请教c++中,如何读取一个txt文本文件中的数字,并存到数组当中

C/C++ > C++ 语言 [问题点数:20分,结帖人sly923113560]
等级
本版专家分:0
结帖率 75%
等级
本版专家分:9703
勋章
Blank
蓝花 2014年1月 C/C++大版内专家分月排行榜第三
等级
本版专家分:0
等级
本版专家分:9703
勋章
Blank
蓝花 2014年1月 C/C++大版内专家分月排行榜第三
等级
本版专家分:0
等级
本版专家分:4385
勋章
Blank
黄花 2014年1月 C/C++大版内专家分月排行榜第二
等级
本版专家分:2
等级
本版专家分:1836
等级
本版专家分:0
等级
本版专家分:0
等级
本版专家分:4385
勋章
Blank
黄花 2014年1月 C/C++大版内专家分月排行榜第二
Sunflower401

等级:

百题

输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。 要求不能创建任何新的结点,只调整指针的指向。 10 / / 6 14 / / / / 4 8 12 16 转换成双向链表 4=6=8=10=12=14=16。 首先我们定义的...

Matlab资料汇总暨MATLAB中文论坛帖子整理(

1、GUI新手之——教你读懂GUI的M文件... 10 2、GUI程序改变current directory引起的问题... 15 3、GUIh0bject和handles 的区别... 16 4、handles结构句柄和对象的关联问题... 17 5、M

MATLAB中文论坛帖子整理(GUI)(

1、GUI新手之——教你读懂GUI的M文件... 10 2、GUI程序改变current directory引起的问题... 15 3、GUIh0bject和handles 的区别... 16 4、handles结构句柄和对象的关联问题... 17 5、Matlab利用定时器连续...

《精通.NET互操作:P/Invoke、C++ Interop和COM Interop》

我们的图书《精通.NET互操作》出版有一个月的时间了,有一些朋友会想我请教一些问题。并反馈说,没有专门详细地介绍有关用委托实现函数指针、回调函数的章节。我觉得大家的建议很有道理。现在这里做个记号,

MATLAB 中文论坛相关帖子整理

1、GUI新手之——教你读懂GUI的M文件... 10 2、GUI程序改变current directory引起的问题... 15 3、GUIh0bject和handles 的区别... 16 4、handles结构句柄和对象的关联问题... 17 5、Matlab利用...

虚拟机随谈():解释器,树遍历解释器,基于栈与基于寄存器,大杂烩

转自:http://rednaxelafx.iteye.com/blog/492667 博客分类:  Virtual Machine Java JavaScript JVM Dalvik 虚拟机JVMAndroidJavaScript  (Disclaimer:如果需要转载请先与我联系;...

python虚拟机 基于寄存器_虚拟机随谈():解释器,树遍历解释器,基于栈与基于寄存器,大杂烩...

转载:http://rednaxelafx.iteye.com/blog/492667大前天收到条PM:引用你好,很冒昧的向你发短消 息,我现在在看JS引擎,能过看博客发现你对js engine很了解,我想请教一下你 基于栈的解析器与基于寄存器的解析器...

600问与答

http://faq.xunweb.org/itfaq/mfcbasic/  怎样彻底结束一个线程? (2006-06-04) v 怎么样以纯idispatch方式而不是引入类型库的方法调...

C 语言深度解剖

本书尚未出版,先放网上给大家免费 下载和阅览。本书正式出版前读者可以仔细 研读和自由传阅本书电子版,但不允许私自 大量印刷和销售。出版社如想出版此书可通 过邮件或博客留言联系作者商谈出版事宜。 对于非法...

机器学习数据集

我经常用到的是鸢(yuan)尾花数据集,经典机器学习算法 的案例都是用这数据集作为实例 具体内容如下: 5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,...

语法解析器!

举例:将i = a + b * c作为源代码输入解析器里,则广义上的解析器的工作流程如下图:        发表时间:2009-10-17 最后修改:2011-03-04      < > 猎头职位: ...

Java 私塾面试系列

部分 Java基础方面1、作用域public,private,protected,以及不写时的区别答:区别如下:作用域当前类 同一package 子孙类其他 packagepublic √ √ √ √protected √ √ √ ×friendly √ √ × ×private √ ×...

虚拟机随谈:解释器,树遍历解释器,基于栈与基于寄存器,大杂烩

 大前天收到条PM: 你好,很冒昧的向你发短消 息,我现在在看JS引擎,能过看博客发现你对js engine很了解,我想请教一下你 基于栈的解析器与基于寄存器的解析器有什么同,javascriptcore是基于寄存器的,V8是基于...

C语言面试题

1.理解main函数的参数,运行一下看看结果 #include int main(int argc, char* argv[], char *envp[]) { int i = 0; // walk through all the arguments // way 1: // for (i=0;...// printf("argv[%d]=%s\n", i,

matlab gui 编程

1、GUI新手之——教你读懂GUI的M文件... 10 2、GUI程序改变current directory引起的问题... 15 3、GUIh0bject和handles 的区别... 16 4、handles结构句柄和对象的关联问题... 17 5、Matlab利用...

Java面试

----------------------- Page1-----------------------  第部分 Java 基础方面  1、作用域public,private,protected,以及不写时的区别  答:区别如下:  作用域 当前类 同一

matlab 技术

1、GUI新手之——教你读懂GUI的M文件... 10 2、GUI程序改变current directory引起的问题... 15 3、GUIh0bject和handles 的区别... 16 4、handles结构句柄和对象的关联问题... 17 5、Matlab利用定时器连续...

Java 面试题

----------------------- Page1-----------------------  第部分 Java 基础方面  1、作用域public,private,protected,以及不写时的区别  答:区别如下:  作用域 当前类 同一

Symbian 开发的一些小技巧(来自程凯的博客)

GetAppIcon()GetAppInfo()TApaTaskList:FindApp()从收件箱读取彩信图片mmslist实现了首先以listbox列表的形式列出了收件箱的所以彩信,选择某条彩信后可以显示出它的发送端号码和彩信的文本信息;现在我想让它显

Notepad++ 7.9.1

notepad++是一个免费的、开放源码的文本和源代码编辑器。notepad++是用c++编程语言编写的,它以减少不必要的功能和简化过程而自豪,从而创建了一个轻便高效的文本记事本程序。实际上,这意味着高速和易访问的、用户友好的界面。 notepad++已经存在了将近20年,没有任何迹象表明它的受欢迎程度会下降。记事本绝对证明了你不需要投资在昂贵的软件来编写代码从舒适的自己的家。自己尝试一下,你就会明白为什么Notepad能坚持这么久。

Spring Boot 入门

Spring Boot 入门介绍,听完这些课程你可以了解到 Spring Boot 的优势,为什么需要使用 Spring Boot ,学会使用 Spring Boot 创建一个简单的 Hello World ,并写学会使用 Spring Boot 单元测试。 了解 Spring Boot 并掌握 Spring Boot 基础开发

垃圾分类数据集及代码

资源说明: 数据集主要包括6类图片:硬纸板、纸、塑料瓶、玻璃瓶、铜制品、不可回收垃圾 代码运行说明: 1、 安装运行项目所需的python模块,包括tensorflow | numpy | keras | cv2 2、 train.py用于训练垃圾分类模型,由于训练的数据量过于庞大,因此不一并上传 3、 predict.py用于预测垃圾的类别,首先运行predict.py,然后输入需要预测的文件路径,即可得到结果。

Visio_2016

visio_2016下载安装,亲测可用,不需要破解,而且无秘钥。简单方便实用

个人简历模板

优质简历模板,目前最前全的模板收藏,需要换工作的小伙伴们可以试试

四史答题软件安装包exe

四史答题软件安装包exe

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

Spring Batch批量处理数据实战教程

本课程通过讲解Spring Batch的基础知识点以及一些实际的项目示例让大家熟悉如何使用Spring Batch进行大批量数据的同步、处理及转换等。 通过学习本课程大家可以快速的掌握如何使用及优化Spring Batch。

2020华为软件精英挑战赛初复赛赛题包.zip

2020华为软件精英挑战赛初复赛赛题包,不包含民间数据集,民间数据集在博客中给出大佬github地址。

微信小程序源码-合集6.rar

微信小程序源码,包含:图片展示、外卖点餐、小工具类、小游戏类、演绎博览、新闻资讯、医疗保健、艺术生活等源码。

JAVA WEB开发实战

走进JSP、掌握JSP语法、JSP内置对象、Servlet技术、综合实验(一)——JSP使用Model2实现登录模块、EL表达式语言、JSTL核心标签库、综合实验(二)——结合JSTL与EL技术开发通讯录模块、JSP操作XML、JavaScript脚本语言、综合实验(三)——Ajax实现用户注册模块——可以轻松领会Java Web程序开发的精髓,提高开发技能。 快速提高自己的java web项目开发能力

相关热词 c# 方法 问号 c#生成失败没有错误 c# 淘宝数据 c# 全局钩子 c# 用户自定义控件关闭 c# 冒号 c# console颜色 c#以13 发送邮箱c# c#拖动条