,要设计高效的DSP系统,就应该选择片内RAM较大的DSP。片内RAM同片外存储器相比,有以下优点: 1)片内RAM的速度较快,可以保证DSP无等待运行。 2)对于C2000/C3x/C5000系列,部分片内存储器可以在一个指令周期内访问两次,使得指令可以更加高效。 3)片内RAM运行稳定,不受外部的干扰影响,也不会干扰外部。 4)DSP片内多总线,在访问片内RAM时,不会影响其它总线的访问,效率较高。
书名:《Android底层开发技术实战详解——内核、移植和驱动》(电子工业出版社.王振丽)。本书从底层原理开始讲起,结合真实的案例向读者详细介绍了android内核、移植和驱动开发的整个流程。全书分为19章,依次讲解驱动移植的必要性,何为hal层深入分析,goldfish、msm、map内核和驱动解析,显示系统、输入系统、振动器系统、音频系统、视频输出系统的驱动,openmax多媒体、多媒体插件框架,传感器、照相机、wi-fi、蓝牙、gps和电话系统等。在每一章中,重点介绍了与Android驱动开发相关的底层知识,并对Android源码进行了剖析。 本书适合Android研发人员及Android爱好者学习,也可以作为相关培训学校和大专院校相关专业的教学用书。 全书压缩打包成3部分,这是第1部分。 目录: 第1章 Android底层开发基础 1 1.1 什么是驱动 1 1.1.1 驱动程序的魅力 1 1.1.2 电脑中的驱动 2 1.1.3 手机中的驱动程序 2 1.2 开源还是不开源的问题 3 1.2.1 雾里看花的开源 3 1.2.2 从为什么选择java谈为什么不开源驱动程序 3 1.2.3 对驱动开发者来说是一把双刃剑 4 1.3 Android和Linux 4 1.3.1 Linux简介 5 1.3.2 Android和Linux的关系 5 1.4 简析Linux内核 8 1.4.1 内核的体系结构 8 1.4.2 和Android密切相关的Linux内核知识 10 1.5 分析Linux内核源代码很有必要 14 1.5.1 源代码目录结构 14 1.5.2 浏览源代码的工具 16 1.5.3 为什么用汇编语言编写内核代码 17 1.5.4 Linux内核的显著特性 18 1.5.5 学习Linux内核的方法 26 第2章 分析Android源代码 31 2.1 搭建Linux开发环境和工具 31 2.1.1 搭建Linux开发环境 31 2.1.2 设置环境变量 32 2.1.3 安装编译工具 32 2.2 获取Android源代码 33 2.3 分析并编译Android源代码 35 2.3.1 Android源代码的结构 35 2.3.2 编译Android源代码 40 2.3.3 运行Android源代码 42 2.3.4 实践演练——演示编译Android程序的两种方法 43 2.4 编译Android kernel 47 2.4.1 获取goldfish内核代码 47 2.4.2 获取msm内核代码 50 2.4.3 获取omap内核代码 50 2.4.4 编译Android的Linux内核 50 2.5 运行模拟器 52 2.5.1 Linux环境下运行模拟器的方法 53 2.5.2 模拟器辅助工具——adb 54 第3章 驱动需要移植 57 3.1 驱动开发需要做的工作 57 3.2 Android移植 59 3.2.1 移植的任务 60 3.2.2 移植的内容 60 3.2.3 驱动开发的任务 61 3.3 Android对Linux的改造 61 3.3.1 Android对Linux内核文件的改动 62 3.3.2 为Android构建 Linux的操作系统 63 3.4 内核空间和用户空间接口是一个媒介 64 3.4.1 内核空间和用户空间的相互作用 64 3.4.2 系统和硬件之间的交互 64 3.4.3 使用relay实现内核到用户空间的数据传输 66 3.5 三类驱动程序 70 3.5.1 字符设备驱动程序 70 3.5.2 块设备驱动程序 79 3.5.3 网络设备驱动程序 82 第4章 hal层深入分析 84 4.1 认识hal层 84 4.1.1 hal层的发展 84 4.1.2 过去和现在的区别 86 4.2 分析hal层源代码 86 4.2.1 分析hal moudle 86 4.2.2 分析mokoid工程 89 4.3 总结hal层的使用方法 98 4.4 传感器在hal层的表现 101 4.4.1 hal层的sensor代码 102 4.4.2 总结sensor编程的流程 104 4.4.3 分析sensor源代码看Android api 与硬件平台的衔接 104 4.5 移植总结 116 4.5.1 移植各个Android部件的方式 116 4.5.2 移植技巧之一——不得不说的辅助工作 117 第5章 goldfish下的驱动解析 125 5.1 staging驱动 125 5.1.1 staging驱动概述 125 5.1.2 binder驱动程序 126 5.1.3 logger驱动程序 135 5.1.4 lowmemorykiller组件 136 5.1.5 timed output驱动程序 137 5.1.6 timed gpio驱动程序 139 5.1.7 ram console驱动程序 139 5.2 wakelock和early_suspend 140 5.2.1 wakelock和early_suspend的原理 140 5.2.2 Android休眠 141 5.2.3 Android唤醒 144 5.3 ashmem驱动程序 145 5.4 pmem驱动程序 148 5.5 alarm驱动程序 149 5.5.1 alarm简析 149 5.5.2 alarm驱动程序的实现 150 5.6 usb gadget驱动程序151 5.7 Android paranoid驱动程序153 5.8 goldfish设备驱动154 5.8.1 framebuffer驱动155 5.8.2 键盘驱动159 5.8.3 实时时钟驱动程序160 5.8.4 tty终端驱动程序161 5.8.5 nandflash驱动程序162 5.8.6 mmc驱动程序162 5.8.7 电池驱动程序162 第6章 msm内核和驱动解析164 6.1 msm基础164 6.1.1 常见msm处理器产品164 6.1.2 snapdragon内核介绍165 6.2 移植msm内核简介166 6.3 移植msm168 6.3.1 makefile文件168 6.3.2 驱动和组件170 6.3.3 设备驱动172 6.3.4 高通特有的组件174 第7章 omap内核和驱动解析177 7.1 omap基础177 7.1.1 omap简析177 7.1.2 常见omap处理器产品177 7.1.3 开发平台178 7.2 omap内核178 7.3 移植omap体系结构180 7.3.1 移植omap平台180 7.3.2 移植omap处理器183 7.4 移植Android专用驱动和组件188 7.5 omap的设备驱动190 第8章 显示系统驱动应用195 8.1 显示系统介绍195 8.1.1 Android的版本195 8.1.2 不同版本的显示系统195 8.2 移植和调试前的准备196 8.2.1 framebuffer驱动程序196 8.2.2 硬件抽象层198 8.3 实现显示系统的驱动程序210 8.3.1 goldfish中的framebuffer驱动程序210 8.3.2 使用gralloc模块的驱动程序214 8.4 msm高通处理器中的显示驱动实现224 8.4.1 msm中的framebuffer驱动程序225 8.4.2 msm中的gralloc驱动程序227 8.5 omap处理器中的显示驱动实现235 第9章 输入系统驱动应用239 9.1 输入系统介绍239 9.1.1 Android输入系统结构元素介绍239 9.1.2 移植Android输入系统时的工作240 9.2 input(输入)驱动241 9.3 模拟器的输入驱动256 9.4 msm高通处理器中的输入驱动实现257 9.4.1 触摸屏驱动257 9.4.2 按键和轨迹球驱动264 9.5 omap处理器平台中的输入驱动实现266 9.5.1 触摸屏驱动267 9.5.2 键盘驱动267 第10章 振动器系统驱动269 10.1 振动器系统结构269 10.1.1 硬件抽象层271 10.1.2 jni框架部分272 10.2 开始移植273 10.2.1 移植振动器驱动程序273 10.2.2 实现硬件抽象层274 10.3 在msm平台实现振动器驱动275 第11章 音频系统驱动279 11.1 音频系统结构279 11.2 分析音频系统的层次280 11.2.1 层次说明280 11.2.2 media库中的audio框架281 11.2.3 本地代码284 11.2.4 jni代码288 11.2.5 java代码289 11.3 移植audio系统的必备技术289 11.3.1 移植audio系统所要做的工作289 11.3.2 分析硬件抽象层290 11.3.3 分析audioflinger中的audio硬件抽象层的实现291 11.4 真正实现audio硬件抽象层298 11.5 msm平台实现audio驱动系统298 11.5.1 实现audio驱动程序298 11.5.2 实现硬件抽象层299 11.6 oss平台实现audio驱动系统304 11.6.1 oss驱动程序介绍304 11.6.2 mixer305 11.7 alsa平台实现audio系统312 11.7.1 注册音频设备和音频驱动312 11.7.2 在Android中使用alsa声卡313 11.7.3 在omap平台移植Android的alsa声卡驱动322 第12章 视频输出系统驱动326 12.1 视频输出系统结构326 12.2 需要移植的部分328 12.3 分析硬件抽象层328 12.3.1 overlay系统硬件抽象层的接口328 12.3.2 实现overlay系统的硬件抽象层331 12.3.3 实现接口332 12.4 实现overlay硬件抽象层333 12.5 在omap平台实现overlay系统335 12.5.1 实现输出视频驱动程序335 12.5.2 实现overlay硬件抽象层337 12.6 系统层调用overlay hal的架构342 12.6.1 调用overlay hal的架构的流程342 12.6.2 s3c6410 Android overlay的测试代码346 第13章 openmax多媒体框架349 13.1 openmax基本层次结构349 13.2 分析openmax框架构成350 13.2.1 openmax总体层次结构350 13.2.2 openmax il层的结构351 13.2.3 Android中的openmax354 13.3 实现openmax il层接口354 13.3.1 openmax il层的接口354 13.3.2 在openmax il层中需要做什么361 13.3.3 研究Android中的openmax适配层361 13.4 在omap平台实现openmax il363 13.4.1 实现文件364 13.4.2 分析ti openmax il的核心365 13.4.3 实现ti openmax il组件实例368 第14章 多媒体插件框架373 14.1 Android多媒体插件373 14.2 需要移植的内容374 14.3 opencore引擎375 14.3.1 opencore层次结构375 14.3.2 opencore代码结构376 14.3.3 opencore编译结构377 14.3.4 opencore oscl381 14.3.5 实现opencore中的openmax部分383 14.3.6 opencore的扩展398 14.4 stagefright引擎404 14.4.1 stagefright代码结构404 14.4.2 stagefright实现openmax接口405 14.4.3 video buffer传输流程409 第15章 传感器系统415 15.1 传感器系统的结构415 15.2 需要移植的内容417 15.2.1 移植驱动程序417 15.2.2 移植硬件抽象层418 15.2.3 实现上层部分419 15.3 在模拟器中实现传感器424 第16章 照相机系统430 16.1 camera系统的结构430 16.2 需要移植的内容433 16.3 移植和调试433 16.3.1 v4l2驱动程序433 16.3.2 硬件抽象层441 16.4 实现camera系统的硬件抽象层446 16.4.1 java程序部分446 16.4.2 camera的java本地调用部分447 16.4.3 camera的本地库libui.so448 16.4.4 camera服务libcameraservice.so449 16.5 msm平台实现camera系统454 16.6 omap平台实现camera系统457 第17章 wi-fi系统、蓝牙系统和gps系统459 17.1 wi-fi系统459 17.1.1 wi-fi系统的结构459 17.1.2 需要移植的内容461 17.1.3 移植和调试461 17.1.4 omap平台实现wi-fi469 17.1.5 配置wi-fi的流程471 17.1.6 具体演练——在Android下实现ethernet473 17.2 蓝牙系统475 17.2.1 蓝牙系统的结构475 17.2.2 需要移植的内容477 17.2.3 具体移植478 17.2.4 msm平台的蓝牙驱动480 17.3 定位系统482 17.3.1 定位系统的结构483 17.3.2 需要移植的内容484 17.3.3 移植和调试484 第18章 电话系统498 18.1 电话系统基础498 18.1.1 电话系统简介498 18.1.2 电话系统结构500 18.2 需要移植的内容501 18.3 移植和调试502 18.3.1 驱动程序502 18.3.2 ril接口504 18.4 电话系统实现流程分析507 18.4.1 初始启动流程507 18.4.2 request流程509 18.4.3 response流程512 第19章 其他系统514 19.1 alarm警报器系统514 19.1.1 alarm系统的结构514 19.1.2 需要移植的内容515 19.1.3 移植和调试516 19.1.4 模拟器环境的具体实现518 19.1.5 msm平台实现alarm518 19.2 lights光系统519 19.2.1 lights光系统的结构520 19.2.2 需要移植的内容521 19.2.3 移植和调试521 19.2.4 msm平台实现光系统523 19.3 battery电池系统524 19.3.1 battery系统的结构524 19.3.2 需要移植的内容526 19.3.3 移植和调试526 19.3.4 在模拟器中实现电池系统529
书名:《Android底层开发技术实战详解——内核、移植和驱动》(电子工业出版社.王振丽)。本书从底层原理开始讲起,结合真实的案例向读者详细介绍了android内核、移植和驱动开发的整个流程。全书分为19章,依次讲解驱动移植的必要性,何为hal层深入分析,goldfish、msm、map内核和驱动解析,显示系统、输入系统、振动器系统、音频系统、视频输出系统的驱动,openmax多媒体、多媒体插件框架,传感器、照相机、wi-fi、蓝牙、gps和电话系统等。在每一章中,重点介绍了与Android驱动开发相关的底层知识,并对Android源码进行了剖析。 本书适合Android研发人员及Android爱好者学习,也可以作为相关培训学校和大专院校相关专业的教学用书。 全书压缩打包成3部分,这是第3部分。 目录: 第1章 Android底层开发基础 1 1.1 什么是驱动 1 1.1.1 驱动程序的魅力 1 1.1.2 电脑中的驱动 2 1.1.3 手机中的驱动程序 2 1.2 开源还是不开源的问题 3 1.2.1 雾里看花的开源 3 1.2.2 从为什么选择java谈为什么不开源驱动程序 3 1.2.3 对驱动开发者来说是一把双刃剑 4 1.3 Android和Linux 4 1.3.1 Linux简介 5 1.3.2 Android和Linux的关系 5 1.4 简析Linux内核 8 1.4.1 内核的体系结构 8 1.4.2 和Android密切相关的Linux内核知识 10 1.5 分析Linux内核源代码很有必要 14 1.5.1 源代码目录结构 14 1.5.2 浏览源代码的工具 16 1.5.3 为什么用汇编语言编写内核代码 17 1.5.4 Linux内核的显著特性 18 1.5.5 学习Linux内核的方法 26 第2章 分析Android源代码 31 2.1 搭建Linux开发环境和工具 31 2.1.1 搭建Linux开发环境 31 2.1.2 设置环境变量 32 2.1.3 安装编译工具 32 2.2 获取Android源代码 33 2.3 分析并编译Android源代码 35 2.3.1 Android源代码的结构 35 2.3.2 编译Android源代码 40 2.3.3 运行Android源代码 42 2.3.4 实践演练——演示编译Android程序的两种方法 43 2.4 编译Android kernel 47 2.4.1 获取goldfish内核代码 47 2.4.2 获取msm内核代码 50 2.4.3 获取omap内核代码 50 2.4.4 编译Android的Linux内核 50 2.5 运行模拟器 52 2.5.1 Linux环境下运行模拟器的方法 53 2.5.2 模拟器辅助工具——adb 54 第3章 驱动需要移植 57 3.1 驱动开发需要做的工作 57 3.2 Android移植 59 3.2.1 移植的任务 60 3.2.2 移植的内容 60 3.2.3 驱动开发的任务 61 3.3 Android对Linux的改造 61 3.3.1 Android对Linux内核文件的改动 62 3.3.2 为Android构建 Linux的操作系统 63 3.4 内核空间和用户空间接口是一个媒介 64 3.4.1 内核空间和用户空间的相互作用 64 3.4.2 系统和硬件之间的交互 64 3.4.3 使用relay实现内核到用户空间的数据传输 66 3.5 三类驱动程序 70 3.5.1 字符设备驱动程序 70 3.5.2 块设备驱动程序 79 3.5.3 网络设备驱动程序 82 第4章 hal层深入分析 84 4.1 认识hal层 84 4.1.1 hal层的发展 84 4.1.2 过去和现在的区别 86 4.2 分析hal层源代码 86 4.2.1 分析hal moudle 86 4.2.2 分析mokoid工程 89 4.3 总结hal层的使用方法 98 4.4 传感器在hal层的表现 101 4.4.1 hal层的sensor代码 102 4.4.2 总结sensor编程的流程 104 4.4.3 分析sensor源代码看Android api 与硬件平台的衔接 104 4.5 移植总结 116 4.5.1 移植各个Android部件的方式 116 4.5.2 移植技巧之一——不得不说的辅助工作 117 第5章 goldfish下的驱动解析 125 5.1 staging驱动 125 5.1.1 staging驱动概述 125 5.1.2 binder驱动程序 126 5.1.3 logger驱动程序 135 5.1.4 lowmemorykiller组件 136 5.1.5 timed output驱动程序 137 5.1.6 timed gpio驱动程序 139 5.1.7 ram console驱动程序 139 5.2 wakelock和early_suspend 140 5.2.1 wakelock和early_suspend的原理 140 5.2.2 Android休眠 141 5.2.3 Android唤醒 144 5.3 ashmem驱动程序 145 5.4 pmem驱动程序 148 5.5 alarm驱动程序 149 5.5.1 alarm简析 149 5.5.2 alarm驱动程序的实现 150 5.6 usb gadget驱动程序151 5.7 Android paranoid驱动程序153 5.8 goldfish设备驱动154 5.8.1 framebuffer驱动155 5.8.2 键盘驱动159 5.8.3 实时时钟驱动程序160 5.8.4 tty终端驱动程序161 5.8.5 nandflash驱动程序162 5.8.6 mmc驱动程序162 5.8.7 电池驱动程序162 第6章 msm内核和驱动解析164 6.1 msm基础164 6.1.1 常见msm处理器产品164 6.1.2 snapdragon内核介绍165 6.2 移植msm内核简介166 6.3 移植msm168 6.3.1 makefile文件168 6.3.2 驱动和组件170 6.3.3 设备驱动172 6.3.4 高通特有的组件174 第7章 omap内核和驱动解析177 7.1 omap基础177 7.1.1 omap简析177 7.1.2 常见omap处理器产品177 7.1.3 开发平台178 7.2 omap内核178 7.3 移植omap体系结构180 7.3.1 移植omap平台180 7.3.2 移植omap处理器183 7.4 移植Android专用驱动和组件188 7.5 omap的设备驱动190 第8章 显示系统驱动应用195 8.1 显示系统介绍195 8.1.1 Android的版本195 8.1.2 不同版本的显示系统195 8.2 移植和调试前的准备196 8.2.1 framebuffer驱动程序196 8.2.2 硬件抽象层198 8.3 实现显示系统的驱动程序210 8.3.1 goldfish中的framebuffer驱动程序210 8.3.2 使用gralloc模块的驱动程序214 8.4 msm高通处理器中的显示驱动实现224 8.4.1 msm中的framebuffer驱动程序225 8.4.2 msm中的gralloc驱动程序227 8.5 omap处理器中的显示驱动实现235 第9章 输入系统驱动应用239 9.1 输入系统介绍239 9.1.1 Android输入系统结构元素介绍239 9.1.2 移植Android输入系统时的工作240 9.2 input(输入)驱动241 9.3 模拟器的输入驱动256 9.4 msm高通处理器中的输入驱动实现257 9.4.1 触摸屏驱动257 9.4.2 按键和轨迹球驱动264 9.5 omap处理器平台中的输入驱动实现266 9.5.1 触摸屏驱动267 9.5.2 键盘驱动267 第10章 振动器系统驱动269 10.1 振动器系统结构269 10.1.1 硬件抽象层271 10.1.2 jni框架部分272 10.2 开始移植273 10.2.1 移植振动器驱动程序273 10.2.2 实现硬件抽象层274 10.3 在msm平台实现振动器驱动275 第11章 音频系统驱动279 11.1 音频系统结构279 11.2 分析音频系统的层次280 11.2.1 层次说明280 11.2.2 media库中的audio框架281 11.2.3 本地代码284 11.2.4 jni代码288 11.2.5 java代码289 11.3 移植audio系统的必备技术289 11.3.1 移植audio系统所要做的工作289 11.3.2 分析硬件抽象层290 11.3.3 分析audioflinger中的audio硬件抽象层的实现291 11.4 真正实现audio硬件抽象层298 11.5 msm平台实现audio驱动系统298 11.5.1 实现audio驱动程序298 11.5.2 实现硬件抽象层299 11.6 oss平台实现audio驱动系统304 11.6.1 oss驱动程序介绍304 11.6.2 mixer305 11.7 alsa平台实现audio系统312 11.7.1 注册音频设备和音频驱动312 11.7.2 在Android中使用alsa声卡313 11.7.3 在omap平台移植Android的alsa声卡驱动322 第12章 视频输出系统驱动326 12.1 视频输出系统结构326 12.2 需要移植的部分328 12.3 分析硬件抽象层328 12.3.1 overlay系统硬件抽象层的接口328 12.3.2 实现overlay系统的硬件抽象层331 12.3.3 实现接口332 12.4 实现overlay硬件抽象层333 12.5 在omap平台实现overlay系统335 12.5.1 实现输出视频驱动程序335 12.5.2 实现overlay硬件抽象层337 12.6 系统层调用overlay hal的架构342 12.6.1 调用overlay hal的架构的流程342 12.6.2 s3c6410 Android overlay的测试代码346 第13章 openmax多媒体框架349 13.1 openmax基本层次结构349 13.2 分析openmax框架构成350 13.2.1 openmax总体层次结构350 13.2.2 openmax il层的结构351 13.2.3 Android中的openmax354 13.3 实现openmax il层接口354 13.3.1 openmax il层的接口354 13.3.2 在openmax il层中需要做什么361 13.3.3 研究Android中的openmax适配层361 13.4 在omap平台实现openmax il363 13.4.1 实现文件364 13.4.2 分析ti openmax il的核心365 13.4.3 实现ti openmax il组件实例368 第14章 多媒体插件框架373 14.1 Android多媒体插件373 14.2 需要移植的内容374 14.3 opencore引擎375 14.3.1 opencore层次结构375 14.3.2 opencore代码结构376 14.3.3 opencore编译结构377 14.3.4 opencore oscl381 14.3.5 实现opencore中的openmax部分383 14.3.6 opencore的扩展398 14.4 stagefright引擎404 14.4.1 stagefright代码结构404 14.4.2 stagefright实现openmax接口405 14.4.3 video buffer传输流程409 第15章 传感器系统415 15.1 传感器系统的结构415 15.2 需要移植的内容417 15.2.1 移植驱动程序417 15.2.2 移植硬件抽象层418 15.2.3 实现上层部分419 15.3 在模拟器中实现传感器424 第16章 照相机系统430 16.1 camera系统的结构430 16.2 需要移植的内容433 16.3 移植和调试433 16.3.1 v4l2驱动程序433 16.3.2 硬件抽象层441 16.4 实现camera系统的硬件抽象层446 16.4.1 java程序部分446 16.4.2 camera的java本地调用部分447 16.4.3 camera的本地库libui.so448 16.4.4 camera服务libcameraservice.so449 16.5 msm平台实现camera系统454 16.6 omap平台实现camera系统457 第17章 wi-fi系统、蓝牙系统和gps系统459 17.1 wi-fi系统459 17.1.1 wi-fi系统的结构459 17.1.2 需要移植的内容461 17.1.3 移植和调试461 17.1.4 omap平台实现wi-fi469 17.1.5 配置wi-fi的流程471 17.1.6 具体演练——在Android下实现ethernet473 17.2 蓝牙系统475 17.2.1 蓝牙系统的结构475 17.2.2 需要移植的内容477 17.2.3 具体移植478 17.2.4 msm平台的蓝牙驱动480 17.3 定位系统482 17.3.1 定位系统的结构483 17.3.2 需要移植的内容484 17.3.3 移植和调试484 第18章 电话系统498 18.1 电话系统基础498 18.1.1 电话系统简介498 18.1.2 电话系统结构500 18.2 需要移植的内容501 18.3 移植和调试502 18.3.1 驱动程序502 18.3.2 ril接口504 18.4 电话系统实现流程分析507 18.4.1 初始启动流程507 18.4.2 request流程509 18.4.3 response流程512 第19章 其他系统514 19.1 alarm警报器系统514 19.1.1 alarm系统的结构514 19.1.2 需要移植的内容515 19.1.3 移植和调试516 19.1.4 模拟器环境的具体实现518 19.1.5 msm平台实现alarm518 19.2 lights光系统519 19.2.1 lights光系统的结构520 19.2.2 需要移植的内容521 19.2.3 移植和调试521 19.2.4 msm平台实现光系统523 19.3 battery电池系统524 19.3.1 battery系统的结构524 19.3.2 需要移植的内容526 19.3.3 移植和调试526 19.3.4 在模拟器中实现电池系统529
书名:《Android底层开发技术实战详解——内核、移植和驱动》(电子工业出版社.王振丽)。本书从底层原理开始讲起,结合真实的案例向读者详细介绍了android内核、移植和驱动开发的整个流程。全书分为19章,依次讲解驱动移植的必要性,何为hal层深入分析,goldfish、msm、map内核和驱动解析,显示系统、输入系统、振动器系统、音频系统、视频输出系统的驱动,openmax多媒体、多媒体插件框架,传感器、照相机、wi-fi、蓝牙、gps和电话系统等。在每一章中,重点介绍了与Android驱动开发相关的底层知识,并对Android源码进行了剖析。 本书适合Android研发人员及Android爱好者学习,也可以作为相关培训学校和大专院校相关专业的教学用书。 全书压缩打包成3部分,这是第2部分。 目录: 第1章 Android底层开发基础 1 1.1 什么是驱动 1 1.1.1 驱动程序的魅力 1 1.1.2 电脑中的驱动 2 1.1.3 手机中的驱动程序 2 1.2 开源还是不开源的问题 3 1.2.1 雾里看花的开源 3 1.2.2 从为什么选择java谈为什么不开源驱动程序 3 1.2.3 对驱动开发者来说是一把双刃剑 4 1.3 Android和Linux 4 1.3.1 Linux简介 5 1.3.2 Android和Linux的关系 5 1.4 简析Linux内核 8 1.4.1 内核的体系结构 8 1.4.2 和Android密切相关的Linux内核知识 10 1.5 分析Linux内核源代码很有必要 14 1.5.1 源代码目录结构 14 1.5.2 浏览源代码的工具 16 1.5.3 为什么用汇编语言编写内核代码 17 1.5.4 Linux内核的显著特性 18 1.5.5 学习Linux内核的方法 26 第2章 分析Android源代码 31 2.1 搭建Linux开发环境和工具 31 2.1.1 搭建Linux开发环境 31 2.1.2 设置环境变量 32 2.1.3 安装编译工具 32 2.2 获取Android源代码 33 2.3 分析并编译Android源代码 35 2.3.1 Android源代码的结构 35 2.3.2 编译Android源代码 40 2.3.3 运行Android源代码 42 2.3.4 实践演练——演示编译Android程序的两种方法 43 2.4 编译Android kernel 47 2.4.1 获取goldfish内核代码 47 2.4.2 获取msm内核代码 50 2.4.3 获取omap内核代码 50 2.4.4 编译Android的Linux内核 50 2.5 运行模拟器 52 2.5.1 Linux环境下运行模拟器的方法 53 2.5.2 模拟器辅助工具——adb 54 第3章 驱动需要移植 57 3.1 驱动开发需要做的工作 57 3.2 Android移植 59 3.2.1 移植的任务 60 3.2.2 移植的内容 60 3.2.3 驱动开发的任务 61 3.3 Android对Linux的改造 61 3.3.1 Android对Linux内核文件的改动 62 3.3.2 为Android构建 Linux的操作系统 63 3.4 内核空间和用户空间接口是一个媒介 64 3.4.1 内核空间和用户空间的相互作用 64 3.4.2 系统和硬件之间的交互 64 3.4.3 使用relay实现内核到用户空间的数据传输 66 3.5 三类驱动程序 70 3.5.1 字符设备驱动程序 70 3.5.2 块设备驱动程序 79 3.5.3 网络设备驱动程序 82 第4章 hal层深入分析 84 4.1 认识hal层 84 4.1.1 hal层的发展 84 4.1.2 过去和现在的区别 86 4.2 分析hal层源代码 86 4.2.1 分析hal moudle 86 4.2.2 分析mokoid工程 89 4.3 总结hal层的使用方法 98 4.4 传感器在hal层的表现 101 4.4.1 hal层的sensor代码 102 4.4.2 总结sensor编程的流程 104 4.4.3 分析sensor源代码看Android api 与硬件平台的衔接 104 4.5 移植总结 116 4.5.1 移植各个Android部件的方式 116 4.5.2 移植技巧之一——不得不说的辅助工作 117 第5章 goldfish下的驱动解析 125 5.1 staging驱动 125 5.1.1 staging驱动概述 125 5.1.2 binder驱动程序 126 5.1.3 logger驱动程序 135 5.1.4 lowmemorykiller组件 136 5.1.5 timed output驱动程序 137 5.1.6 timed gpio驱动程序 139 5.1.7 ram console驱动程序 139 5.2 wakelock和early_suspend 140 5.2.1 wakelock和early_suspend的原理 140 5.2.2 Android休眠 141 5.2.3 Android唤醒 144 5.3 ashmem驱动程序 145 5.4 pmem驱动程序 148 5.5 alarm驱动程序 149 5.5.1 alarm简析 149 5.5.2 alarm驱动程序的实现 150 5.6 usb gadget驱动程序151 5.7 Android paranoid驱动程序153 5.8 goldfish设备驱动154 5.8.1 framebuffer驱动155 5.8.2 键盘驱动159 5.8.3 实时时钟驱动程序160 5.8.4 tty终端驱动程序161 5.8.5 nandflash驱动程序162 5.8.6 mmc驱动程序162 5.8.7 电池驱动程序162 第6章 msm内核和驱动解析164 6.1 msm基础164 6.1.1 常见msm处理器产品164 6.1.2 snapdragon内核介绍165 6.2 移植msm内核简介166 6.3 移植msm168 6.3.1 makefile文件168 6.3.2 驱动和组件170 6.3.3 设备驱动172 6.3.4 高通特有的组件174 第7章 omap内核和驱动解析177 7.1 omap基础177 7.1.1 omap简析177 7.1.2 常见omap处理器产品177 7.1.3 开发平台178 7.2 omap内核178 7.3 移植omap体系结构180 7.3.1 移植omap平台180 7.3.2 移植omap处理器183 7.4 移植Android专用驱动和组件188 7.5 omap的设备驱动190 第8章 显示系统驱动应用195 8.1 显示系统介绍195 8.1.1 Android的版本195 8.1.2 不同版本的显示系统195 8.2 移植和调试前的准备196 8.2.1 framebuffer驱动程序196 8.2.2 硬件抽象层198 8.3 实现显示系统的驱动程序210 8.3.1 goldfish中的framebuffer驱动程序210 8.3.2 使用gralloc模块的驱动程序214 8.4 msm高通处理器中的显示驱动实现224 8.4.1 msm中的framebuffer驱动程序225 8.4.2 msm中的gralloc驱动程序227 8.5 omap处理器中的显示驱动实现235 第9章 输入系统驱动应用239 9.1 输入系统介绍239 9.1.1 Android输入系统结构元素介绍239 9.1.2 移植Android输入系统时的工作240 9.2 input(输入)驱动241 9.3 模拟器的输入驱动256 9.4 msm高通处理器中的输入驱动实现257 9.4.1 触摸屏驱动257 9.4.2 按键和轨迹球驱动264 9.5 omap处理器平台中的输入驱动实现266 9.5.1 触摸屏驱动267 9.5.2 键盘驱动267 第10章 振动器系统驱动269 10.1 振动器系统结构269 10.1.1 硬件抽象层271 10.1.2 jni框架部分272 10.2 开始移植273 10.2.1 移植振动器驱动程序273 10.2.2 实现硬件抽象层274 10.3 在msm平台实现振动器驱动275 第11章 音频系统驱动279 11.1 音频系统结构279 11.2 分析音频系统的层次280 11.2.1 层次说明280 11.2.2 media库中的audio框架281 11.2.3 本地代码284 11.2.4 jni代码288 11.2.5 java代码289 11.3 移植audio系统的必备技术289 11.3.1 移植audio系统所要做的工作289 11.3.2 分析硬件抽象层290 11.3.3 分析audioflinger中的audio硬件抽象层的实现291 11.4 真正实现audio硬件抽象层298 11.5 msm平台实现audio驱动系统298 11.5.1 实现audio驱动程序298 11.5.2 实现硬件抽象层299 11.6 oss平台实现audio驱动系统304 11.6.1 oss驱动程序介绍304 11.6.2 mixer305 11.7 alsa平台实现audio系统312 11.7.1 注册音频设备和音频驱动312 11.7.2 在Android中使用alsa声卡313 11.7.3 在omap平台移植Android的alsa声卡驱动322 第12章 视频输出系统驱动326 12.1 视频输出系统结构326 12.2 需要移植的部分328 12.3 分析硬件抽象层328 12.3.1 overlay系统硬件抽象层的接口328 12.3.2 实现overlay系统的硬件抽象层331 12.3.3 实现接口332 12.4 实现overlay硬件抽象层333 12.5 在omap平台实现overlay系统335 12.5.1 实现输出视频驱动程序335 12.5.2 实现overlay硬件抽象层337 12.6 系统层调用overlay hal的架构342 12.6.1 调用overlay hal的架构的流程342 12.6.2 s3c6410 Android overlay的测试代码346 第13章 openmax多媒体框架349 13.1 openmax基本层次结构349 13.2 分析openmax框架构成350 13.2.1 openmax总体层次结构350 13.2.2 openmax il层的结构351 13.2.3 Android中的openmax354 13.3 实现openmax il层接口354 13.3.1 openmax il层的接口354 13.3.2 在openmax il层中需要做什么361 13.3.3 研究Android中的openmax适配层361 13.4 在omap平台实现openmax il363 13.4.1 实现文件364 13.4.2 分析ti openmax il的核心365 13.4.3 实现ti openmax il组件实例368 第14章 多媒体插件框架373 14.1 Android多媒体插件373 14.2 需要移植的内容374 14.3 opencore引擎375 14.3.1 opencore层次结构375 14.3.2 opencore代码结构376 14.3.3 opencore编译结构377 14.3.4 opencore oscl381 14.3.5 实现opencore中的openmax部分383 14.3.6 opencore的扩展398 14.4 stagefright引擎404 14.4.1 stagefright代码结构404 14.4.2 stagefright实现openmax接口405 14.4.3 video buffer传输流程409 第15章 传感器系统415 15.1 传感器系统的结构415 15.2 需要移植的内容417 15.2.1 移植驱动程序417 15.2.2 移植硬件抽象层418 15.2.3 实现上层部分419 15.3 在模拟器中实现传感器424 第16章 照相机系统430 16.1 camera系统的结构430 16.2 需要移植的内容433 16.3 移植和调试433 16.3.1 v4l2驱动程序433 16.3.2 硬件抽象层441 16.4 实现camera系统的硬件抽象层446 16.4.1 java程序部分446 16.4.2 camera的java本地调用部分447 16.4.3 camera的本地库libui.so448 16.4.4 camera服务libcameraservice.so449 16.5 msm平台实现camera系统454 16.6 omap平台实现camera系统457 第17章 wi-fi系统、蓝牙系统和gps系统459 17.1 wi-fi系统459 17.1.1 wi-fi系统的结构459 17.1.2 需要移植的内容461 17.1.3 移植和调试461 17.1.4 omap平台实现wi-fi469 17.1.5 配置wi-fi的流程471 17.1.6 具体演练——在Android下实现ethernet473 17.2 蓝牙系统475 17.2.1 蓝牙系统的结构475 17.2.2 需要移植的内容477 17.2.3 具体移植478 17.2.4 msm平台的蓝牙驱动480 17.3 定位系统482 17.3.1 定位系统的结构483 17.3.2 需要移植的内容484 17.3.3 移植和调试484 第18章 电话系统498 18.1 电话系统基础498 18.1.1 电话系统简介498 18.1.2 电话系统结构500 18.2 需要移植的内容501 18.3 移植和调试502 18.3.1 驱动程序502 18.3.2 ril接口504 18.4 电话系统实现流程分析507 18.4.1 初始启动流程507 18.4.2 request流程509 18.4.3 response流程512 第19章 其他系统514 19.1 alarm警报器系统514 19.1.1 alarm系统的结构514 19.1.2 需要移植的内容515 19.1.3 移植和调试516 19.1.4 模拟器环境的具体实现518 19.1.5 msm平台实现alarm518 19.2 lights光系统519 19.2.1 lights光系统的结构520 19.2.2 需要移植的内容521 19.2.3 移植和调试521 19.2.4 msm平台实现光系统523 19.3 battery电池系统524 19.3.1 battery系统的结构524 19.3.2 需要移植的内容526 19.3.3 移植和调试526 19.3.4 在模拟器中实现电池系统529

19,502

社区成员

发帖
与我相关
我的任务
社区描述
硬件/嵌入开发 嵌入开发(WinCE)
社区管理员
  • 嵌入开发(WinCE)社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧