111,098
社区成员




double GetDistance(Point p1, Point p2)
{
return Math.Sqrt(Math.Pow(p1.X - p2.X, 2) + Math.Pow(p1.Y - p2.Y, 2));
}
Point Fun(List<Point> pArray, Point p)
{
int MinIndex = 0;
double MinDistance = GetDistance(pArray[MinIndex], p);
double Dinstance;
for (int i = 1; i < pArray.Count; i++)
{
Dinstance = GetDistance(pArray[i], p);
if (Dinstance < MinDistance)
{
MinIndex = i;
MinDistance = Dinstance;
}
}
return pArray[MinIndex];
}
首先划分集合S为SL和SR,使得SL中的每一个点位于SR中每一个点的左边,并且SL和SR中点数相同。分别在SL和SR中解决最近点对问题,得到DL和DR,分别表示SL和SR中的最近点对的距离。令d=min(DL,DR)。如果S中的最近点对(P1,P2)。P1、P2两点一个在SL和一个在SR中,那么P1和P2一定在以L为中心的间隙内,以L-d和L+d为界,如下图所示:
如果在SL中的点P和在SR中的点Q成为最近点对,那么P和Q的距离必定小于d。因此对间隙中的每一个点,在合并步骤中,只需要检验yp+d和yp-d内的点即可。
步骤1:根据点的y值和x值对S中的点排序。
步骤2:找出中线L将S划分为SL和SR
步骤3:将步骤2递归的应用解决SL和SR的最近点对问题,并令d=min(dL,dR)。
步骤4:将L-d~L+d内的点以y值排序,对于每一个点(x1,y1)找出y值在y1-d~y1+d内的所有点,计算距离为d'。 如果d'小于d,令d=d',最后的d值就是答案。