sklearn.cluster.KMeans中n_init参数是什么意思

-柚子皮-
人工智能领域优质创作者
博客专家认证
2014-12-20 09:34:38
n_init解释为:
Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.
设置选择质心种子次数,默认为10次。返回质心最好的一次结果(好是指计算时长短)

这个到底是嘛意思?
...全文
1820 1 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
panghuhu250 2014-12-20
  • 打赏
  • 举报
回复 1
每一次算法运行时开始的centroid seeds是随机生成的, 这样得到的结果也可能有好有坏. 所以要运行算法n_init次, 取其中最好的.
AI实战-德国信贷风险评估数据分析预测实例(含18个源代码+48.52 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:18个代码,共225.97 KB;数据大小:1个文件共48.52 KB。 使用到的模块: matplotlib.pyplot numpy os pandas seaborn sklearn.model_selection.train_test_split sklearn.model_selection.KFold sklearn.model_selection.cross_val_score sklearn.model_selection.GridSearchCV sklearn.ensemble.RandomForestClassifier sklearn.linear_model.LogisticRegression sklearn.tree.DecisionTreeClassifier sklearn.naive_bayes.GaussianNB sklearn.neighbors.KNeighborsClassifier sklearn.svm.SVC xgboost.XGBClassifier sklearn.metrics.confusion_matrix sklearn.metrics.accuracy_score sklearn.metrics.classification_report category_encoders.OneHotEncoder sklearn.preprocessing.MinMaxScaler sklearn.manifold.TSNE sklearn.decomposition.PCA umap.UMAP tqdm.tqdm sklearn.cluster.KMeans sklearn.metrics.silhouette_score scipy.cluster.hierarchy.dendrogram scipy.cluster.hierarchy.linkage sklearn.cluster.AgglomerativeClustering sklearn.cluster.DBSCAN warnings ucimlrepo.fetch_ucirepo imblearn.over_sampling.SMOTE torch torch.nn torch.utils.data.DataLoader torch.utils.data.TensorDataset sklearn.preprocessing.LabelEncoder sklearn.preprocessing.StandardScaler sklearn.metrics.ConfusionMatrixDisplay sklearn.preprocessing sklearn.metrics.mutual_info_score xgboost xgboost.cv sklearn.model_selection.RepeatedStratifiedKFold plotly.offline.plot plotly.offline plotly.graph_objs plotly.tools plotly.figure_factory sklearn.discriminant_analysis.LinearDiscriminantAnalysis sklearn.metrics.roc_curve sklearn.pipeline.Pipeline sklearn.pipeline.FeatureUnion sklearn.feature_selection.SelectKBest umap plotly.graph_objects snaplib.snaplib.Snaplib google.colab.drive time PIL.Image plotly.offline.init_notebook_mode sklearn.metrics.auc sklearn.metrics.fbeta_score sklearn.ensemble.GradientBoostingClassifier numpy.array keras.datasets.mnist numpy.random.MT19937 numpy.random.RandomState numpy.random.SeedSequence sklearn.feature_extraction.DictVectorizer sklearn.feature_selection.chi2 sklearn.feature_extraction.F
AI实战-营销活动和数据集分析预测实例(含19个源代码+523.50 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共231.67 KB;数据大小:2个文件共523.50 KB。 使用到的模块: pandas numpy seaborn matplotlib matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix scipy.stats pingouin datetime.date matplotlib.ticker.PercentFormatter scipy.stats.f_oneway scipy.stats.friedmanchisquare sklearn.linear_model.LogisticRegression sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.classification_report sklearn.metrics.roc_curve sklearn.metrics.roc_auc_score sklearn.svm sklearn.cluster.KMeans sklearn.preprocessing.StandardScaler sklearn.decomposition.PCA sklearn.metrics.silhouette_score sklearn.metrics.davies_bouldin_score sklearn.preprocessing.MinMaxScaler IPython.display.display sklearn.preprocessing.OneHotEncoder sklearn.model_selection.GridSearchCV sklearn.tree.DecisionTreeClassifier sklearn.tree.plot_tree sklearn.ensemble.GradientBoostingClassifier sklearn.metrics.RocCurveDisplay imblearn.over_sampling.SMOTE imblearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.model_selection.StratifiedKFold sklearn.feature_selection.RFE sklearn.utils.class_weight sklearn.feature_selection.RFECV plotly.express datetime xgboost.XGBClassifier xgboost.plot_importance os sklearn.preprocessing.LabelEncoder kneed.KneeLocator sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.metrics.r2_score lightgbm.LGBMRegressor tensorflow sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.model_selection.cross_val_score sklearn.metrics.precision_recall_fscore_support xgboost datetime.datetime sklearn.metrics.ConfusionMatrixDisplay sklearn.tree.export_text missingno plotly.offline.init_notebook_mode plotly.io
AI实战-金融机构营销活动数据集分析预测实例(含20个源代码+897.42 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共258.28 KB;数据大小:1个文件共897.42 KB。 使用到的模块: matplotlib.pyplot numpy os pandas seaborn sklearn.preprocessing.LabelEncoder sklearn.model_selection.train_test_split sklearn.model_selection.RandomizedSearchCV sklearn.model_selection.GridSearchCV sklearn.ensemble.RandomForestClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.tree.DecisionTreeClassifier xgboost.XGBClassifier sklearn.metrics.roc_curve sklearn.metrics.auc sklearn.metrics.accuracy_score warnings sklearn.svm.SVC sklearn.tree.plot_tree xgboost lightgbm sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.metrics.confusion_matrix shap optuna sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.RobustScaler sklearn.feature_selection.mutual_info_classif sklearn.cluster.KMeans sklearn.metrics.silhouette_score plotly.express plotly.graph_objects plotly.offline.init_notebook_mode plotly.io plotly.subplots.make_subplots sklearn.preprocessing.StandardScaler sklearn.linear_model.LogisticRegression sklearn.svm sklearn.neighbors.KNeighborsClassifier sklearn.naive_bayes.GaussianNB sklearn.model_selection.cross_val_score sklearn.tree sklearn.metrics.r2_score sklearn.inspection.permutation_importance sklearn.ensemble.AdaBoostClassifier sklearn.model_selection.validation_curve sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.preprocessing.MinMaxScaler time.time warnings.simplefilter sklearn.decomposition.PCA kagglehub torch torch.nn torch.optim torch.nn.functional torch.utils.data.TensorDataset torch.utils.data.DataLoader time psutil plotly.tools plotly.figure_factory plotly.graph_objs plotly.offline.plot plotly.offline.iplot squarify sklearn.model_selection.StratifiedShuffleSplit sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.utils.check_array scipy.sparse sklearn.pipeline.Pipeline sklearn.pipeline.FeatureUnion sklearn.neural_network.MLPClassifier sklea
AI实战-COVID 19世界疫苗接种数据分析预测实例(含18个源代码+18.34 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:18个代码,共124.53 KB;数据大小:2个文件共18.34 MB。 使用到的模块: os pandas matplotlib.pyplot seaborn plotly.express folium.features.Choropleth folium warnings numpy plotly.offline.iplot plotly.graph_objs plotly.io peakutils scipy.stats.mode plotly.offline.init_notebook_mode pandas_profiling.ProfileReport sklearn.preprocessing.StandardScaler sklearn.model_selection.train_test_split sklearn.model_selection.cross_val_score sklearn.model_selection.TimeSeriesSplit sklearn.model_selection.GridSearchCV sklearn.metrics.mean_squared_error sklearn.metrics.mean_absolute_error sklearn.metrics.r2_score xgboost lightgbm.LGBMRegressor torch tqdm.notebook.tqdm transformers.BertTokenizer torch.utils.data.TensorDataset transformers.BertForSequenceClassification torch.utils.data.DataLoader torch.utils.data.RandomSampler transformers.AdamW transformers.get_linear_schedule_with_warmup sklearn.metrics.f1_score random sklearn.linear_model.LinearRegression wordcloud.WordCloud wordninja spellchecker.SpellChecker collections.Counter nltk nltk.stem.WordNetLemmatizer nltk.corpus.stopwords sklearn.preprocessing.LabelEncoder sklearn.preprocessing.PolynomialFeatures sklearn.metrics sklearn.tree.DecisionTreeRegressor sklearn.cluster.KMeans missingno sklearn.metrics.confusion_matrix sklearn.metrics.roc_curve sklearn.metrics.accuracy_score sklearn.metrics.roc_auc_score imblearn.over_sampling.SMOTE sklearn.linear_model.LogisticRegression sklearn.ensemble.RandomForestClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.tree.DecisionTreeClassifier catboost.CatBoostClassifier lightgbm.LGBMClassifier xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier plotly.offline

37,743

社区成员

发帖
与我相关
我的任务
社区描述
JavaScript,VBScript,AngleScript,ActionScript,Shell,Perl,Ruby,Lua,Tcl,Scala,MaxScript 等脚本语言交流。
社区管理员
  • 脚本语言(Perl/Python)社区
  • WuKongSecurity@BOB
加入社区
  • 近7日
  • 近30日
  • 至今

试试用AI创作助手写篇文章吧