应用的所有权是否属于Intel?

woan521 2013-09-02 03:12:31
我的构思或应用的所有权是否属于Intel?
...全文
179 1 打赏 收藏 转发到动态 举报
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
ai_haili 2013-09-03
  • 打赏
  • 举报
回复
不。所有权仍然属于开发者,但Intel有权演示和推广此应用构思和/或演示应用 。
理解Microsoft专家认证程序 理解Microsoft认证的不同等级和类型 选择成为MCP(Microsft认证专家)的考试科目 选择成为MCSD的考试科目 选择成为MCT的考试科目 MCSE认证考试的科目 选择合适的MCSE课程组合 核心课程考试 选修课程考试 考试编号的识别 课程内容和考试内容的对照 理解微软的MCSE长远考虑 理解微软出题的方式 使用本书帮助备考 在Internet上寻找对考试有帮助的信息 寻求微软认可的课程指导 寻找高质量的和三方帮助 寻找可利用的评估软件拷贝 报名参加考试 考试的费用问题 考前的自我调整 使用考试中心提供的考试工具 参加模拟测试 熟悉使用计算机进行考试 充分利用考试时间 考题的形式 理解多重选择题型 理解对错题题型 理解多重选择多重答案题型 理解基于解决方案型的问题 理解“建议方法”类型的考题 分析考试结果 准备重新考试 合理安排考试课程的顺序 熟悉Windows系列产品 比较Windows NT Server和NT Workstation 比较Windows NT Workstaton和Windows 95 在Windowx 95和Windows NT Workstation之间作出选择 关于Microsoft Windows NT的70-069号考试:实现和支持Microsoft Windows NT Server 4.0 70-069号考试(实现和支持Microsoft Windows NT Server 4.0)覆盖的内容 Windows NT 4.0界面简介 Windows NT 4.0任务栏(taskbar)的使用 Windows NT回收站简介 Windows NT帐号简介 理解单域模型支持和帐号数量 安全认证号简介 使用管理向导(Administrative Wizards)创建帐号 使用Server Manager(服务器管理器)程序创建计算机帐号 Userver Manager for Domains(域的用户管理器)简介 使用User Mnager for Domains创建用户帐号 刷新用户帐号列表 用户帐号列表的排序 事件查看器(Event View)程序简介 筛选Event Viewer中的事件 授予用户在本地登录的权利 使用Windows NT诊断程序查看系统配置 激活“Windows NT Security(Windows NT安全)”对话框 理解登录验证过程 理解访问令牌(Access Token) Windows NT目录服务简介 理解Windows NT如何构造用户帐号数据库 使用Windows NT中的Ctrl+Alt+Del组合键 把Windows NT计算机设置成自动登录 改变Windows NT口令 用拨号网络登录 复制用户帐号 为简化多个帐号的创建工作而建立用户帐号模板 删除和重新命名用户帐号 理解保护缺省的Administrator帐号的重要性 重新命名管理员帐号 理解缺省的Guest帐户 Windows NT在哪里创建帐号 设置口令限制条件 设置用户登录地点 创建宿主文件夹 设置用户登录时间 创建临时用户帐号 重新设置用户帐号口令 修改多个用户帐号 自动注销有时间限制的用户 要求用户在下次登录时改变口令 设置帐号规则 设置用户口令永不过期 停用用户帐号 解开登录失败后的用户帐号 Windows NT组简介 理解用户权限和组的访问权限 理解用户和组的权利 分清权限(permission)和权利(right) 设置组成成员关系 理解全局帐号 理解本地帐号 定义Everyone组 Network组的详细说明 Inteactive组的详细说明 Administrators组的详细说明 Guest组的详细说明 Users组的详细说明 Print Operators组的详细说明 Backup Operators(帐户操作员)组的详细说明 Replicator(复制员)组的详细说明 Domain Guests(域客户)组的详细说明 Domain Users(域用户)组的详细说明 Domain Admins(域管理员)组的详细说明 赋予拨号进入权限 理解用户配置文件(User Profile) 为Windows用户创建并使用登录脚本文件(Logon Script) 创建漫游式用户配置文件(Roaming User Profile) 创建强制性用户配置文件(Mandatory User Profile) 为用户帐号分配一个配置文件 创建帐户时变量的使用 创建随机初始化口令 理解内建组(Built-in Group) 理解组和策略 设置主组(Primary Group) 理解删除一个组的影响 域控制器(Domain Controller)简介 成员服
以太坊是一个平台,它上面提供各种模块让用户来搭建应用,如果将搭建应用比作造房子,那么以太坊就提供了墙面、屋顶、地板等模块,用户只需像搭积木一样把房子搭起来,因此在以太坊上建立应用的成本和速度都大大改善。具体来说,以太坊通过一套图灵完备的脚本语言(Ethereum Virtual Machinecode,简称EVM语言)来建立应用,它类似于汇编语言。我们知道,直接用汇编语言编程是非常痛苦的,但以太坊里的编程并不需要直接使用EVM语言,而是类似C语言、python、Lisp等高级语言,再通过编译器转成Evm语言。上面所说的平台之上的应用,其实就是合约,这是以太坊的核心。合约是一个活在以太坊系统里的自动代理人,他有一个自己的以太币地址,当用户向合约的地址里发送一笔交易后,该合约就被激活,然后根据交易中的额外信息,合约会运行自身的代码,最后返回一个结果,这个结果可能是从合约的地址发出另外一笔交易。需要指出的是,以太坊中的交易,不单只是发送以太币而已,它还可以嵌入相当多的额外信息。如果一笔交易是发送给合约的,那么这些信息就非常重要,因为合约将根据这些信息来完成自身的业务逻辑。合约所能提供的业务,几乎是无穷无尽的,它的边界就是你的想象力,因为图灵完备的语言提供了完整的自由度,让用户搭建各种应用。白皮书举了几个例子,如储蓄账户、用户自定义的子货币等。 2013年年末,以太坊创始人Vitalik Buterin发布了以太坊初版白皮书,启动了项目。2014年7月24日起,以太坊进行了为期42天的以太币预售。2016年初,以太坊的技术得到市场认可,价格开始暴涨,吸引了大量开发者以外的人进入以太坊的世界。中国三大比特币交易所之二的火币网及OKCoin币行都于2017年5月31日正式上线以太坊。 [1] 自从进入2016年以来,那些密切关注数字货币产业的人都急切地观察着第二代加密货币平台以太坊的发展动向。作为一种比较新的利用比特币技术的开发项目,以太坊致力于实施全球去中心化且无所有权的的数字技术计算机来执行点对点合约。简单来说就是,以太坊是一个你无法关闭的世界计算机。加密架构与图灵完整性的创新型结合可以促进大量的新产业的出现。反过来,传统行业的创新压力越来越大,甚至面临淘汰的风险。比特币网络事实上是一套分布式的数据库,而以太坊则更进一步,她可以看作是一台分布式的计算机:区块链是计算机的ROM,合约是程序,而以太坊的矿工们则负责计算,担任CPU的角色。这台计算机不是、也不可能是免费使用的,不然任何人都可以往里面存储各种垃圾信息和执行各种鸡毛蒜皮的计算,使用它至少需要支付计算费和存储费,当然还有其它一些费用。最为知名的是2017年初以摩根大通、芝加哥交易所集团、纽约梅隆银行、汤森路透、微软、英特尔、埃森哲等20多家全球top金融机构和科技公司成立的企业以太坊联盟。而以太坊催生的加密货币以太币近期又成了继比特币之后受追捧的资产。  智能合约的潜在应用很多。彭博社商业周刊称它是“所有人共享但无法篡改的软件”。更高级的软件有可能用以太坊创建网络商店。  以太坊是一个平台,它上面提供各种模块让用户来搭建应用,如果将搭建应用比作造房子,那么以太坊就提供了墙面、屋顶、地板等模块,用户只需像搭积木一样把房子搭起来,因此在以太坊上建立应用的成本和速度都大大改善。具体来说,以太坊通过一套图灵完备的脚本语言(Ethereum Virtual Machinecode,简称EVM语言)来建立应用,它类似于汇编语言。我们知道,直接用汇编语言编程是非常痛苦的,但以太坊里的编程并不需要直接使用EVM语言,而是类似C语言、python、Lisp等高级语言,再通过编译器转成Evm语言。上面所说的平台之上的应用,其实就是合约,这是以太坊的核心。合约是一个活在以太坊系统里的自动代理人,他有一个自己的以太币地址,当用户向合约的地址里发送一笔交易后,该合约就被激活,然后根据交易中的额外信息,合约会运行自身的代码,最后返回一个结果,这个结果可能是从合约的地址发出另外一笔交易。需要指出的是,以太坊中的交易,不单只是发送以太币而已,它还可以嵌入相当多的额外信息。如果一笔交易是发送给合约的,那么这些信息就非常重要,因为合约将根据这些信息来完成自身的业务逻辑。合约所能提供的业务,几乎是无穷无尽的,它的边界就是你的想象力,因为图灵完备的语言提供了完整的自由度,让用户搭建各种应用。白皮书举了几个例子,如储蓄账户、用户自定义的子货币等。 2013年年末,以太坊创始人Vitalik Buterin发布了以太坊初版白皮书,启动了项目。2014年7月24日起,以太坊进行了为期42天的以太币预售。2016年初,以太坊的技术得到市场认可,价格开始暴涨,吸引了大量开发者以外的人进入以太坊的世界。中国三大比特币交易所之二的火币网及OKCoin币行都于2017年5月31日正式上线以太坊。 [1] 
1 介绍 LuaBind 是一个帮助你绑定C++和Lua的库.她有能力暴露 C++ 函数和类到 Lua . 她也有 能力支持函数式的定义一个Lua类,而且使之继承自C++或者Lua. Lua类可以覆写从 C++ 基类 继承来的虚函数. 她的目标平台是Lua 5.0 ,不能支持Lua 4.0 . 她利用模板原编程技术实现.这意味着,你不需要额外的预处理过程去编译你的工程(编译器 会替你完成全部的工作).这还意味着,你也不需要(通常)知道你注册的每一个函数的精确的签名. 因为,LuaBind库会在编译时生成所需的代码.这样做的不利点是,编译时间会随着需要注册的 文件的数目增加而增加.因此建议你把所有的需要注册的东西放到一个cpp文件里面. LuaBind 遵循 MIT 协议 发布. 我们非常希望听说有工程使用了LuaBind, 请告诉我们,如果你的工程使用了LuaBind. 主要的反馈渠道是 LuaBind邮件列表 .在 irc.freenode.net还可以找到一个IRC频道 #luabind . 2 功能 LuaBind支持: * 重载自由函数 * C++类导入Lua * 重载成员函数 * 操作符 * 属性 * 枚举 * Lua函数导入C++ * Lua类导入C++ * Lua类(单继承) * 从Lua或C++类继承 * 覆写C++类的虚函数 * 注册类型间隐式的类型转换 * 最好匹配式签名匹配 * 返回值策略和参数策略 3 可移植性 LuaBind 已经通过下面的编译器环境的测试: Visual Studio 7.1 Visual Studio 7.0 Visual Studio 6.0 (sp 5) Intel C++ 6.0 (Windows) GCC 2.95.3 (cygwin) GCC 3.0.4 (Debian/Linux) GCC 3.1 (SunOS 5.8) GCC 3.2 (cygwin) GCC 3.3.1 (cygwin) GCC 3.3 (Apple, MacOS X) GCC 4.0 (Apple, MacOS X) LuaBind被确认不能在 GCC 2.95.2 (SunOS 5.8) 下工作. Metrowerks 8.3 (Windows) 可以编译LuaBind,但是通不过常量测试.这就意味着常量 成员函数被视同非常量成员函数. 如果你测试了LuaBind和其他未列出的编译器的兼容性,请告诉我们你的结果. 4 构建LuaBind 为了抑制LuaBind的编译时间最好是将其编译为一个库. 这意味着你要不编译并连接LuaBind 库要不就添加其所有源码到你的工程里面.你必须确保LuaBind目录在你的编译器包含目录中. LuaBind需要Boost 1.32.0 或者 1.33.0 (只需要头文件即可). LuaBind还需要Lua. 官方的构建LuaBind的方式是通过 Boost.Build V2 . 为此,你需要设置两个环境变量: BOOST_ROOT 指向你的Boost安装目录 LUA_PATH 指向你的Lua目录.编译系统将假定包含文件和库文件分别放在 $(LUA_PATH)/include/ 和 $(LUA_PATH)/lib/. 为了向后兼容性,LuaBind在根目录下还保留了一个makefile.这可以构建库和测试程序.如果 你正在使用一个UNIX系统(或者 cygwin),他们将使得构建LuaBind静态库变得很简单.如果 你正在使用 Visual Studio ,很简单的包含 src 目录下的文件到你的工程即可. 构建LuaBind的时候,你可以设定一些选项来使得库更加符合你的需求.特别重要的是,你的应用 程序也必须使用和库一样的设定.可用的选项的介绍参见 Build options 章节. 如果你希望改变缺省的设置,推荐你通过修改命令行参数的方式来实现.(在Visual Studio 的工程设置项里面). 5 基本使用 为了使用LuaBind, 你必须包含 lua.h 和 LuaBind 的主要头文件: extern "C" { #include "lua.h" } #include 这些头文件提供了注册函数和类的功能. 如果你只是想获得函数或者类的支持,你可以分开 包含 luabind/function.hpp 和 luabind/class.hpp: #include #include 你需要去做的第一件事是 调用 luabind::open(lua_State*), 由此注册可以在Lua创建类 的函数并初始化 LuaBind需要使用的 状态机全局结构. 如果你不调用这个函数, 你会在后面 触发一个 断言 . 不没有一个对应的关闭函数.因为,一旦一个类被注册到Lua,真没有什么好 的方法去移除它.部分原因是任何剩余的类实例都将依赖其类. 当状态机被关闭的时候,所有 的一切都将被清理干净. LuaBind 的头文件不会直接包含 Lua.h , 而是透过 . 如果你 出于某种原因需要包含其他的Lua头文件,你可以修改此文件. 5.1 Hello World 新建一个控制台DLL工程, 名字是 luabind_test. #include #include #include extern "C" { #include "lua.h" #include "lauxlib.h" } void greet() { std::cout << "hello world!\n"; } extern "C" int luaopen_luabind_test(lua_State* L) { using namespace luabind; open(L); module(L) [ def("greet", &greet) ]; return 0; } 把生成的DLL和lua.exe/lua51.dll放在同一个目录下. Lua 5.1.2 Copyright (C) 1994-2007 Lua.org, PUC-Rio > require "luabind_test" > greet() Hello world! > 6 作用域 注册到Lua里面的所有东西要不注册于一个名空间下(Lua table)要不注册于全局作用域(lua module). 所有注册的东西必须放在一个作用域里面.为了定义一个模块, luabind::module 类必须被使用. 使用方式如下: module(L) [ // declarations ]; 这将会注册所有的函数或者类到 Lua 全局作用域. 如果你想要为你的模块设定一个名空间(类似标准模块), 你可以给构造函数设定一个名字,例如: module(L, "my_library") [ // declarations ]; 这里所有的申明都将被放置在 my_libary 表. 如果你想要嵌套名空间,你可以用 luabind::namespace_ 类. 它和 luabind::module 类似,除了构造器 没有lua_State* 输入参数.用例如下: module(L, "my_library") [ // declarations namespace_("detail") [ // library-private declarations ] ]; 你可能会想到,下面两个声明是等价的: module(L) [ namespace_("my_library") [ // declarations ] ]; module(L, "my_library") [ // declarations ]; 每一个声明必须用逗号分隔,例如: module(L) [ def("f", &f), def("g", &g), class_("A") .def(constructor), def("h", &h) ]; 更多实际的例子请参阅 绑定函数到Lua 和 绑定类到Lua 章节. 请注意, (如果你对性能有很高的需求)把你的函数放到表里面将增加查找函数的时间. 7 绑定函数到Lua 为了绑定函数到Lua,你可以使用函数 luabind::def(). 它的声明如下: template void def(const char* name, F f, const Policies&); * name 是该函数在Lua里面的名字 * F 是该函数的指针 * 策略参数是用来描述怎样处理该函数参数和返回值的.这是一个可选参数,参见 策略 章节. 下面的例子演示注册函数 float std::sin(float): module(L) [ def("sin", &std::sin) ]; 7.1 重载函数 如果你有同名函数需要注册到Lua, 你必须显示的给定函数的签名. 这可以让C++知道你指定的是哪一个函数. 例如, 如果你有两个函数, int f(const char*) 和 void f(int). module(L) [ def("f", (int(*)(const char*)) &f), def("f", (void(*)(int)) &f) ]; 7.2 签名匹配 LuaBind 将会生成代码来检查Lua栈的内容是否匹配你的函数的签名. 它会隐式的在 派生类之间进行类型转换,并且它会按照尽量少进行隐式类型转换的原则经行匹配.在 一个函数调用中,如果函数是重载过的,并且重载函数的参数匹配分不出好坏的话 (都经行同样次数的隐式类型转换),那么将产生一个二义性错误.这将生成一个运行时 错误,程序挂起在产生二义性调用的地方.一个简单的例子是,注册两个函数,一个函数 接受一个int参数,另外一个函数接受一个float参数. 因为Lua将不区别浮点数和整形数, 所以他们都是匹配的. 因为所有的重载是被测试过的,这将总是找到最好的匹配(不是第一个匹配).这样意味着, LuaBind可以处理签名的区别只是const和非const的重载函数. 例如,如果如下的函数和类被注册: struct A { void f(); void f() const; }; const A* create_a();所有权转移 为了正确处理所有权转移问题,create_a()将用来适配返回值策略. 参见 策略 章节. -Linker Lin 4/5/08 6:32 PM struct B: A {}; struct C: B {}; void g(A*); void g(B*); 执行以下 Lua 代码即结果: a1 = create_a() a1:f() -- 常量版本被调用 a2 = A() a2:f() -- 非常量版本被调用 a = A() b = B() c = C() g(a) -- calls g(A*) g(b) -- calls g(B*) g(c) -- calls g(B*) 7.3 调用Lua函数 为了调用一个Lua函数, 你可以或者用 call_function() 或者用 一个对象(object). template Ret call_function(lua_State* L, const char* name, ...) template Ret call_function(object const& obj, ...) call_function()函数有两个重载版本.一个是根据函数的名字来调用函数, 另一个是调用一个可以作为函数调用的Lua值. 使用函数名来调用的版本只能调用Lua全局函数. "..."代表传递给Lua函数的 可变个数的参数. 这使得你可以指定调用的策略.你可以通过 operator[] 来实现 这个功鞥.你可以同过方括号来指定策略,例如: int ret = call_function( L , "a_lua_function" , new complex_class() )[ adopt(_1) ]; 如果你想通过引用方式传递参数,你必须用Boost.Ref来包装一下. 例如: int ret = call_function(L, "fun", boost::ref(val)); 如果你想给一个函数调用指定自己的错误捕获处理函数(error handler),可以参阅 pcall errorfunc 章节的 set_pcall_callback . 7.4 使用Lua协程 为了使用Lua协程,你必须调用 lua_resume(),这就意味着你不能用先前介绍的函数 call_function()来开始一个协程.你必须用这个: template Ret resume_function(lua_State* L, const char* name, ...) template Ret resume_function(object const& obj, ...) 和: template Ret resume(lua_State* L, ...) 第一次开始一个协程的时候,你必须给它一个入口函数. 当一个协程返回(yield)的时候, resume_fucntion()调用的返回值是 lua_yield()的第一个传入参数.当你想要继续一个 协程的时候,你只需要调用 resume() 在你的 lua_State() 上,因为它已经在执行一个函数 (即先前出入的入口函数),所以你不需要再次传入函数.resume()的传入参数将作为Lua侧的 yield()调用的返回值. 为了暂停(yielding)C++函数,(不支持在C++侧和Lua侧传送数据块),你可以使用 yield 策略. 接受 object 参数的resume_function()的重载版本要求对象必须是一个协程对象.(thread) lua_State* thread = lua_newthread(L); object fun = get_global(thread)["my_thread_fun"]; resume_function(fun); 8 绑定类到Lua 为了注册一个类,你可以用 class_ 类. 它的名字和C++关键字类似是为了比较直观.它有一个重载 过的成员函数 def() .这个函数被用来注册类的成员函数,操作符,构造器,枚举和属性.它将返回 this 指针,从而方便你直接注册更多的成员. 让我们开始一个简单的例子.考虑下面的C++类: class testclass { public: testclass(const std::string& s): m_string(s) {} void print_string() { std::cout << m_string << "\n"; } private: std::string m_string; }; 为了注册这个类到Lua环境,可以像下面这样写(假设你使用了名空间): module(L) [ class_("testclass") .def(constructor()) .def("print_string", &testclass::print_string) ]; 这将注册 testclass 类以及接受一个string参数的构造器以及一个成员叫print_string()的函数. Lua 5.0 Copyright (C) 1994-2003 Tecgraf, PUC-Rio > a = testclass('a string') > a:print_string() a string 还可以注册自由函数作为成员函数.对这个自由函数的要求是,它必须接受该类的一个指针或常量指针或 引用或常量引用作为函数的第一个参数.该函数的剩下的参数将在Lua侧可见,而对象指针将被赋值给第一个 参数.如果我们有如下的C++代码: struct A { int a; }; int plus(A* o, int v) { return o->a + v; } 你可以注册 plus() 作为A的一个成员函数,如下: class_("A") .def("plus", &plus) plus() 现在能够被作为A的一个接受一个int参数的成员函数来调用.如果对象指针(this指针)是const, 这个函数也将表现的像一个常量成员函数那样(它可以通过常量对象来调用). 8.1 重载成员函数 当绑定超过一个以上的重载过的成员函数的时候,或只是绑定其中的一个的时候,你必须消除你传递给 def() 的 成员函数指针的歧义.为此,你可以用普通C风格的类型转换来转型匹配正确的重载函数. 为此,你必须知道怎么去 描述C++成员函数的类型.这里有一个简短的教程(更多信息请查阅你的C++参考书): 成员函数指着的语法如下: return-value (class-name::*)(arg1-type, arg2-type, ...) 例如: struct A { void f(int); void f(int, int); }; class_() .def("f", (void(A::*)(int))&A::f) A的第一个成员函数f(int)被绑定了,而第二个没哟被绑定. 8.2 属性 很容易注册类的全局数据成员.考虑如下的类: struct A { int a; }; 这个类可以这样注册: module(L) [ class_("A") .def_readwrite("a", &A::a) ]; 这使得成员变量 A::a 获得了读写访问权. 还可以注册一个只读的属性: module(L) [ class_("A") .def_readonly("a", &A::a) ]; 当绑定成员是一个非原始数据类型的时候,自动生成的 getter 函数将会返回一个它引用. 这就允许你可以链式使用 . 操作符.例如,当有一个结构体包含另外一个结构体的时候.如下: struct A { int m; }; struct B { A a; }; 当绑定B到Lua的时候,下面的表达式应该可以工作: b = B() b.a.m = 1 assert(b.a.m == 1) 这要求 a 属性必须返回一个A的引用, 而不是一个拷贝. 这样,LuaBind将会自动使用依赖策略来 确保返回值依赖于它所在的对象.所以,如果返回的引用的生命长于该对象的所有的引用(这里是b). 它将保持对象是激活的,从而避免出现悬挂指针. 你还可以注册 getter 或者 setter 函数来使得它们看上去像一个 public 的成员.考虑下面的类: class A { public: void set_a(int x) { a = x; } int get_a() const { return a; } private: int a; }; 可以这样注册成一个公共数据成员: class_("A") .property("a", &A::get_a, &A::set_a) 这样 set_a() 和 get_a() 将取代简单的数据成员操作.如果你想使之只读,你只需要省略最后一个参数. 请注意, get 函数必须是 const 的,否则不能通过编译. 8.3 枚举 如果你的类包含枚举,你可以注册它们到Lua. 注意,它们不是类型安全的,所有的枚举在Lua侧都是整型的, 并且所有接受枚举参数的函数都将接受任何整型.你可以像这样注册它们: module(L) [ class_("A") .enum_("constants") [ value("my_enum", 4), value("my_2nd_enum", 7), value("another_enum", 6) ] ]; 在Lua侧,他们可以像数据成员那样被操作,除了它们是只读的而且属于类本身而不是类的实例. Lua 5.0 Copyright (C) 1994-2003 Tecgraf, PUC-Rio > print(A.my_enum) 4 > print(A.another_enum) 6 8.4 操作符 为了绑定操作符,你需要包含头文件 . 注册你的类的操作符的机制非常的简单.你通过一个全局名字 luabind::self 来引用类自己,然后你就 可以在def()调用里面直接用操作符表达式. 类如下: struct vec { vec operator+(int s); }; 可以这样注册: module(L) [ class_("vec") .def(self + int()) ]; 不管你的 + 操作符是定义在类里面还是自由函数都可以工作. 如果你的操作符是常量的(const)(或者,是一个自由函数, 接受一个类的常量的引用)你必须用 const_self 替代 self. 如下: module(L) [ class_("vec") .def(const_self + int()) ]; 支持如下操作符: + - * / == < <= 这意味着,没有"就地操作符"(in-place)(++ --). 相等操作符(==)有些敏锐;如果引用是相等的就不会 被调用. 这意味着, 相等操作符的效率非常好. Lua不支持操作符包括: !=,>和<=.这是为什么你只能注册上面那些操作符. 当你调用这些操作符的时候, Lua会把调用转换到支持的操作符上.(译注:例如:==和!=有逻辑非得关系) -Linker Lin 4/6/08 11:09 PM 在上面的示例中,操作数的类型是 int().如果操作数的类型是复杂类型,就不是那么简单了,你需要用 other<> 来包装下.例如: 为了注册如下的类,我们不想用一个string的实例来注册这个操作符. struct vec { vec operator+(std::string); }; 取而代之的是,我们用 other<> 包装下,如下: module(L) [ class_("vec") .def(self + other()) ]; 注册一个应用程序操作符(函数调用): module(L) [ class_("vec") .def( self(int()) ) ]; 这里有个特殊的操作符.在Lua里,它叫做 __tostring,它不是一个真正的操作符.它是被用来转换一个对象到 string的标准Lua方法.如果你注册之,可以通过Lua的标准函数 tostring() 来转换你的对象到一个string. 为了在C++里实现这个操作符,你需要为 std::ostream 提供 operator<< .像这样: class number {}; std::ostream& operator<<(std::ostream&, number&); ... module(L) [ class_("number") .def(tostring(self)) ]; 8.5 嵌套作用域和静态函数 可以添加嵌套的作用域到一个类.当你需要包装一个嵌套类或者一个静态函数的时候就会很有用. class_("foo") .def(constructor<>() .scope [ class_("nested"), def("f", &f) ]; 在上面的例子里, f 将表现的像一个类 foo 的静态函数,而 类 nested 将表现的像类 foo 的嵌套类. 还可以用同样的语法添加名空间到类里面. 8.6 继承类 如果你想要注册一个继承自其它类的类到Lua, 你可以指定一个模板参数 bases<> 给 class_ 的构造器. 如下的继承关系: struct A {}; struct B : A {}; 可以这样注册: module(L) [ class_("A"), class_("B") ]; 如果你使用了多继承,你可以指定多于一个的基类.如果 B 还继承了类 C , 它可以这样注册: module(L) [ class_ >("B") ]; 注意,你可以省去 bases<> 当你用的是单继承的时候. 注意 如果你不指定类的继承关系, LuaBind 将不能在相关的继承类型间进行隐式类型转换. 8.7 智能指针 当你注册一个类的时候,你可以告诉 LuaBind 所有的该类的实例应该被某种智能指针持有.(例如: boost::shared_ptr) 你可通过把一个 持有器类型模板参数 给 class_ 类的构造器来实现该功能.例如: module(L) [ class_ >("A") ]; 你还必须为你的智能指针提供两个函数.一个返回常量版本的智能指针类型(这里是: boost:shared_ptr< const A >). 另一个函数要可以从智能指针萃取流指针(raw pointer). 之所以需要第一个函数是因为,LuaBind 允许 非常量 -> 转换在传递Lua值到C++的时候.之所以需要第二个函数是因为,当Lua调用一个被智能指针持有 的类的成员函数的时候,this 指针必须是一个流指针.还有一个原因是,从Lua转换到C++的时候,需要实现 智能指针到普通指针的转换.看上去像这样: namespace luabind { template T* get_pointer(boost::shared_ptr& p) { return p.get(); } template boost::shared_ptr* get_const_holder(boost::shared_ptr*) { return 0; } } 第二个函数只在编译时用于映射 boost::shared_ptr到其常量版本 boost::shared_ptr. 它从来不会被调用,所以返回值是无所谓的(返回值的类型才是关键). 这个转换将这样工作(假定 B 是A的基类): 从Lua到C++ Source Target holder_type A* holder_type B* holder_type A const* holder_type B const* holder_type holder_type holder_type holder_type holder_type A const* holder_type B const* holder_type holder_type holder_type holder_type holder_type holder_type const& holder_type holder_type const& holder_type 当使用持有器类型的时候,知道指针是不是合法(例如:非空)是很有用的.例如,当使用 std::auto_ptr 的时候, 持有器通过一个参数传递给函数的时候将会变得无效. 为了这个目的,所有的对象实例都有一个成员叫: __ok. struct X {}; void f(std::auto_ptr); module(L) [ class_ >("X") .def(constructor<>()), def("f", &f) ]; Lua 5.0 Copyright (C) 1994-2003 Tecgraf, PUC-Rio > a = X() > f(a) > print a.__ok false 当注册一个继承树的时候,所有的实例被智能指针持有的地方,所有的类必须包含持有器类型.例如: module(L) [ class_ >("base") .def(constructor<>()), class_ >("base") .def(constructor<>()) ]; 在内部, LuaBind 将会做必要的转换于萃取自持有器的流指针之上. 8.8 拆分类注册 在某些情况下,可能需要分开注册一个类在不同的编译单元. 部分原因可能是节约重编译时间,而某些编译器的 限制可能要求不得不分开注册一个类.其实很简单.考虑下面的示例代码: void register_part1(class_& x) { x.def(/*...*/); } void register_part2(class_& x) { x.def(/*...*/); } void register_(lua_State* L) { class_ x("x"); register_part1(x); register_part2(x); module(L) [ x ]; } 这里,类X被分两步注册.两个函数 register_part 和 register_part2 可能被放到不同的编译单元里. 关于分开注册一个模块的信息请参阅: 分开注册 章节. 9 对象 因为函数必须能够接受Lua值作为参数,我们必须包装之. 这个包装被称作 luabind::object. 如果你注册的函数 接受一个对象,那它就可以匹配任何Lua值.为了使用它,你需要包含头文件: . 摘要 class object { public: template object(lua_State*, T const& value); object(from_stack const&); object(object const&); object(); ~object(); lua_State* interpreter() const; void push() const; bool is_valid() const; operator safe_bool_type () const; template implementation-defined operator[](Key const&); template object& operator=(T const&); object& operator=(object const&); bool operator==(object const&) const; bool operator<(object const&) const; bool operator<=(object const&) const; bool operator>(object const&) const; bool operator>=(object const&) const; bool operator!=(object const&) const; template implementation-defined operator[](T const& key) const void swap(object&); implementation-defined operator()(); template implementation-defined operator()(A0 const& a0); template implementation-defined operator()(A0 const& a0, A1 const& a1); /* ... */ }; 当你需要一个Lua对象的时候,你可以通过=操作符给它赋一个新值.当你这么做的时候,default_policy 会被用来转换C++值到Lua. 如果你的 luabind::object 是一个table,你可以通过 []操作符或者迭代器 来访问它的成员.[]操作符的返回值是一个代理对象,这个对象可以用于读写表里的值(通过=操作符). 注意,没有办法知道一个Lua对象是否可以索引化访问( lua_gettable 不会失败,要不成功,要不崩溃 ). 这意味着,如果你在一个不可以索引化访问的东西上进行索引,你就只能靠自己了.Lua将会调用它的 panic() 函数. 还有一些自由函数可以用来索引一张table,参阅 相关函数 章节. 那个接受 from_stack 对象作为参数的构造器是用来初始化一个关联Lua栈值的对象的. from_stack 类型 有如下的构造器: from_stack(lua_State* L, int index); index参数就是原始的Lua栈的索引,负值是从栈顶开始索引的.你可以这样用: object o(from_stack(L, -1)); 这将会创建一个 object的实例 o,并拷贝Lua栈顶的对象的值. interpreter() 函数返回保存object实例的Lua状态机.如果你想要直接用Lua函数操作object对象的实例,你 可以通过调用 push() 来把它压入Lua栈. ==操作符将会在操作数上调用 lua_equal()并返回它的结果. is_valid() 函数会告诉你object的实例是否已经初始化过了.通过默认构造器来初始化的实例是非法的.要使之 合法,你可以给其赋一个值.如果你想使一个 object 不合法,最简单的办法就是给它赋一个非法的 object. operator safe_bool_type() 和 to is_valid() 是等价的.这意味着,下面的代码片段是等价的: object o; // ... if (o) { // ... } ... object o; // ... if (o.is_valid()) { // ... } 应用程序操作符() 将会像对待一个函数那样来调用绑定的值. 你可以给它任何数量的参数 (目前, default_policy 将被用于转换 ).返回的对象将代表函数的返回值(当前只支持一个返回值).该操作符 可能会抛出 luabind::error ,如果函数调用失败.如果你想指定一个特殊的函数调用策略,你可以通过在函数 调用时使用 []操作符来指定策略.像这样: my_function_object( 2 , 8 , new my_complex_structure(6) ) [ adopt(_3) ]; 这告诉 LuaBind 让 Lua 接受所有权和负责传入给lua函数的指针. 重要的是当Lua状态机关闭的时候,所有的 object 的实例都会被析构.object实例会持有Lua状态机的指针,并在 自己析构的时候释放它的Lua对象. 这里有一个函数怎样使用 table 的例子: void my_function(object const& table) { if (type(table) == LUA_TTABLE) { table["time"] = std::clock(); table["name"] = std::rand() < 500 ? "unusual" : "usual"; std::cout << object_cast(table[5]) << "\n"; } } 如果函数接受一个object作为参数,那么任何Lua值都将匹配这个参数.这就是为什么,我们必须保证入参是一个table 的原因. std::ostream& operator<<(std::ostream&, object const&); 流操作符可以把object实例借由 boost::lexical_cast 转换到string或者方便打印输出.这将会使用Lua的string 转换函数.如果你用 tostring 去转换一个C++对象,对应类型的流操作符将会被使用. 9.1 迭代器 有两种迭代器. 普通迭代器将会使用对象的原方法(如果存在)来获取值. 普通迭代器被称为 luabind::iterator. 另一个 迭代器被称为 luabind::raw_iterator ,它将忽略原方法而直接给出表里的真实内容. 它们具有相同的接口, 都实现了 ForwardIterator 概念.大部分标准迭代器都有如下的成员和构造器: class iterator { iterator(); iterator(object const&); object key() const; standard iterator members }; 接受一个 luabind::object 的构造器实际上是一个用于操作 object 的模板.通过传入一个 object 给构造器来构造出 一个指向 object 里的第一个元素的迭代器. 缺省的构造器将会初始化迭代器为一个指向最后一个元素的后面位置的迭代器.这可以用来测试是否抵达了序列的末端. 迭代器的值类型是一个支持和 luabind::object 相同的操作的代理类型.这意味着,大部分情况下你可以当它就是一个原始 的 object 实例. 它们之间的不同之处在于,任何对代理的赋值操作都会导致值被插入到表中迭代器所指的位置. key() 成员返回迭代器用于索引表的键. 一个迭代器的例子如下: for (iterator i(globals(L)["a"]), end; i != end; ++i) { *i = 1; } end 迭代器是一个缺省的指向序列末尾的迭代器.在这个例子里,我们简单的迭代了表 a 里面所有的实体,并将之赋值为 1. 9.2 相关函数 这里介绍些用于 对象 和 表 操作的函数. int type(object const&); 这个函数将会返回lua类型索引.例如: . LUA_TNIL, LUA_TNUMBER 等. template void settable(object const& o, K const& key, T const& value); template object gettable(object const& o, K const& key); template void rawset(object const& o, K const& key, T const& value); template object rawget(object const& o, K const& key); 这些函数是用来索引 table 用的. settable 和 gettable 函数分别翻译调用到 lua_settable 和 lua_gettable 函数. 这意味着,你可以在对象上使用索引操作符. rawset 和 rawget 将会翻译调用到 lua_rawset 和 lua_rawget. 所以他们可以绕开任何原方法而给你表里实体的 真实值. template T object_cast(object const&); template T object_cast(object const&, Policies); template boost::optional object_cast_nothrow(object const&); template boost::optional object_cast_nothrow(object const&, Policies); object_cast 函数转型对象的值到C++值.你可以给这个从lua到C++的转换提供一个转换策略.如果转型失败, cast_failed 异常将被抛出. 如果你已经定义了 LUABIND_NO_ERROR_CHECKING (参阅 编译选项)宏,就不会 进行任何检查,如果转型非法,应用程序将会彻底崩溃. 不抛出异常的版本会返回一个没有初始化的 boost::optional 对象,由此来指出转型不能进行. 上面的函数的签名确实是模板化的 object 参数,但是这里你应该只传递 object 对象. object globals(lua_State*); object registry(lua_State*); 这些函数分别返回全局环境表和Lua注册表. object newtable(lua_State*); 这个函数创建一个新的 table 并以一个 object 来返回它. 10 在Lua里定义类 作为一个附加功能,LuaBind还提供了一个 Lua侧OO系统来绑定C++函数和对象. class 'lua_testclass' function lua_testclass:__init(name)-- 译注:这个风格类似Python的OO语法 self.name = name end function lua_testclass:print() print(self.name) end a = lua_testclass('example') a:print() 在Lua类之间可以使用继承: class 'derived' (lua_testclass) function derived:__init() super('derived name') end function derived:print() print('Derived:print() -> ') lua_testclass.print(self)-- 译注:注意这里 : 和 . 的区别 end 这里的 super 关键字用来初始化基类.用户必须在构造器里面第一个调用 super. 正如你在这个例子里看到的,你可以调用基类的成员函数.你可以找到所有的基类成员,但是你必须把 this指针(self) 做为函数的第一个参数. 10.1 在Lua里继承 你还可以从Lua侧继承一个C++类,并用Lua函数来覆写虚函数.为了实现这个,我们必须为C++基类创建一个封装类. 当我们实例化一个Lua类的时候,这个封装类将持有Lua对象. class base { public: base(const char* s) { std::cout << s << "\n"; } virtual void f(int a) { std::cout << "f(" << a << ")\n"; } }; struct base_wrapper : base, luabind::wrap_base { base_wrapper(const char* s) : base(s) {} virtual void f(int a) { call("f", a); } static void default_f(base* ptr, int a) { return ptr->base::f(a); } }; ... module(L) [ class_("base") .def(constructor()) .def("f", &base::f, &base_wrapper::default_f) ]; 重要 因为MSVC6.5不支持成员函数的显示模板参数化,作为成员函数 call()的替代, 你可以调用自由函数 call_member()并把 this指针作为第一个参数传入该函数. 注意,如果你同时绑定 base 类 和 base类封装,你必须把基类和基类的封装一起作为模板参数提供给 class_ (就像上面的例子中所做的一样).你指定它们的顺序并不重要.你必须还要从wrapper注册静态版本的和虚函数版 本的封装函数,这是让LuaBind实现动态和静态分派函数调用的必须. 重要 极其重要的是静态(缺省)函数的签名必须和虚函数一致.
前言 引言 本书说明Unix系统的程序设计界面—系统调用界面和标准C提供的很多函数。这些对编写在Unix系统中运行的程序是非常有帮助的。 与大多数操作系统一样,Unix对程序运行提供了大量的服务—打开文件、读文件、启动一道新程序、分配存储区以及获得当前时间等。这些被称之为系统调用界面(system call interface)。另外,标准C库提供了大量C程序广泛使用的函数(格式化输入变量的值、比较两个字符串等)。 系统调用和库函数系统上由Unix程序员手册中的第2,3部分说明。本书不是这些内容的重复。该手册没有给出实例,也不说明这些界面和函数设计的合理性,而这些则正是本书所要弥补的。 Unix标准 在八十年代出现的大量Unix版本的基础上,八十年代后期开始制定了几个国际标准,包括:C程序设计语言的ANSI标准、IEEE POSIX标准族(还在继续制定)、X/open可移植性指南。 本书也说明这些标准,但是并不只是说明这些标准本身,而是着重说明它们与广泛受到重视的一些实现之间的关系,这些实现主要是系统V版本4,以及将发布的4.4BSD。这样也就提供了一种对现实世界的说明,而这正是标准本身及描述符的文献所缺少的。 本书的组织   本书分成6个部分: 1. 对Unix程序设计概念和术语的概要描述(第一章),以及对各种Unix标准化工作和Unix实现的讨论(第二章)。 2. 不带缓存的I/O(第三章)、文件和目录(第四章、标准I/O库(第五章)以及系统数据文件(第六章)。 3. 进程—Unix进程的环境(第七章)、进程控制(第八章)、进程之间的关系(第九章)以及信号(第十章)。 4. 终端I/O(第十一章)、高级I/O(第十二章)以及精灵进程(第十三章) 5. IPC——进程间通信(第十四、十五章)。 6. 实例—一个数据库的函数库(第十六章)、与Postscrip打印机的通信(第十七章)、调制解调器拨号程序(第十八章)以及使用伪终端(第十九章)。 如果对C语言较熟悉并具有某些应用Unix的经验,那么对阅读本书是非常有益的,但是并不要求读者具有Unix的程序设计经验。本书面向的主要读者是:熟悉Unix的程序员,熟悉某个其它操作系统的程序员,他们希望了解大多数Unix系统提供的各种服务的详细情况。 本书中的实例 本书包含大量实例—大约10000行源代码。所有实例都用ANSL C语言编写。在阅读本书时,你应当有一本你所使用的UNIX系统的Unix程序员手册,关于实施的细节等有时需参考该手册。 对于几乎每一个函数和系统调用,本书都用一个小的完整的程序进行演示。这可以让我们清楚地了解它们的用法,包括参数、返回值等。有些小程序还不是以说明库函数和系统调用的复杂功能和应用技巧,所以本书中也包含了一些较大的实例(第十六、十七、十八和十九章)。 所有实例的源代码文件都可经Internet用匿名ftp取到,其主机站点是ftjp.uu.net,文件名是published/books/stevens.advprog.tar.Z。在你的机器上可对这些源代码进行修改并运行它们。 用于测试实例的系统 不幸的是所有操作系统都在不断变更,Unix也不例外。下图示出了系统V和4.XBSD的最近进展情况。 4.XBSD是由加州大学贝克莱分校计算机系统研究组开发的。该研究组也发布BSD NET1和BSD NET2版,它们包含了4.XBSD系统公众可用源代码。SVRX是AT& T的系统V的简称。XPG3是X/Open可移植性指南的第三次发行本的简称。ANSI C是C程序设计语言的ANSI标准。POSIX.1是Unix类系统界面的IEEE和ISD标准。2.2和2.3节将对这些标准和版本之间的差别作更多说明。 在本书中,用4.3+BSD表示BSD NET2和4.4BSD之间的Unix系统。 在本书写作时,4.4BSD尚未发行,所以不能称一个系统为4.4BSD。尽管为此, 需要一个简单的名字以引用此种系统,在全书中我们用4.3+BSD。 本书中的大多数实例曾在4种Unix系统上运行过,它们是: 1. U.H公司(UHC)的Unix System V/386 Release4.0 Version 2.0。该系统在Intel 80386处理机上运行。 2. 加州大学贝克莱分校计算机科学系(Computer Science Division)计算机系统研究组的4.3+BSD,该系统在一台HP工作站上运行。 3. 贝克莱软件设计公司的BSD/386(是BSD Net2的导出版),该系统在一台Intel 80386处理机系统上运行。该系统几乎与我们称之为4.3+BSD的相同。 4. Sun Microsystems的Sun OS4.1.1和4.1.2(该系统与贝克莱系统有很深的渊源团系,但也包含了很多系统V的特征),这些系统在SPARC工作站SLC上运行。 本书提供了与测试有关的许多时间信息,也说明了用于测试的系统实际系统。 目录 译者序 前言 第1章 UNIX基础知识 1.1 引言 1.2 登录 1.2.1 登录名 1.2.2 shell 1.3 文件和目录 1.3.1文件系统 1.3.2 文件名 1.3.3路径名 1.3.4工作目录 1.3.5起始目录 1.4输入和输出 1.4.1文件描述符 1.4.2标准输入、标准输出和标准出错 1.4.3不用缓存的I/O 1.4.4标准I/O 1.5程序和进程 1.5.1程序 1.5.2进程和进程ID 1.5.3进程控制 1.6 ANSI C 1.6.1 函数原型 1.6.2类属指针 1.6.3原始系统数据类型 1.7 出错处理 1.8 用户标识 1.8.1 用户ID 1.8.2 组ID 1.8.3 添加组ID 1.9 信号 1.10 UNIX时间值 1.11 系统调用和库函数 1.12 小结 习题 第2章 UNIX标准化及实现 2.1 引言 2.2 UNIX标准化 2.2.1 ANSI C 2.2.2 IEEE POSIX 2.2.3 X/Open XPG3 2.2.4 FIPS 2.3 UNIX实现 2.3.1 SVR4 2.3.2 4.3+BSD 2.4 标准和实现的关系 2.5 限制 2.5.1 ANSI C限制 2.5.2 POSIX限制 2.5.3 XPG3限制 2.5.4 sysconf、pathconf和 fpathconf函数 2.5.5 FIPS 151-1要求 2.5.6 限制总结 2.5.7 未确定的运行时间限制 2.6 功能测试宏 2.7 基本系统数据类型 2.8 标准之间的冲突 2.9 小结 习题 第3章 文件I/O 3.1 引言 3.2 文件描述符 3.3 open函数 3.4 creat函数 3.5 close函数 3.6 lseek函数 3.7 read函数 3.8 write函数 3.9 I/O的效率 3.10 文件共享 3.11 原子操作 3.11.1 添加至一个文件 3.11.2 创建一个文件 3.12 dup和dup2函数 3.13 fcntl函数 3.14 ioctl函数 3.15 /dev/fd 3.16 小结 习题 第4章 文件和目录 4.1 引言 4.2 stat,fstat和lstat函数 4.3 文件类型 4.4 设置-用户-ID和设置-组-ID 4.5 文件存取许可权 4.6 新文件和目录的所有权 4.7 access函数 4.8 umask函数 4.9 chmod 和fchomod函数 4.10 粘住位 4.11 chown, fchown和 lchown函数 4.12 文件长度 4.13 文件截短 4.14 文件系统 4.15 link, unlink, remove和 rename 函数 4.16 符号连接 4.17 symlink 和readlink函数 4.18 文件的时间 4.19 utime函数 4.20 mkdir和 rmdir函数 4.21 读目录 4.22 chdir, fchdir和 getcwd函数 4.23 特殊设备文件 4.24 sync和 fsync函数 4.25 文件存取许可权位小结 4.26 小结 习题 第5章 标准I/O库 5.1 引言 5.2 流和FILE对象 5.3 标准输入、标准输出和标准出错 5.4 缓存 5.5 打开流 5.6 读和写流 5.7 每次一行I/O 5.8 标准I/O的效率 5.9 二进制I/O 5.10 定位流 5.11 格式化I/O 5.12 实现细节 5.13 临时文件 5.14 标准I/O的替代软件 5.15 小结 习题 第6章 系统数据文件和信息 6.1 引言 6.2 口令文件 6.3 阴影口令 6.4 组文件 6.5 添加组ID 6.6 其他数据文件 6.7 登录会计 6.8 系统标识 6.9 时间和日期例程 6.10 小结 习题 第7章 UNIX进程的环境 7.1 引言 7.2 main 函数 7.3 进程终止 7.3.1 exit和_exit函数 7.3.2 atexit函数 7.4 命令行参数 7.5 环境表 7.6 C程序的存储空间布局 7.7 共享库 7.8 存储器分配 7.9 环境变量 7.10 setjmp 和longjmp函数 7.10.1 自动, 寄存器和易失变量 7.10.2 自动变量的潜在问题 7.11 getrlimit 和setrlimit函数 7.12 小结 习题 第8章 进程控制 8.1 引言 8.2 进程标识 8.3 fork函数 8.4 vfork 函数 8.5 exit函数 8.6 wait和waitpid函数 8.7 wait3和 wait4函数 8.8 竞态条件 8.9 exec函数 8.10 更改用户ID 和组ID 8.10.1 setreuid 和setregid函数 8.10.2 seteuid和 setegid函数 8.10.3 组ID 8.11 解释器文件 8.12 system函数 8.13 进程会计 8.14 用户标识 8.15 进程时间 8.16 小结 习题 第9章 进程关系 9.1 引言 9.2 终端登录 9.2.1 4.3+BSD终端登录 9.2.2 SVR4终端登录 9.3 网络登录 9.3.1 4.3+BSD网络登录 9.3.2 SVR4网络登录 9.4 进程组 9.5 对话期 9.6 终端控制 9.7 tcgetpgrp 和tcsetpgrp函数 9.8 作业控制 9.9 shell执行程序 9.10 孤儿进程组 9.11 4.3+BSD实现 9.12 小结 习题 第10章 信号 10.1 引言 10.2 信号的概念 10.3 signal函数 10.3.1 程序起动 10.3.2 进程创建 10.4 不可靠的信号 10.5 中断的系统调用 10.6 可再入函数 10.7 SIGCLD语义 10.8 可靠信号术语和语义 10.9 kill 和raise函数 10.10 alarm和 pause函数 10.11 信号集 10.12 sigprocmask 函数 10.13 sigpending函数 10.14 sigaction函数 10.15 sigsetjmp 和siglongjmp函数 10.16 sigsuspend函数 10.17 abort函数 10.18 system 函数 10.19 sleep函数 10.20 作业控制信号 10.21 其他特征 10.21.1 信号名字 10.21.2 SVR4信号处理程序的附加参数 10.21.3 4.3+BSD信号处理程序的附加参数 10.22 小结 习题 第11章 终端I/O 11.1 引言 11.2 综述 11.3 特殊输入字符 11.4 获得和设置终端属性 11.5 终端选择标志 11.6 stty命令 11.7 波特率函数 11.8 行控制函数 11.9 终端标识 11.10 规范方式 11.11 非规范方式 11.12 终端的窗口大小 11.13 termcap, terminfo和 curses 11.14 小结 习题 第12章 高级I/O 12.1 引言 12.2 非阻塞I/O 12.3 记录锁 12.3.1 历史 12.3.2 fcntl记录锁 12.3.3 锁的隐含继承和释放 12.3.4 4.3+BSD的实现 12.3.5 建议性锁和强制性锁 12.4 流 12.4.1 流消息 12.4.2 putmsg和 putpmsg函数 12.4.3 流ioct1操作 12.4.4 write至流设备 12.4.5 写方式 12.4.6 getmsg和 getpmsg函数 12.4.7 读方式 12.5 I/O多路转接 12.5.1 select函数 12.5.2 poll函数 12.6 异步I/O 12.6.1 SVR4 12.6.2 4.3+BSD 12.7 readv和writev函数 12.8 readn和 writen函数 12.9 存储映射I/O 12.10 小结 习题 第13章 精灵进程 13.1 引言 13.2 精灵进程的特征 13.3 编程规则 13.4 出错记录 13.4.1 SVR4流log驱动程序 13.4.2 4.3+BSD syslog设施 13.5 客户机-服务器模型 13.6 小结 习题 第14章 进程间通信 14.1 引言 14.2 管道 14.3 popen和 pclose函数 14.4 协同进程 14.5 FIFO 14.6 系统V IPC 14.6.1 标识符和关键字 14.6.2 许可权结构 14.6.3 结构限制 14.6.4 优点和缺点 14.7 消息队列 14.8 信号量 14.9 共享存储 14.10 客户机-服务器属性 14.11 小结 习题 第15章 高级进程间通信 15.1 引言 15.2 流管道 15.3 传送文件描述符 15.3.1 SVR4 15.3.2 4.3BSD 15.3.3 4.3+BSD 15.4 open服务器第1版 15.5 客户机-服务器连接函数 15.5.1 SVR4 15.5.2 4.3+BSD 15.6 open服务器第2版 15.7 小结 习题 第16章 数据库函数库 16.1 引言 16.2 历史 16.3 函数库 16.4 实现概述 16.5 集中式或非集中式 16.6 并发 16.6.1 粗锁 16.6.2 细锁 16.7 源码 16.8 性能 16.8.1 单进程的结果 16.8.2 多进程的结果 16.9 小结 习题 第17章 与PostScript打印机通信 17.1 引言 17.2 PostScript通信机制 17.3 假脱机打印 17.4 源码 17.5 小结 习题 第18章 调制解调器拨号器 18.1 引言 18.2 历史 18.3 程序设计 18.4 数据文件 18.5 服务器设计 18.6 服务器源码 18.7 客户机设计 18.7.1 终端行规程 18.7.2 一个进程还是两个进程 18.8 客户机源码 18.9 小结 习题 第19章 伪终端 19.1 引言 19.2 概述 19.2.1 网络登录服务器 19.2.2 script程序 19.2.3 expect程序 19.2.4 运行协同程序 19.2.5 观看长时间运行程序的输出 19.3 打开伪终端设备 19.3.1 SVR4 19.3.2 4.3+BSD 19.4 pty_fork函数 19.5 pty程序 19.6 使用pty程序 19.6.1 utmp文件 19.6.2 作业控制交互 19.6.3 检查长时间运行程序的输出 19.6.4 script程序 19.6.5 运行协同进程 19.6.6 用交互模式驱动交互式程序 19.7 其他特性 19.7.1 打包模式 19.7.2 远程模式 19.7.3 窗口大小变化 19.7.4 信号发生 19.8 小结 习题 附录A 函数原型 附录B 其他源代码 附录C 习题答案 参考书目

590

社区成员

发帖
与我相关
我的任务
社区描述
提出问题
其他 技术论坛(原bbs)
社区管理员
  • community_281
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧