MapReduce参数详解

又丑又萌的八戒 2013-04-02 09:38:13
1、Map-Reduce的逻辑过程

假设我们需要处理一批有关天气的数据,其格式如下:

按照ASCII码存储,每行一条记录
每一行字符从0开始计数,第15个到第18个字符为年
第25个到第29个字符为温度,其中第25位是符号+/-

0067011990999991950051507+0000+

0043011990999991950051512+0022+

0043011990999991950051518-0011+

0043012650999991949032412+0111+

0043012650999991949032418+0078+

0067011990999991937051507+0001+

0043011990999991937051512-0002+

0043011990999991945051518+0001+

0043012650999991945032412+0002+

0043012650999991945032418+0078+

现在需要统计出每年的最高温度。

Map-Reduce主要包括两个步骤:Map和Reduce

每一步都有key-value对作为输入和输出:

map阶段的key-value对的格式是由输入的格式所决定的,如果是默认的TextInputFormat,则每行作为一个记录进程处理,其中key为此行的开头相对于文件的起始位置,value就是此行的字符文本
map阶段的输出的key-value对的格式必须同reduce阶段的输入key-value对的格式相对应

对于上面的例子,在map过程,输入的key-value对如下:

(0, 0067011990999991950051507+0000+)

(33, 0043011990999991950051512+0022+)

(66, 0043011990999991950051518-0011+)

(99, 0043012650999991949032412+0111+)

(132, 0043012650999991949032418+0078+)

(165, 0067011990999991937051507+0001+)

(198, 0043011990999991937051512-0002+)

(231, 0043011990999991945051518+0001+)

(264, 0043012650999991945032412+0002+)

(297, 0043012650999991945032418+0078+)

在map过程中,通过对每一行字符串的解析,得到年-温度的key-value对作为输出:

(1950, 0)

(1950, 22)

(1950, -11)

(1949, 111)

(1949, 78)

(1937, 1)

(1937, -2)

(1945, 1)

(1945, 2)

(1945, 78)

在reduce过程,将map过程中的输出,按照相同的key将value放到同一个列表中作为reduce的输入

(1950, [0, 22, –11])

(1949, [111, 78])

(1937, [1, -2])

(1945, [1, 2, 78])

在reduce过程中,在列表中选择出最大的温度,将年-最大温度的key-value作为输出:

(1950, 22)

(1949, 111)

(1937, 1)

(1945, 78)

其逻辑过程可用如下图表示:


2、编写Map-Reduce程序

编写Map-Reduce程序,一般需要实现两个函数:mapper中的map函数和reducer中的reduce函数。

一般遵循以下格式:

map: (K1, V1) -> list(K2, V2)

public interface Mapper<K1, V1, K2, V2> extends JobConfigurable, Closeable {

void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter)

throws IOException;

}

reduce: (K2, list(V)) -> list(K3, V3)

public interface Reducer<K2, V2, K3, V3> extends JobConfigurable, Closeable {

void reduce(K2 key, Iterator<V2> values,

OutputCollector<K3, V3> output, Reporter reporter)

throws IOException;

}



对于上面的例子,则实现的mapper如下:

public class MaxTemperatureMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {

@Override

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(25) == '+') {

airTemperature = Integer.parseInt(line.substring(26, 30));

} else {

airTemperature = Integer.parseInt(line.substring(25, 30));

}

output.collect(new Text(year), new IntWritable(airTemperature));

}

}

实现的reducer如下:

public class MaxTemperatureReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {

int maxValue = Integer.MIN_VALUE;

while (values.hasNext()) {

maxValue = Math.max(maxValue, values.next().get());

}

output.collect(key, new IntWritable(maxValue));

}

}



欲运行上面实现的Mapper和Reduce,则需要生成一个Map-Reduce得任务(Job),其基本包括以下三部分:

输入的数据,也即需要处理的数据
Map-Reduce程序,也即上面实现的Mapper和Reducer
此任务的配置项JobConf

欲配置JobConf,需要大致了解Hadoop运行job的基本原理:

Hadoop将Job分成task进行处理,共两种task:map task和reduce task
Hadoop有两类的节点控制job的运行:JobTracker和TaskTracker
JobTracker协调整个job的运行,将task分配到不同的TaskTracker上
TaskTracker负责运行task,并将结果返回给JobTracker
Hadoop将输入数据分成固定大小的块,我们称之input split
Hadoop为每一个input split创建一个task,在此task中依次处理此split中的一个个记录(record)
Hadoop会尽量让输入数据块所在的DataNode和task所执行的DataNode(每个DataNode上都有一个TaskTracker)为同一个,可以提高运行效率,所以input split的大小也一般是HDFS的block的大小。
Reduce task的输入一般为Map Task的输出,Reduce Task的输出为整个job的输出,保存在HDFS上。
在reduce中,相同key的所有的记录一定会到同一个TaskTracker上面运行,然而不同的key可以在不同的TaskTracker上面运行,我们称之为partition
partition的规则为:(K2, V2) –> Integer, 也即根据K2,生成一个partition的id,具有相同id的K2则进入同一个partition,被同一个TaskTracker上被同一个Reducer进行处理。

public interface Partitioner<K2, V2> extends JobConfigurable {

int getPartition(K2 key, V2 value, int numPartitions);

}

下图大概描述了Map-Reduce的Job运行的基本原理:

image



下面我们讨论JobConf,其有很多的项可以进行配置:

setInputFormat:设置map的输入格式,默认为TextInputFormat,key为LongWritable, value为Text
setNumMapTasks:设置map任务的个数,此设置通常不起作用,map任务的个数取决于输入的数据所能分成的input split的个数
setMapperClass:设置Mapper,默认为IdentityMapper
setMapRunnerClass:设置MapRunner, map task是由MapRunner运行的,默认为MapRunnable,其功能为读取input split的一个个record,依次调用Mapper的map函数
setMapOutputKeyClass和setMapOutputValueClass:设置Mapper的输出的key-value对的格式
setOutputKeyClass和setOutputValueClass:设置Reducer的输出的key-value对的格式
setPartitionerClass和setNumReduceTasks:设置Partitioner,默认为HashPartitioner,其根据key的hash值来决定进入哪个partition,每个partition被一个reduce task处理,所以partition的个数等于reduce task的个数
setReducerClass:设置Reducer,默认为IdentityReducer
setOutputFormat:设置任务的输出格式,默认为TextOutputFormat
FileInputFormat.addInputPath:设置输入文件的路径,可以使一个文件,一个路径,一个通配符。可以被调用多次添加多个路径
FileOutputFormat.setOutputPath:设置输出文件的路径,在job运行前此路径不应该存在

当然不用所有的都设置,由上面的例子,可以编写Map-Reduce程序如下:

public class MaxTemperature {

public static void main(String[] args) throws IOException {

if (args.length != 2) {

System.err.println("Usage: MaxTemperature <input path> <output path>");

System.exit(-1);

}

JobConf conf = new JobConf(MaxTemperature.class);

conf.setJobName("Max temperature");

FileInputFormat.addInputPath(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(MaxTemperatureMapper.class);

conf.setReducerClass(MaxTemperatureReducer.class);

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);

}

}
3、Map-Reduce数据流(data flow)

Map-Reduce的处理过程主要涉及以下四个部分:

客户端Client:用于提交Map-reduce任务job
JobTracker:协调整个job的运行,其为一个Java进程,其main class为JobTracker
TaskTracker:运行此job的task,处理input split,其为一个Java进程,其main class为TaskTracker
HDFS:hadoop分布式文件系统,用于在各个进程间共享Job相关的文件

image
3.1、任务提交

JobClient.runJob()创建一个新的JobClient实例,调用其submitJob()函数。

向JobTracker请求一个新的job ID
检测此job的output配置
计算此job的input splits
将Job运行所需的资源拷贝到JobTracker的文件系统中的文件夹中,包括job jar文件,job.xml配置文件,input splits
通知JobTracker此Job已经可以运行了

提交任务后,runJob每隔一秒钟轮询一次job的进度,将进度返回到命令行,直到任务运行完毕。


3.2、任务初始化



当JobTracker收到submitJob调用的时候,将此任务放到一个队列中,job调度器将从队列中获取任务并初始化任务。

初始化首先创建一个对象来封装job运行的tasks, status以及progress。

在创建task之前,job调度器首先从共享文件系统中获得JobClient计算出的input splits。

其为每个input split创建一个map task。

每个task被分配一个ID。


3.3、任务分配



TaskTracker周期性的向JobTracker发送heartbeat。

在heartbeat中,TaskTracker告知JobTracker其已经准备运行一个新的task,JobTracker将分配给其一个task。

在JobTracker为TaskTracker选择一个task之前,JobTracker必须首先按照优先级选择一个Job,在最高优先级的Job中选择一个task。

TaskTracker有固定数量的位置来运行map task或者reduce task。

默认的调度器对待map task优先于reduce task

当选择reduce task的时候,JobTracker并不在多个task之间进行选择,而是直接取下一个,因为reduce task没有数据本地化的概念。


3.4、任务执行



TaskTracker被分配了一个task,下面便要运行此task。

首先,TaskTracker将此job的jar从共享文件系统中拷贝到TaskTracker的文件系统中。

TaskTracker从distributed cache中将job运行所需要的文件拷贝到本地磁盘。

其次,其为每个task创建一个本地的工作目录,将jar解压缩到文件目录中。

其三,其创建一个TaskRunner来运行task。

TaskRunner创建一个新的JVM来运行task。

被创建的child JVM和TaskTracker通信来报告运行进度。

3.4.1、Map的过程

MapRunnable从input split中读取一个个的record,然后依次调用Mapper的map函数,将结果输出。

map的输出并不是直接写入硬盘,而是将其写入缓存memory buffer。

当buffer中数据的到达一定的大小,一个背景线程将数据开始写入硬盘。

在写入硬盘之前,内存中的数据通过partitioner分成多个partition。

在同一个partition中,背景线程会将数据按照key在内存中排序。

每次从内存向硬盘flush数据,都生成一个新的spill文件。

当此task结束之前,所有的spill文件被合并为一个整的被partition的而且排好序的文件。

reducer可以通过http协议请求map的输出文件,tracker.http.threads可以设置http服务线程数。
3.4.2、Reduce的过程

当map task结束后,其通知TaskTracker,TaskTracker通知JobTracker。

对于一个job,JobTracker知道TaskTracer和map输出的对应关系。

reducer中一个线程周期性的向JobTracker请求map输出的位置,直到其取得了所有的map输出。

reduce task需要其对应的partition的所有的map输出。

reduce task中的copy过程即当每个map task结束的时候就开始拷贝输出,因为不同的map task完成时间不同。

reduce task中有多个copy线程,可以并行拷贝map输出。

当很多map输出拷贝到reduce task后,一个背景线程将其合并为一个大的排好序的文件。

当所有的map输出都拷贝到reduce task后,进入sort过程,将所有的map输出合并为大的排好序的文件。

最后进入reduce过程,调用reducer的reduce函数,处理排好序的输出的每个key,最后的结果写入HDFS。



image


3.5、任务结束



当JobTracker获得最后一个task的运行成功的报告后,将job得状态改为成功。

当JobClient从JobTracker轮询的时候,发现此job已经成功结束,则向用户打印消息,从runJob函数中返回。
...全文
290 1 打赏 收藏 转发到动态 举报
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
  • 打赏
  • 举报
回复
此帖准们为那些对map和reduce函数的参数对应不十分了解的人使用 我是小菜 求大侠指点
有前三章的内容 前言 第一部分 基础篇 第1章 阅读源代码前的准备 1.1 准备源代码学习环境 1.1.1 基础软件下载 1.1.2 如何准备Windows环境 1.1.3 如何准备Linux环境 1.2 获取Hadoop源代码 1.3 搭建Hadoop源代码阅读环境 1.3.1 创建Hadoop工程 1.3.2 Hadoop源代码阅读技巧 1.4 Hadoop源代码组织结构 1.5 Hadoop初体验 1.5.1 启动Hadoop 1.5.2 Hadoop Shell介绍 1.5.3 Hadoop Eclipse插件介绍 1.6 编译及调试Hadoop源代码 1.6.1 编译Hadoop源代码 1.6.2 调试Hadoop源代码 1.7 小结 第2章 MapReduce设计理念与基本架构 2.1 Hadoop发展史 2.1.1 Hadoop产生背景 2.1.2 Apache Hadoop新版本的特性 2.1.3 Hadoop版本变迁 2.2 Hadoop MapReduce设计目标 2.3 MapReduce编程模型概述 2.3.1 MapReduce编程模型简介 2.3.2 MapReduce编程实例 2.4 Hadoop基本架构 2.4.1 HDFS架构 2.4.2 Hadoop MapReduce架构 2.5 Hadoop MapReduce作业的生命周期 2.6 小结 第二部分 MapReduce编程模型篇 第3章 MapReduce编程模型 3.1 MapReduce编程模型概述 3.1.1 MapReduce编程接口体系结构 3.1.2 新旧MapReduce API比较 3.2 MapReduce API基本概念 3.2.1 序列化 3.2.2 Reporter参数 3.2.3 回调机制 3.3 Java API解析 3.3.1 作业配置与提交 3.3.2 InputFormat接口的设计与实现 3.3.3 OutputFormat接口的设计与实现 3.3.4 Mapper与Reducer解析 3.3.5 Partitioner接口的设计与实现 3.4 非Java API解析 3.4.1 Hadoop Streaming的实现原理 3.4.2 Hadoop Pipes的实现原理 3.5 Hadoop工作流 3.5.1 JobControl的实现原理 3.5.2 ChainMapperChainReducer的实现原理 3.5.3 Hadoop工作流引擎 3.6 小结
前言 致谢 关于本书 第1 部分 背景和基本原理 1 跳跃中的Hadoop 1.1 什么是Hadoop 1.1.1 Hadoop 的核心组件 1.1.2 Hadoop 生态圈 1.1.3 物理架构 1.1.4 谁在使用Hadoop 1.1.5 Hadoop 的局限性 1.2 运行Hadoop 1.2.1 下载并安装Hadoop 1.2.2 Hadoop 的配置 1.2.3 CLI 基本命令 1.2.4 运行MapReduce 作业 1.3 本章小结 第2 部分 数据逻辑. 2 将数据导入导出Hadoop. 2.1 导入导出的关键要素 2.2 将数据导入Hadoop . 2.2.1 将日志文件导入Hadoop 技术点1 使用Flume 将系统日志文件导入HDFS 2.2.2 导入导出半结构化和二进制文件 技术点2 自动复制文件到HDFS 的机制 技术点3 使用Oozie 定期执行数据导入活动 2.2.3 从数据库中拉数据 技术点4 使用MapReduce 将数据导入数据库 技术点5 使用Sqoop 从MySQL 导入数据 2.2.4 HBase 技术点6 HBase 导入HDFS 技术点7 将HBase 作为MapReduce 的数据源 2.3 将数据导出Hadoop 2.3.1 将数据导入本地文件系统 技术点8 自动复制HDFS 中的文件 2.3.2 数据库 技术点9 使用Sqoop 将数据导入MySQL 2.3.3 Hbase 技术点10 将数据从HDFS 导入HBase 技术点11 使用HBase 作为MapReduce 的数据接收器 2.4 本章小结 3 数据序列化――处理文本文件及其他格式的文件 3.1 了解MapReduce 中的输入和输出 3.1.1 数据输入 3.1.2 数据输出 3.2 处理常见的序列化格式 3.2.1 XML . 技术点12 MapReduce 和XML 3.2.2 JSON . 技术点13 MapReduce 和JSON . 3.3 大数据的序列化格式 3.3.1 比较SequenceFiles、Protocol Buffers、Thrift 和 Avro 3.3.2 Sequence File 技术点14 处理SequenceFile 3.3.3 Protocol Buffers 技术点15 整合Protocol Buffers 和MapReduce . 3.3.4 Thrift . 技术点16 使用Thrift 3.3.5 Avro 技术点17 MapReduce 的下一代数据序列化技术 3.4 自定义文件格式 3.4.1 输入输出格式 技术点18 输入和输出格式为CSV 的文件 3.4.2 output committing 的重要性 3.5 本章小结 第3 部分 大数据模式 4 处理大数据的MapReduce 模式 4.1 Join 4.1.1 Repartition Join 技术点19 优化repartition join 4.1.2 Replicated Join 4.1.3 Semi-join 技术点20 实现semi-join 4.1.4 为你的数据挑选最优的合并策略 4.2 排序 4.2.1 二次排序 技术点21 二次排序的实现 4.2.2 整体并行排序 技术点22 通过多个reducer 对key 进行排序 4.3 抽样 技术点23 蓄水池抽样(reservoir 抽样) 4.4 本章小结 5 优化HDFS 处理大数据的技术 5.1 处理小文件 技术点24 使用Avro 存储大量小文件 5.2 通过压缩提高数据存储效率 技术点25 选择合适的压缩解码器 技术点26 在HDFS、MapReduce、Pig 和Hive 中使用数据压缩 技术点27 在MapReduce、Hive 和Pig 中处理可分割的LZOP 5.3 本章小结 6 诊断和优化性能问题 6.1 衡量MapReduce 和你的环境 6.1.1 提取作业统计信息的工具 6.1.2 监控 6.2 确定性能问题的原因 6.2.1 了解哪些因素会影响MapReduce 作业的性能 6.2.2 map 端异常 技术点28 发现输入数据中的坑 技术点29 确定map 端数据倾斜问题 技术点30 判定map 任务吞吐量 技术点31 小文件 技术点32 不可切割的文件 6.2.3 reduce 端问题 技术点33 reducer 任务数过大或过小 . 技术点34 定位reduce 端数据倾斜问题 技术点35 确定reduce 任务是否存在整体吞吐量过低 技术点36 缓慢的洗牌(shuffle)和排序 . 6.2.4 任务的一般性能问题 技术点37 作业竞争和调度器限制 技术点
Hadoop是一个开源的MapReduce平台,设计运行在大型分布式集群环境中,提供查询和分析服务。尤其适用于大数据系统,Hadoop为苹果、eBay、LinkedIn、雅虎和Facebook等公司提供重要软件环境。它为开发者进行数据存储、管理以及分析提供便利的方法。   《Hadoop硬实战》收集了85个问题场景以及解决方案的实战演练。在关键问题领域对基础概念和实战方法做了权衡,例如导入导出、序列化,以及LZO压缩。你将会学习到每个技术的细节,以及当遇到一个具体问题时能够给出对应的解决方案。本书提供了结构良好且易于理解的例子,可用于应对你所遇到的问题。   《Hadoop硬实战》包含:   ·Hadoop和MapReduce的基本概念   ·85个实战和测试技术   ·真实的场景,实用的解决方案   ·如何整合MapReduce和R 前言 致谢 关于本书 第1 部分 背景和基本原理 1 跳跃中的Hadoop 1.1 什么是Hadoop 1.1.1 Hadoop 的核心组件 1.1.2 Hadoop 生态圈 1.1.3 物理架构 1.1.4 谁在使用Hadoop 1.1.5 Hadoop 的局限性 1.2 运行Hadoop 1.2.1 下载并安装Hadoop 1.2.2 Hadoop 的配置 1.2.3 CLI 基本命令 1.2.4 运行MapReduce 作业 1.3 本章小结 第2 部分 数据逻辑. 2 将数据导入导出Hadoop. 2.1 导入导出的关键要素 2.2 将数据导入Hadoop . 2.2.1 将日志文件导入Hadoop 技术点1 使用Flume 将系统日志文件导入HDFS 2.2.2 导入导出半结构化和二进制文件 技术点2 自动复制文件到HDFS 的机制 技术点3 使用Oozie 定期执行数据导入活动 2.2.3 从数据库中拉数据 技术点4 使用MapReduce 将数据导入数据库 技术点5 使用Sqoop 从MySQL 导入数据 2.2.4 HBase 技术点6 HBase 导入HDFS 技术点7 将HBase 作为MapReduce 的数据源 2.3 将数据导出Hadoop 2.3.1 将数据导入本地文件系统 技术点8 自动复制HDFS 中的文件 2.3.2 数据库 技术点9 使用Sqoop 将数据导入MySQL 2.3.3 Hbase 技术点10 将数据从HDFS 导入HBase 技术点11 使用HBase 作为MapReduce 的数据接收器 2.4 本章小结 3 数据序列化――处理文本文件及其他格式的文件 3.1 了解MapReduce 中的输入和输出 3.1.1 数据输入 3.1.2 数据输出 3.2 处理常见的序列化格式 3.2.1 XML . 技术点12 MapReduce 和XML 3.2.2 JSON . 技术点13 MapReduce 和JSON . 3.3 大数据的序列化格式 3.3.1 比较SequenceFiles、Protocol Buffers、Thrift 和 Avro 3.3.2 Sequence File 技术点14 处理SequenceFile 3.3.3 Protocol Buffers 技术点15 整合Protocol Buffers 和MapReduce . 3.3.4 Thrift . 技术点16 使用Thrift 3.3.5 Avro 技术点17 MapReduce 的下一代数据序列化技术 3.4 自定义文件格式 3.4.1 输入输出格式 技术点18 输入和输出格式为CSV 的文件 3.4.2 output committing 的重要性 3.5 本章小结 第3 部分 大数据模式 4 处理大数据的MapReduce 模式 4.1 Join 4.1.1 Repartition Join 技术点19 优化repartition join 4.1.2 Replicated Join 4.1.3 Semi-join 技术点20 实现semi-join 4.1.4 为你的数据挑选最优的合并策略 4.2 排序 4.2.1 二次排序 技术点21 二次排序的实现 4.2.2 整体并行排序 技术点22 通过多个reducer 对key 进行排序 4.3 抽样 技术点23 蓄水池抽样(reservoir 抽样) 4.4 本章小结 5 优化HDFS 处理大数据的技术 5.1 处理小文件 技术点24 使用Avro 存储大量小文件 5.2 通过压缩提高数据存储效率 技术点25 选择合适的压缩解码器 技术点26 在HDFS、MapReduce、Pig 和Hive 中使用数据压缩 技术点27 在MapReduce、Hive 和Pig 中处理可分割的LZOP 5.3 本章小结 6 诊断和优化性能问题 6.1 衡量MapReduce 和你的环境 6.1.1 提取作业统计信息的工具 6.1.2 监控 6.2 确定性能问题的原因 6.2.1 了解哪些因素会影响MapReduce 作业的性能 6.2.2 map 端异常 技术点28 发现输入数据中的坑 技术点29 确定map 端数据倾斜问题 技术点30 判定map 任务吞吐量 技术点31 小文件 技术点32 不可切割的文件 6.2.3 reduce 端问题 技术点33 reducer 任务数过大或过小 . 技术点34 定位reduce 端数据倾斜问题 技术点35 确定reduce 任务是否存在整体吞吐量过低 技术点36 缓慢的洗牌(shuffle)和排序 . 6.2.4 任务的一般性能问题 技术点37 作业竞争和调度器限制 技术点38 使用堆转储来查找未优化的用户代码 6.2.5 硬件性能问题 技术点39 查找硬件的失效 技术点40 CPU 竞争 . 技术点41 内存交换 技术点42 磁盘健康 技术点43 网络 6.3 可视化 技术点44 提取并可视化任务执行时间 6.4 优化 . 6.4.1 剖析MapReduce 的用户代码 技术点45 剖析map 和reduce 任务 6.4.2 参数配置 6.4.3 优化 shuffle 和 sort 阶段 技术点46 避免reducer 技术点47 过滤和投影 技术点48 使用 combiner 技术点49 超炫的使用比较器的快速排序 6.4.4 减轻倾斜 技术点50 收集倾斜数据 技术点51 减轻reducer 阶段倾斜 6.4.5 在MapReduce 中优化用户的Java 代码 6.4.6 数据序列化 6.5 本章小结 第4 部分 数据科学. 7 数据结构和算法的运用 7.1 使用图进行数据建模和解决问题 7.1.1 模拟图 7.1.2 最短路径算法 技术点52 找出两个用户间的最短距离 7.1.3 friends-of-friends(FoF) 技术点53 计算FoF 7.1.4 PageRank 技术点54 通过Web 图计算PageRank 7.2 Bloom filter 技术点55 在MapReduce 中并行创建Bloom filter 技术点56 通过MapReduce 对Bloom filter 进行semi-join 7.3 本章小结 8 结合R 和Hadoop 进行数据统计 8.1 比较R 和MapReduce 集成的几种方法 8.2 R 基础知识 8.3 R 和Streaming 8.3.1 Streaming 和map-only R 技术点57 计算股票日平均值 8.3.2 Streaming、R 和完整的MapReduce 技术点58 计算股票的累积均值 8.4 Rhipe――将客户端R 和Hadoop 进行集成 技术点59 使用Rhipe 计算CMA 8.5  RHadoop――更简单地在客户端集成R 和Hadoop 的技术 技术点60 使用RHadoop 计算CMA 8.6 本章小结 9 使用Mahout 进行预测分析 9.1 使用recommender 提供产品建议 9.1.1 相似性度量的可视化 9.1.2 GroupLens 数据集 9.1.3 基于用户的recommender 9.1.4 基于物品的recommender 技术点61 使用基于物品的recommender 进行电影评级 9.2 classification 9.2.1 编写一个手动na&iuml;ve Bayesian 分类器 9.2.2 可扩展的垃圾邮件侦测分类系统 技术点62 使用Mahout 训练和测试垃圾邮件分类器 9.2.3 其他分类算法 9.3 K-means clustering 9.3.1 简单介绍 9.3.2 并行执行K-means 技术点63 K-means 处理合成的二维数据集 9.3.3 K-means 和文本 9.3.4 其他Mahout clustering 算法 . 9.4 本章小结 第5 部分 驯服大象 10 深入解析 Hive 10.1 Hive 基础 10.1.1 安装 10.1.2 元存储 10.1.3 数据库、表、分区和存储 10.1.4 数据模型 10.1.5 查询语言 10.1.6 交互式和非交互式Hive 10.2 使用Hive 进行数据分析 10.2.1 序列化和反序列化 技术点64 载入日志文件 10.2.2 UDF、分区、分桶和压缩 技术点65 编写UDF 和压缩分区表 10.2.3 数据合并 技术点66 优化Hive 合并 10.2.4 分组、排序和explain 10.3 本章小结 11 Pig 流管道 11.1 Pig 基础 11.1.1 安装 11.1.2 架构 11.1.3 PigLatin. 11.1.4 数据类型 11.1.5 操作符和函数 11.1.6 交互式和非交互式的Pig 11.2 使用Pig 在日志数据中发现恶意行为者 11.2.1 加载数据 技术点67 加载Apache 日志文件 11.2.2 过滤和投影 技术点68 通过过滤和投影减少数据处理量 11.2.3 分组和聚合UDF 技术点69 IP 地址的分组和计数 11.2.4 使用UDF 进行定位 技术点70 使用分布式缓存进行IP 地理定位 11.2.5 流 技术点71 使用你的脚本合并Pig 11.2.6 合并 技术点72 在Pig 中合并数据 11.2.7 排序 技术点73 元组排序 11.2.8 存储数据 技术点74 在SequenceFiles 中存储数据 11.3 使用Pig 优化用户的工作流程 技术点75 通过4 步快速处理大数据 11.4 性能 技术点76 Pig 优化 11.5 本章小结 12 Crunch 及相关技术 12.1 什么是Crunch 12.1.1 背景和概念 12.1.2 基本原理 12.1.3 简单示例 12.2 发现日志中最热门的URL 技术点77 使用Crunch 进行日志解析和基本分析 12.3 合并 技术点78 Crunch 的repartition join 12.4 Cascading 12.5 本章小结 13 测试和调试. 13.1 测试 13.1.1 有效的单元测试的基本要素 13.1.2 MRUnit . 技术点79 MapReduce 函数、作业和管道的单元测试 13.1.3 LocalJobRunner 技术点80 用LocalJobRunner 进行重量级的作业测试 13.1.4 集成和QA 测试 13.2 调试用户空间的问题 13.2.1 访问任务日志 技术点81 检查任务日志 13.2.2 调试不可预期的输入 技术点82 定位input split 问题 13.2.3 调试JVM 配置 技术点83 解决任务的JVM 启动参数 13.2.4 高效调试的编码准则 技术点84 调试和错误处理 13.3 MapReduce 陷阱 技术点85 MapReduce 反模式 13.4 本章小结 附录A 相关技术 附录B Hadoop 内置的数据导入导出工具 附录C HDFS 解剖. 附录D 优化MapReduce 合并框架 索引

20,811

社区成员

发帖
与我相关
我的任务
社区描述
Hadoop生态大数据交流社区,致力于有Hadoop,hive,Spark,Hbase,Flink,ClickHouse,Kafka,数据仓库,大数据集群运维技术分享和交流等。致力于收集优质的博客
社区管理员
  • 分布式计算/Hadoop社区
  • 涤生大数据
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧