TCP 重叠I/O模型中 数据发送问题。

ponydph 2015-02-11 05:08:06
程序采用TCP通讯,考虑到多个客户端,因此服务器端采用TCP I/O模型。
一个线程中建立侦听,来自客户端的连接,另一个线程作为接收数据使用,
还有一个线程作为下发数据使用。

代码如下:
#include <winsock2.h>
#include <stdio.h>

#define PORT 5150
#define MSGSIZE 1024

#pragma comment(lib, "ws2_32.lib")

typedef struct
{
WSAOVERLAPPED overlap;
WSABUF Buffer;
char szMessage[MSGSIZE];
DWORD NumberOfBytesRecvd;
DWORD Flags; //完成状态的附加标志位
}PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA; //重叠结构,用于接收通知时获取数据。

int g_iTotalConn = 0;
SOCKET g_CliSocketArr[MAXIMUM_WAIT_OBJECTS]; //
WSAEVENT g_CliEventArr[MAXIMUM_WAIT_OBJECTS];
LPPER_IO_OPERATION_DATA g_pPerIODataArr[MAXIMUM_WAIT_OBJECTS];

DWORD WINAPI WorkerThread(LPVOID);
void Cleanup(int);

int main()
{
WSADATA wsaData;
SOCKET sListen, sClient;
SOCKADDR_IN local, client;
DWORD dwThreadId;
int iaddrSize = sizeof(SOCKADDR_IN);

// Initialize Windows Socket library
WSAStartup(0x0202, &wsaData);

// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));

// Listen
listen(sListen, 3);

// Create worker thread
CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);

while (TRUE)
{
// Accept a connection
sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));

g_CliSocketArr[g_iTotalConn] = sClient;

// Allocate a PER_IO_OPERATION_DATA structure
g_pPerIODataArr[g_iTotalConn] = (LPPER_IO_OPERATION_DATA)HeapAlloc(
GetProcessHeap(),
HEAP_ZERO_MEMORY,
sizeof(PER_IO_OPERATION_DATA));
g_pPerIODataArr[g_iTotalConn]->Buffer.len = MSGSIZE; //接收缓冲长度
g_pPerIODataArr[g_iTotalConn]->Buffer.buf = g_pPerIODataArr[g_iTotalConn]->szMessage; //接收缓冲区域
//创建接收数据事件,绑定该socket
g_CliEventArr[g_iTotalConn] = g_pPerIODataArr[g_iTotalConn]->overlap.hEvent = WSACreateEvent();

// 异步该socket接收数据,即立刻返回,等待事件信号状态。
WSARecv(
g_CliSocketArr[g_iTotalConn],
&g_pPerIODataArr[g_iTotalConn]->Buffer,
1,
&g_pPerIODataArr[g_iTotalConn]->NumberOfBytesRecvd,
&g_pPerIODataArr[g_iTotalConn]->Flags,
&g_pPerIODataArr[g_iTotalConn]->overlap,
NULL);

g_iTotalConn++; //连接数加1
}

closesocket(sListen);
WSACleanup();
return 0;
}

DWORD WINAPI WorkerThread(LPVOID lpParam)
{
int ret, index;
DWORD cbTransferred;

while (TRUE)
{
ret = WSAWaitForMultipleEvents(g_iTotalConn, g_CliEventArr, FALSE, 1000, FALSE); //等待事件信号,1s超时
if (ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT)
{
continue;
}

index = ret - WSA_WAIT_EVENT_0; //取信号事件的索引号
WSAResetEvent(g_CliEventArr[index]); //将事件重置

WSAGetOverlappedResult( //返回指定套接口上一个重叠操作的结果。
g_CliSocketArr[index], //调用重叠操作时socket
&g_pPerIODataArr[index]->overlap, //指向调用重叠操作时指定的WSAOVERLAPPED结构
&cbTransferred, //接收实际数据长度
TRUE, //指定函数是否等待挂起的重叠操作结束
&g_pPerIODataArr[g_iTotalConn]->Flags); //该变量存放完成状态的附加标志位

if (cbTransferred == 0) //接收为数据长度为0,表示socket已经被关闭
{
// The connection was closed by client
Cleanup(index);
}
else
{
// g_pPerIODataArr[index]->szMessage contains the received data
g_pPerIODataArr[index]->szMessage[cbTransferred] = '\0'; //在数据末尾加结束符
//send(g_CliSocketArr[index], g_pPerIODataArr[index]->szMessage,\
//cbTransferred, 0); //原样返回

// Launch another asynchronous operation
WSARecv(
g_CliSocketArr[index],
&g_pPerIODataArr[index]->Buffer,
1,
&g_pPerIODataArr[index]->NumberOfBytesRecvd,
&g_pPerIODataArr[index]->Flags,
&g_pPerIODataArr[index]->overlap,
NULL);
}
}


return 0;
}


//数据发送部分
void ProcSendData(LPVOID lpParam)
{
while(true)
{
if(发送队列不为空)
{
send(g_CliSocketArr[index], g_pPerIODataArr[index]->szMessage,cbTransferred, 0);
}

}


}

在使用中发现,下发数据时,有时下发不到网络中去。是什么原因。
当采用I/O重叠 事件通知方式接收数据时,需要设置发送事件吗??


...全文
332 10 打赏 收藏 转发到动态 举报
写回复
用AI写文章
10 条回复
切换为时间正序
请发表友善的回复…
发表回复
ponydph 2015-03-04
  • 打赏
  • 举报
回复
引用 9 楼 linjinxing1987 的回复:
[quote=引用 8 楼 zhao4zhong1 的回复:] [quote=引用 7 楼 ponydph 的回复:] 多谢, 请教个问题,初始化socket环境在一个线程中,接收到的连接设置为全局变量, 如果在另一个线程中用sokcet函数,是否可以???
可以。 [/quote][/quote] TCP通讯 发送和接收完全互不影响吗? 现在发现一个问题。在接收大量数据的时候,此时发送数据接收确认命令,而下发的有时候收不到。
繁重的秋春 2015-03-03
  • 打赏
  • 举报
回复
引用 8 楼 zhao4zhong1 的回复:
[quote=引用 7 楼 ponydph 的回复:] 多谢, 请教个问题,初始化socket环境在一个线程中,接收到的连接设置为全局变量, 如果在另一个线程中用sokcet函数,是否可以???
可以。 [/quote]
ponydph 2015-03-02
  • 打赏
  • 举报
回复
[quote=引用 6 楼 zhao4zhong1 的回复:] 仅供参考
//循环向a函数每次发送200个字节长度(这个是固定的)的buffer,
//a函数中需要将循环传进来的buffer,组成240字节(也是固定的)的新buffer进行处理,
//在处理的时候每次从新buffer中取两个字节打印
#ifdef WIN32
    #pragma warning(disable:4996)
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef WIN32
    #include <windows.h>
    #include <process.h>
    #include <io.h>
    #define  MYVOID             void
    #define  vsnprintf          _vsnprintf
#else
    #include <unistd.h>
    #include <sys/time.h>
    #include <pthread.h>
    #define  CRITICAL_SECTION   pthread_mutex_t
    #define  MYVOID             void *
#endif
//Log{
#define MAXLOGSIZE 20000000
#define MAXLINSIZE 16000
#include <time.h>
#include <sys/timeb.h>
#include <stdarg.h>
char logfilename1[]="MyLog1.log";
char logfilename2[]="MyLog2.log";
static char logstr[MAXLINSIZE+1];
char datestr[16];
char timestr[16];
char mss[4];
CRITICAL_SECTION cs_log;
FILE *flog;
#ifdef WIN32
void Lock(CRITICAL_SECTION *l) {
    EnterCriticalSection(l);
}
void Unlock(CRITICAL_SECTION *l) {
    LeaveCriticalSection(l);
}
void sleep_ms(int ms) {
    Sleep(ms);
}
#else
void Lock(CRITICAL_SECTION *l) {
    pthread_mutex_lock(l);
}
void Unlock(CRITICAL_SECTION *l) {
    pthread_mutex_unlock(l);
}
void sleep_ms(int ms) {
    usleep(ms*1000);
}
#endif
void LogV(const char *pszFmt,va_list argp) {
    struct tm *now;
    struct timeb tb;

    if (NULL==pszFmt||0==pszFmt[0]) return;
    vsnprintf(logstr,MAXLINSIZE,pszFmt,argp);
    ftime(&tb);
    now=localtime(&tb.time);
    sprintf(datestr,"%04d-%02d-%02d",now->tm_year+1900,now->tm_mon+1,now->tm_mday);
    sprintf(timestr,"%02d:%02d:%02d",now->tm_hour     ,now->tm_min  ,now->tm_sec );
    sprintf(mss,"%03d",tb.millitm);
    printf("%s %s.%s %s",datestr,timestr,mss,logstr);
    flog=fopen(logfilename1,"a");
    if (NULL!=flog) {
        fprintf(flog,"%s %s.%s %s",datestr,timestr,mss,logstr);
        if (ftell(flog)>MAXLOGSIZE) {
            fclose(flog);
            if (rename(logfilename1,logfilename2)) {
                remove(logfilename2);
                rename(logfilename1,logfilename2);
            }
        } else {
            fclose(flog);
        }
    }
}
void Log(const char *pszFmt,...) {
    va_list argp;

    Lock(&cs_log);
    va_start(argp,pszFmt);
    LogV(pszFmt,argp);
    va_end(argp);
    Unlock(&cs_log);
}
//Log}
#define ASIZE    200
#define BSIZE    240
#define CSIZE      2
char Abuf[ASIZE];
char Cbuf[CSIZE];
CRITICAL_SECTION cs_HEX ;
CRITICAL_SECTION cs_BBB ;
struct FIFO_BUFFER {
    int  head;
    int  tail;
    int  size;
    char data[BSIZE];
} BBB;
int No_Loop=0;
void HexDump(int cn,char *buf,int len) {
    int i,j,k;
    char binstr[80];

    Lock(&cs_HEX);
    for (i=0;i<len;i++) {
        if (0==(i%16)) {
            sprintf(binstr,"%03d %04x -",cn,i);
            sprintf(binstr,"%s %02x",binstr,(unsigned char)buf[i]);
        } else if (15==(i%16)) {
            sprintf(binstr,"%s %02x",binstr,(unsigned char)buf[i]);
            sprintf(binstr,"%s  ",binstr);
            for (j=i-15;j<=i;j++) {
                sprintf(binstr,"%s%c",binstr,('!'<buf[j]&&buf[j]<='~')?buf[j]:'.');
            }
            Log("%s\n",binstr);
        } else {
            sprintf(binstr,"%s %02x",binstr,(unsigned char)buf[i]);
        }
    }
    if (0!=(i%16)) {
        k=16-(i%16);
        for (j=0;j<k;j++) {
            sprintf(binstr,"%s   ",binstr);
        }
        sprintf(binstr,"%s  ",binstr);
        k=16-k;
        for (j=i-k;j<i;j++) {
            sprintf(binstr,"%s%c",binstr,('!'<buf[j]&&buf[j]<='~')?buf[j]:'.');
        }
        Log("%s\n",binstr);
    }
    Unlock(&cs_HEX);
}
int GetFromRBuf(int cn,CRITICAL_SECTION *cs,FIFO_BUFFER *fbuf,char *buf,int len) {
    int lent,len1,len2;

    lent=0;
    Lock(cs);
    if (fbuf->size>=len) {
        lent=len;
        if (fbuf->head+lent>BSIZE) {
            len1=BSIZE-fbuf->head;
            memcpy(buf     ,fbuf->data+fbuf->head,len1);
            len2=lent-len1;
            memcpy(buf+len1,fbuf->data           ,len2);
            fbuf->head=len2;
        } else {
            memcpy(buf     ,fbuf->data+fbuf->head,lent);
            fbuf->head+=lent;
        }
        fbuf->size-=lent;
    }
    Unlock(cs);
    return lent;
}
MYVOID thdB(void *pcn) {
    char        *recv_buf;
    int          recv_nbytes;
    int          cn;
    int          wc;
    int          pb;

    cn=(int)pcn;
    Log("%03d thdB              thread begin...\n",cn);
    while (1) {
        sleep_ms(10);
        recv_buf=(char *)Cbuf;
        recv_nbytes=CSIZE;
        wc=0;
        while (1) {
            pb=GetFromRBuf(cn,&cs_BBB,&BBB,recv_buf,recv_nbytes);
            if (pb) {
                Log("%03d recv %d bytes\n",cn,pb);
                HexDump(cn,recv_buf,pb);
                sleep_ms(1);
            } else {
                sleep_ms(1000);
            }
            if (No_Loop) break;//
            wc++;
            if (wc>3600) Log("%03d %d==wc>3600!\n",cn,wc);
        }
        if (No_Loop) break;//
    }
#ifndef WIN32
    pthread_exit(NULL);
#endif
}
int PutToRBuf(int cn,CRITICAL_SECTION *cs,FIFO_BUFFER *fbuf,char *buf,int len) {
    int lent,len1,len2;

    Lock(cs);
    lent=len;
    if (fbuf->size+lent>BSIZE) {
        lent=BSIZE-fbuf->size;
    }
    if (fbuf->tail+lent>BSIZE) {
        len1=BSIZE-fbuf->tail;
        memcpy(fbuf->data+fbuf->tail,buf     ,len1);
        len2=lent-len1;
        memcpy(fbuf->data           ,buf+len1,len2);
        fbuf->tail=len2;
    } else {
        memcpy(fbuf->data+fbuf->tail,buf     ,lent);
        fbuf->tail+=lent;
    }
    fbuf->size+=lent;
    Unlock(cs);
    return lent;
}
MYVOID thdA(void *pcn) {
    char        *send_buf;
    int          send_nbytes;
    int          cn;
    int          wc;
    int           a;
    int          pa;

    cn=(int)pcn;
    Log("%03d thdA              thread begin...\n",cn);
    a=0;
    while (1) {
        sleep_ms(100);
        memset(Abuf,a,ASIZE);
        a=(a+1)%256;
        if (16==a) {No_Loop=1;break;}//去掉这句可以让程序一直循环直到按Ctrl+C或Ctrl+Break或当前目录下存在文件No_Loop
        send_buf=(char *)Abuf;
        send_nbytes=ASIZE;
        Log("%03d sending %d bytes\n",cn,send_nbytes);
        HexDump(cn,send_buf,send_nbytes);
        wc=0;
        while (1) {
            pa=PutToRBuf(cn,&cs_BBB,&BBB,send_buf,send_nbytes);
            Log("%03d sent %d bytes\n",cn,pa);
            HexDump(cn,send_buf,pa);
            send_buf+=pa;
            send_nbytes-=pa;
            if (send_nbytes<=0) break;//
            sleep_ms(1000);
            if (No_Loop) break;//
            wc++;
            if (wc>3600) Log("%03d %d==wc>3600!\n",cn,wc);
        }
        if (No_Loop) break;//
    }
#ifndef WIN32
    pthread_exit(NULL);
#endif
}
int main() {
#ifdef WIN32
    InitializeCriticalSection(&cs_log);
    InitializeCriticalSection(&cs_HEX );
    InitializeCriticalSection(&cs_BBB );
#else
    pthread_t threads[2];
    int threadsN;
    int rc;
    pthread_mutex_init(&cs_log,NULL);
    pthread_mutex_init(&cs_HEX,NULL);
    pthread_mutex_init(&cs_BBB,NULL);
#endif
    Log("Start===========================================================\n");

    BBB.head=0;
    BBB.tail=0;
    BBB.size=0;

#ifdef WIN32
    _beginthread((void(__cdecl *)(void *))thdA,0,(void *)1);
    _beginthread((void(__cdecl *)(void *))thdB,0,(void *)2);
#else
    threadsN=0;
    rc=pthread_create(&(threads[threadsN++]),NULL,thdA,(void *)1);if (rc) Log("%d=pthread_create %d error!\n",rc,threadsN-1);
    rc=pthread_create(&(threads[threadsN++]),NULL,thdB,(void *)2);if (rc) Log("%d=pthread_create %d error!\n",rc,threadsN-1);
#endif

    if (!access("No_Loop",0)) {
        remove("No_Loop");
        if (!access("No_Loop",0)) {
            No_Loop=1;
        }
    }
    while (1) {
        sleep_ms(1000);
        if (No_Loop) break;//
        if (!access("No_Loop",0)) {
            No_Loop=1;
        }
    }
    sleep_ms(3000);
    Log("End=============================================================\n");
#ifdef WIN32
    DeleteCriticalSection(&cs_BBB );
    DeleteCriticalSection(&cs_HEX );
    DeleteCriticalSection(&cs_log);
#else
    pthread_mutex_destroy(&cs_BBB);
    pthread_mutex_destroy(&cs_HEX);
    pthread_mutex_destroy(&cs_log);
#endif
    return 0;
}
[/quote 多谢, 请教个问题,初始化socket环境在一个线程中,接收到的连接设置为全局变量, 如果在另一个线程中用sokcet函数,是否可以???
赵4老师 2015-03-02
  • 打赏
  • 举报
回复
引用 7 楼 ponydph 的回复:
多谢, 请教个问题,初始化socket环境在一个线程中,接收到的连接设置为全局变量, 如果在另一个线程中用sokcet函数,是否可以???
可以。
赵4老师 2015-02-26
  • 打赏
  • 举报
回复
仅供参考
//循环向a函数每次发送200个字节长度(这个是固定的)的buffer,
//a函数中需要将循环传进来的buffer,组成240字节(也是固定的)的新buffer进行处理,
//在处理的时候每次从新buffer中取两个字节打印
#ifdef WIN32
    #pragma warning(disable:4996)
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef WIN32
    #include <windows.h>
    #include <process.h>
    #include <io.h>
    #define  MYVOID             void
    #define  vsnprintf          _vsnprintf
#else
    #include <unistd.h>
    #include <sys/time.h>
    #include <pthread.h>
    #define  CRITICAL_SECTION   pthread_mutex_t
    #define  MYVOID             void *
#endif
//Log{
#define MAXLOGSIZE 20000000
#define MAXLINSIZE 16000
#include <time.h>
#include <sys/timeb.h>
#include <stdarg.h>
char logfilename1[]="MyLog1.log";
char logfilename2[]="MyLog2.log";
static char logstr[MAXLINSIZE+1];
char datestr[16];
char timestr[16];
char mss[4];
CRITICAL_SECTION cs_log;
FILE *flog;
#ifdef WIN32
void Lock(CRITICAL_SECTION *l) {
    EnterCriticalSection(l);
}
void Unlock(CRITICAL_SECTION *l) {
    LeaveCriticalSection(l);
}
void sleep_ms(int ms) {
    Sleep(ms);
}
#else
void Lock(CRITICAL_SECTION *l) {
    pthread_mutex_lock(l);
}
void Unlock(CRITICAL_SECTION *l) {
    pthread_mutex_unlock(l);
}
void sleep_ms(int ms) {
    usleep(ms*1000);
}
#endif
void LogV(const char *pszFmt,va_list argp) {
    struct tm *now;
    struct timeb tb;

    if (NULL==pszFmt||0==pszFmt[0]) return;
    vsnprintf(logstr,MAXLINSIZE,pszFmt,argp);
    ftime(&tb);
    now=localtime(&tb.time);
    sprintf(datestr,"%04d-%02d-%02d",now->tm_year+1900,now->tm_mon+1,now->tm_mday);
    sprintf(timestr,"%02d:%02d:%02d",now->tm_hour     ,now->tm_min  ,now->tm_sec );
    sprintf(mss,"%03d",tb.millitm);
    printf("%s %s.%s %s",datestr,timestr,mss,logstr);
    flog=fopen(logfilename1,"a");
    if (NULL!=flog) {
        fprintf(flog,"%s %s.%s %s",datestr,timestr,mss,logstr);
        if (ftell(flog)>MAXLOGSIZE) {
            fclose(flog);
            if (rename(logfilename1,logfilename2)) {
                remove(logfilename2);
                rename(logfilename1,logfilename2);
            }
        } else {
            fclose(flog);
        }
    }
}
void Log(const char *pszFmt,...) {
    va_list argp;

    Lock(&cs_log);
    va_start(argp,pszFmt);
    LogV(pszFmt,argp);
    va_end(argp);
    Unlock(&cs_log);
}
//Log}
#define ASIZE    200
#define BSIZE    240
#define CSIZE      2
char Abuf[ASIZE];
char Cbuf[CSIZE];
CRITICAL_SECTION cs_HEX ;
CRITICAL_SECTION cs_BBB ;
struct FIFO_BUFFER {
    int  head;
    int  tail;
    int  size;
    char data[BSIZE];
} BBB;
int No_Loop=0;
void HexDump(int cn,char *buf,int len) {
    int i,j,k;
    char binstr[80];

    Lock(&cs_HEX);
    for (i=0;i<len;i++) {
        if (0==(i%16)) {
            sprintf(binstr,"%03d %04x -",cn,i);
            sprintf(binstr,"%s %02x",binstr,(unsigned char)buf[i]);
        } else if (15==(i%16)) {
            sprintf(binstr,"%s %02x",binstr,(unsigned char)buf[i]);
            sprintf(binstr,"%s  ",binstr);
            for (j=i-15;j<=i;j++) {
                sprintf(binstr,"%s%c",binstr,('!'<buf[j]&&buf[j]<='~')?buf[j]:'.');
            }
            Log("%s\n",binstr);
        } else {
            sprintf(binstr,"%s %02x",binstr,(unsigned char)buf[i]);
        }
    }
    if (0!=(i%16)) {
        k=16-(i%16);
        for (j=0;j<k;j++) {
            sprintf(binstr,"%s   ",binstr);
        }
        sprintf(binstr,"%s  ",binstr);
        k=16-k;
        for (j=i-k;j<i;j++) {
            sprintf(binstr,"%s%c",binstr,('!'<buf[j]&&buf[j]<='~')?buf[j]:'.');
        }
        Log("%s\n",binstr);
    }
    Unlock(&cs_HEX);
}
int GetFromRBuf(int cn,CRITICAL_SECTION *cs,FIFO_BUFFER *fbuf,char *buf,int len) {
    int lent,len1,len2;

    lent=0;
    Lock(cs);
    if (fbuf->size>=len) {
        lent=len;
        if (fbuf->head+lent>BSIZE) {
            len1=BSIZE-fbuf->head;
            memcpy(buf     ,fbuf->data+fbuf->head,len1);
            len2=lent-len1;
            memcpy(buf+len1,fbuf->data           ,len2);
            fbuf->head=len2;
        } else {
            memcpy(buf     ,fbuf->data+fbuf->head,lent);
            fbuf->head+=lent;
        }
        fbuf->size-=lent;
    }
    Unlock(cs);
    return lent;
}
MYVOID thdB(void *pcn) {
    char        *recv_buf;
    int          recv_nbytes;
    int          cn;
    int          wc;
    int          pb;

    cn=(int)pcn;
    Log("%03d thdB              thread begin...\n",cn);
    while (1) {
        sleep_ms(10);
        recv_buf=(char *)Cbuf;
        recv_nbytes=CSIZE;
        wc=0;
        while (1) {
            pb=GetFromRBuf(cn,&cs_BBB,&BBB,recv_buf,recv_nbytes);
            if (pb) {
                Log("%03d recv %d bytes\n",cn,pb);
                HexDump(cn,recv_buf,pb);
                sleep_ms(1);
            } else {
                sleep_ms(1000);
            }
            if (No_Loop) break;//
            wc++;
            if (wc>3600) Log("%03d %d==wc>3600!\n",cn,wc);
        }
        if (No_Loop) break;//
    }
#ifndef WIN32
    pthread_exit(NULL);
#endif
}
int PutToRBuf(int cn,CRITICAL_SECTION *cs,FIFO_BUFFER *fbuf,char *buf,int len) {
    int lent,len1,len2;

    Lock(cs);
    lent=len;
    if (fbuf->size+lent>BSIZE) {
        lent=BSIZE-fbuf->size;
    }
    if (fbuf->tail+lent>BSIZE) {
        len1=BSIZE-fbuf->tail;
        memcpy(fbuf->data+fbuf->tail,buf     ,len1);
        len2=lent-len1;
        memcpy(fbuf->data           ,buf+len1,len2);
        fbuf->tail=len2;
    } else {
        memcpy(fbuf->data+fbuf->tail,buf     ,lent);
        fbuf->tail+=lent;
    }
    fbuf->size+=lent;
    Unlock(cs);
    return lent;
}
MYVOID thdA(void *pcn) {
    char        *send_buf;
    int          send_nbytes;
    int          cn;
    int          wc;
    int           a;
    int          pa;

    cn=(int)pcn;
    Log("%03d thdA              thread begin...\n",cn);
    a=0;
    while (1) {
        sleep_ms(100);
        memset(Abuf,a,ASIZE);
        a=(a+1)%256;
        if (16==a) {No_Loop=1;break;}//去掉这句可以让程序一直循环直到按Ctrl+C或Ctrl+Break或当前目录下存在文件No_Loop
        send_buf=(char *)Abuf;
        send_nbytes=ASIZE;
        Log("%03d sending %d bytes\n",cn,send_nbytes);
        HexDump(cn,send_buf,send_nbytes);
        wc=0;
        while (1) {
            pa=PutToRBuf(cn,&cs_BBB,&BBB,send_buf,send_nbytes);
            Log("%03d sent %d bytes\n",cn,pa);
            HexDump(cn,send_buf,pa);
            send_buf+=pa;
            send_nbytes-=pa;
            if (send_nbytes<=0) break;//
            sleep_ms(1000);
            if (No_Loop) break;//
            wc++;
            if (wc>3600) Log("%03d %d==wc>3600!\n",cn,wc);
        }
        if (No_Loop) break;//
    }
#ifndef WIN32
    pthread_exit(NULL);
#endif
}
int main() {
#ifdef WIN32
    InitializeCriticalSection(&cs_log);
    InitializeCriticalSection(&cs_HEX );
    InitializeCriticalSection(&cs_BBB );
#else
    pthread_t threads[2];
    int threadsN;
    int rc;
    pthread_mutex_init(&cs_log,NULL);
    pthread_mutex_init(&cs_HEX,NULL);
    pthread_mutex_init(&cs_BBB,NULL);
#endif
    Log("Start===========================================================\n");

    BBB.head=0;
    BBB.tail=0;
    BBB.size=0;

#ifdef WIN32
    _beginthread((void(__cdecl *)(void *))thdA,0,(void *)1);
    _beginthread((void(__cdecl *)(void *))thdB,0,(void *)2);
#else
    threadsN=0;
    rc=pthread_create(&(threads[threadsN++]),NULL,thdA,(void *)1);if (rc) Log("%d=pthread_create %d error!\n",rc,threadsN-1);
    rc=pthread_create(&(threads[threadsN++]),NULL,thdB,(void *)2);if (rc) Log("%d=pthread_create %d error!\n",rc,threadsN-1);
#endif

    if (!access("No_Loop",0)) {
        remove("No_Loop");
        if (!access("No_Loop",0)) {
            No_Loop=1;
        }
    }
    while (1) {
        sleep_ms(1000);
        if (No_Loop) break;//
        if (!access("No_Loop",0)) {
            No_Loop=1;
        }
    }
    sleep_ms(3000);
    Log("End=============================================================\n");
#ifdef WIN32
    DeleteCriticalSection(&cs_BBB );
    DeleteCriticalSection(&cs_HEX );
    DeleteCriticalSection(&cs_log);
#else
    pthread_mutex_destroy(&cs_BBB);
    pthread_mutex_destroy(&cs_HEX);
    pthread_mutex_destroy(&cs_log);
#endif
    return 0;
}
ponydph 2015-02-16
  • 打赏
  • 举报
回复
有这方面经验的人请指教一下
ponydph 2015-02-13
  • 打赏
  • 举报
回复
继续请教, 就是重叠模型中 在发送和接收的时候,有什么需要注意的地方没有??? 我监测send 返回值 都是发送完成了,但是设备端就是收不到
蒙飞鸿 2015-02-12
  • 打赏
  • 举报
回复
涉及多线程和复杂SocketIO模型,情况描述不详。 如果两三天内还不能得到回复帮助,建议最简化模型代码然后把工程打包发送上来让别人调试运行才好帮你分析。。。
ponydph 2015-02-12
  • 打赏
  • 举报
回复
继续请教 发送的问题。
ponydph 2015-02-12
  • 打赏
  • 举报
回复
其实很简单, 就是基于I/O模型接收时,能否直接在另一个线程中调用发送过的问题。接收和发送是否会有影响?? 如在一个线程中初始化socket环境,在另一个线程中 能否直接调用send等socket函数(socket为全局) ? 关键代码已经贴出来。
第 1章 概述 1 1.1 网络编程相关的基本概念 1 1.1.1 网络编程与进程通信 1 1.1.2 Internet网间进程的标识 3 1.1.3 网络协议的特征 7 1.2 三类网络编程 10 1.2.1 基于TCP/IP协议栈的网络编程 10 1.2.2 基于WWW应用的网络编程 10 1.2.3 基于.NET框架的Web Services网络编程 10 1.3 客户机/服务器交互模式 13 1.3.1 网络应用软件的地位和功能 13 1.3.2 客户机/服务器模式 14 1.3.3 客户机与服务器的特性 15 1.3.4 容易混淆的术语 16 1.3.5 客户机与服务器的通信过程 16 1.3.6 网络协议与C/S模式的关系 17 1.3.7 错综复杂的C/S交互 17 1.3.8 服务器如何同时为多个客户机服务 18 1.3.9 标识一个特定服务 20 1.4 P2P模式 21 1.4.1 P2P技术的兴起 21 1.4.2 P2P的定义和特征 21 1.4.3 P2P的发展 22 1.4.4 P2P的关键技术 22 1.4.5 P2P系统的应用与前景 22 习题 23 第 2章 套接字网络编程基础 24 2.1 套接字网络编程接口的产生与发展 24 2.1.1 问题的提出 24 2.1.2 套接字编程接口起源于UNIX操作系统 25 2.1.3 套接字编程接口在Windows和Linux操作系统得到继承和发展 25 2.1.4 套接字编程接口的两种实现方式 25 2.1.5 套接字通信与UNIX操作系统的输入/输出的关系 26 2.2 套接字编程的基本概念 27 2.2.1 什么是套接字 27 2.2.2 套接字的特点 28 2.2.3 套接字的应用场合 30 2.2.4 套接字使用的数据类型和相关的问题 30 2.3 面向连接的套接字编程 32 2.3.1 可靠的传输控制协议 32 2.3.2 套接字的工作过程 33 2.3.3 面向连接的套接字编程实例 34 2.3.4 进程的阻塞问题和对策 40 2.4 无连接的套接字编程 43 2.4.1 高效的用户数据报协议 43 2.4.2 无连接的套接字编程的两种模式 43 2.4.3 数据报套接字的对等模式编程实例 45 2.5 原始套接字 47 2.5.1 原始套接字的创建 47 2.5.2 原始套接字的使用 48 2.5.3 原始套接字应用实例 49 习题 51 第3章 WinSock编程 53 3.1 WinSock概述 53 3.2 WinSock库函数 55 3.2.1 WinSock的注册与注销 55 3.2.2 WinSock的错误处理函数 58 3.2.3 主要的WinSock函数 61 3.2.4 WinSock的辅助函数 74 3.2.5 WinSock的信息查询函数 77 3.2.6 WSAAsyncGetXByY类型的扩展函数 79 3.3 网络应用程序的运行环境 82 习题 84 第4章 MFC编程 85 4.1 MFC概述 85 4.1.1 MFC是一个编程框架 85 4.1.2 典型的MDI应用程序的构成 87 4.2 MFC和Win32 89 4.2.1 MFC对象和Windows对象的关系 89 4.2.2 几个主要的类 91 4.3 CObject类 95 4.3.1 CObject类的定义 95 4.3.2 CObject类的特性 96 4.4 消息映射的实现 98 4.5 MFC对象的创建 102 4.5.1 MFC对象的关系 102 4.5.2 MFC提供的接口 104 4.5.3 MFC对象的创建过程 104 4.6 应用程序的退出 107 习题 107 第5章 MFC WinSock类的 编程 109 5.1 CAsyncSocket类 110 5.1.1 使用CAsyncSocket类的一般步骤 110 5.1.2 创建CAsyncSocket类对象 111 5.1.3 关于CAsyncSocket类可以接受并处理的消息事件 112 5.1.4 客户端套接字对象请求连接到服务器端套接字对象 114 5.1.5 服务器接收客户机的连接请求 115 5.1.6 发送与接收流式数据 116 5.1.7 关闭套接字 118 5.1.8 错误处理 118 5.1.9 其他成员函数 119 5.2 CSocket类 120 5.2.1 创建CSocket对象 120 5.2.2 建立连接 120 5.2.3 发送和接收数据 120 5.2.4 CSocket类、CArchive类和CSocketFile类 121 5.2.5 关闭套接字和清除相关的对象 122 5.3 CSocket类的编程模型 122 5.4 用CAsyncSocket类实现聊天室程序 123 5.4.1 实现目标 123 5.4.2 创建客户端应用程序 124 5.4.3 客户端程序的类与消息驱动 134 5.4.4 客户端程序主要功能的代码和分析 135 5.4.5 创建服务器端程序 142 5.4.6 服务器端程序的流程和消息驱动 144 5.4.7 点对点交谈的服务器端程序主要功能的代码和分析 145 5.5 用CSocket类实现聊天室程序 151 5.5.1 聊天室程序的功能 151 5.5.2 创建聊天室的服务器端程序 151 5.5.3 聊天室服务器端程序的主要实现代码和分析 154 5.5.4 创建聊天室的客户端程序 162 5.5.5 聊天室客户端程序的主要实现代码和分析 163 习题 170 实验 170 第6章 WinInet编程 172 6.1 MFC WinInet类 172 6.1.1 概述 172 6.1.2 MFC WinInet所包含的类 173 6.1.3 使用WinInet类编程的一般步骤 174 6.1.4 创建CInternetSession类对象 175 6.1.5 查询或设置Internet请求选项 176 6.1.6 创建连接类对象 177 6.1.7 使用文件检索类 178 6.1.8 重载OnStatusCallback函数 179 6.1.9 创建并使用网络文件类对象 180 6.1.10 CInternteException类 183 6.2 用MFC WinInet类实现FTP客户端 183 6.2.1 程序要实现的功能 183 6.2.2 创建应用程序的过程 184 习题 186 实验 187 第7章 WinSock的多线程 编程 188 7.1 WinSock为什么需要多线程编程 188 7.1.1 WinSock的两种I/O模式 188 7.1.2 两种模式的优缺点及解决方法 189 7.2 Win32操作系统下的多进程多线程机制 189 7.2.1 Win32 OS是单用户多任务的操作系统 189 7.2.2 Win32 OS是支持多线程的操作系统 190 7.2.3 多线程机制在网络编程的应用 191 7.3 VC++对多线程网络编程的支持 192 7.3.1 MFC支持的两种线程 192 7.3.2 创建MFC的工作线程 193 7.3.3 创建并启动用户界面线程 195 7.3.4 终止线程 198 7.4 多线程FTP客户端实例 200 7.4.1 编写线程函数 200 7.4.2 添加事件处理函数 206 习题 208 第8章 WinSock的I/O模型 209 8.1 select模型 210 8.2 WSAAsyncSelect异步I/O模型 212 8.3 WSAEventSelect事件选择模型 216 8.4 重叠I/O模型 221 8.4.1 重叠I/O模型的优点 221 8.4.2 重叠I/O模型的基本原理 221 8.4.3 重叠I/O模型的关键函数和数据结构 222 8.4.4 使用事件通知实现重叠模型的步骤 225 8.4.5 使用完成例程实现重叠模型的步骤 227 8.5 完成端口模型 229 8.5.1 什么是完成端口模型 229 8.5.2 使用完成端口模型的方法 230 习题 238 第9章 HTTP及编程 239 9.1 HTTP 239 9.1.1 HTTP的背景 239 9.1.2 HTTP的内容 240 9.1.3 HTTP消息的一般格式 242 9.1.4 HTTP请求的格式 243 9.1.5 HTTP响应的格式 245 9.1.6 访问认证 248 9.1.7 URL编码 249 9.1.8 HTTP的应用 250 9.2 利用CHtmlView类创建Web浏览器型的应用程序 250 9.2.1 CHtmlView类与WebBrowser控件 250 9.2.2 CHtmlView类的成员函数 251 9.2.3 创建一个Web浏览器型的应用程序的一般步骤 256 9.3 Web浏览器应用程序实例 261 9.3.1 程序实现的目标 261 9.3.2 创建实例程序 262 习题 265 实验 265 第 10章 电子邮件协议与编程 267 10.1 电子邮件系统的工作原理 267 10.1.1 电子邮件的特点 267 10.1.2 电子邮件系统的构成 267 10.1.3 电子邮件系统的实现 268 10.2 简单邮件传送协议 270 10.2.1 概述 270 10.2.2 SMTP客户机与SMTP服务器之间的会话 270 10.2.3 常用的SMTP命令 271 10.2.4 常用的SMTP响应码 273 10.2.5 SMTP的会话过程 274 10.2.6 使用WinSock来实现电子邮件客户机与服务器的会话 274 10.3 电子邮件信件结构详述 275 10.3.1 Internet文本信件的格式标准——RFC 822 275 10.3.2 信件的头部 276 10.3.3 构造和分析符合RFC 822标准的电子信件 281 10.4 MIME编码解码与发送附件 281 10.4.1 MIME概述 281 10.4.2 MIME定义的新的信头字段 282 10.4.3 MIME邮件的内容类型 283 10.4.4 MIME邮件的编码方式 292 10.5 POP3与接收电子邮件 294 10.5.1 POP3 294 10.5.2 POP3的会话过程 294 10.5.3 POP3会话的3个状态 295 10.5.4 POP3标准命令 296 10.5.5 接收电子邮件的一般步骤 298 10.6 接收电子邮件的程序实例 299 10.6.1 实例程序的目的和实现的技术要点 299 10.6.2 创建应用程序的过程 301 10.7 发送电子邮件的程序实例 302 10.7.1 实例程序的目的和实现的技术要点 302 10.7.2 创建应用程序的过程 303 习题 305 参考文献 307
第一部分 传统网络API 第1章 NetBIOS 1 1.1 Microsoft NetBIOS 2 1.1.1 LANA编号 2 1.1.2 NetBIOS名字 4 1.1.3 NetBIOS特性 6 1.2 NetBIOS编程基础 7 1.3 常规NetBIOS例程 8 1.3.1 会话服务器:异步回调模型 15 1.3.2 会话服务器:异步事件模型 20 1.3.3 NetBIOS会话客户机 24 1.4 数据报的工作原理 28 1.5 其他NetBIOS命令 40 1.5.1 适配器状态 40 1.5.2 查找名字 42 1.5.3 将传送协议同LANA编号对应起来 43 1.6 平台问题 43 1.6.1 Windows CE 44 1.6.2 Windows 9x 44 1.6.3 常规问题 44 1.7 小结 44 第2章 重定向器 45 2.1 通用命名规范 45 2.2 多UNC提供者 47 2.3 网络提供者 47 2.4 重定向器简介 48 2.5 服务器消息块 48 2.6 安全问题 49 2.6.1 安全描述符 49 2.6.2 访问令牌 51 2.7 网络安全 51 2.8 一个实例 52 2.9 小结 53 第3章 邮槽 54 3.1 邮槽实施细节 54 3.1.1 邮槽的名字 54 3.1.2 消息的长度 55 3.1.3 应用程序的编译 56 3.1.4 错误代码 57 3.2 基本客户机/服务器 57 3.2.1 邮槽服务器的详情 57 3.2.2 邮槽客户机的详情 59 3.3 其他邮槽API 61 3.4 平台和性能问题 62 3.4.1 8.3字符名字限制 62 3.4.2 不能取消“凝结”的I/O请求 62 3.4.3 超时引起的内存废弃 64 3.5 小结 65 第4章 命名管道 66 4.1 命名管道的实施细节 66 4.1.1 命名管道命名规范 67 4.1.2 字节模式及消息模式 67 4.1.3 应用程序的编译 67 4.1.4 错误代码 68 4.2 客户机与服务器的基础 68 4.2.1 服务器的细节 68 4.2.2 高级服务器的细节 74 4.2.3 客户机的细节 81 4.3 其他API调用 83 4.4 平台和性能问题 86 4.5 小结 87 第二部分 Winsock API 第5章 网络原理和协议 89 5.1 协议的特征 89 5.1.1 面向消息 89 5.1.2 面向连接和无连接 91 5.1.3 可靠性和次序性 91 5.1.4 从容关闭 92 5.1.5 广播数据 92 5.1.6 多播数据 92 5.1.7 服务质量 92 5.1.8 部分消息 93 5.1.9 路由选择的考虑 93 5.1.10 其他特征 93 5.2 支持的协议 93 5.2.1 支持的Win32网络协议 93 5.2.2 Windows CE网络协议 94 5.3 Winsock 2协议信息 94 5.4 Windows套接字 97 5.5 具体平台的问题 99 5.6 选择适当的协议 100 5.7 小结 100 第6章 地址家族和名字解析 102 6.1 IP 102 6.1.1 TCP 102 6.1.2 UDP 102 6.1.3 定址 102 6.1.4 创建套接字 105 6.1.5 名字解析 105 6.2 红外线套接字 107 6.2.1 定址 107 6.2.2 名字解析 108 6.2.3 红外线设备列举 108 6.2.4 查询IAS 110 6.2.5 创建套接字 111 6.2.6 套接字选项 112 6.3 IPX/SPX 112 6.3.1 编址 112 6.3.2 创建套接字 112 6.4 NetBIOS 115 6.4.1 定址 115 6.4.2 创建套接字 116 6.5 AppleTalk 117 6.5.1 定址 117 6.5.2 AppleTalk名的注册 118 6.5.3 AppleTalk名的解析 119 6.5.4 创建套接字 124 6.6 ATM 124 6.6.1 定址 125 6.6.2 创建套接字 128 6.6.3 把套接字和SAP绑定在一起 129 6.6.4 名字解析 130 6.7 Winsock 2支持的其他函数 130 6.8 小结 131 第7章 Winsock基础 132 7.1 Winsock的初始化 132 7.2 错误检查和控制 134 7.3 面向连接的协议 134 7.3.1 服务器API函数 134 7.3.2 客户机API函数 138 7.3.3 数据传输 140 7.3.4 流协议 144 7.3.5 断连接 146 7.3.6 综合分析 147 7.4 无连接协议 155 7.4.1 接收端 155 7.4.2 发送端 156 7.4.3 基于消息的协议 157 7.4.4 释放套接字资源 158 7.4.5 综合分析 158 7.5 其他API函数 165 7.6 Windows CE 168 7.7 其他地址家族 169 7.7.1 AppleTalk 169 7.7.2 IrDA 169 7.7.3 NetBIOS 170 7.7.4 IPX/SPX 170 7.7.5 ATM 171 7.8 小结 171 第8章 Winsock I/O方法 172 8.1 套接字模式 172 8.1.1 锁定模式 173 8.1.2 非锁定模式 175 8.2 套接字I/O模型 176 8.2.1 select模型 176 8.2.2 WSAAsyncSelect 179 8.2.3 WSAEventSelect 183 8.2.4 重叠模型 188 8.2.5 完成端口模型 198 8.3 I/O模型问题 206 8.4 小结 206 第9章 套接字选项和I/O控制命令 207 9.1 套接字选项 207 9.1.1 SOL_SOCKET选项级别 208 9.1.2 SOL_APPLETALK选项级别 215 9.1.3 SOL_IRLMP选项级别 218 9.1.4 IPPROTO_IP选项级 222 9.1.5 IPPROTO_TCP选项级别 227 9.1.6 NSPROTO_IPX选项级别 227 9.2 IOCTLSOCKET和WSAIOCTL 231 9.2.1 标准I/O控制命令 232 9.2.2 其他I/O控制命令 233 9.2.3 安全套接字层的I/O控制命令 239 9.2.4 ATM I/O控制命令 241 9.3 小结 242 第10章 名字注册和解析 243 10.1 背景知识 243 10.2 名字空间模型 243 10.3 服务的注册 245 10.3.1 安装服务类 245 10.3.2 服务的注册 248 10.3.3 服务注册示例 251 10.4 服务的查询 254 10.4.1 怎样对服务进行查询 255 10.4.2 查询DNS 257 10.5 小结 260 第11章 多播 261 11.1 多播的含义 261 11.2 IP多播 264 11.2.1 Internet网关管理协议 264 11.2.2 IP叶节点 265 11.2.3 IP多播的实施 266 11.3 ATM多播 266 11.3.1 ATM叶节点 267 11.3.2 ATM根节点 267 11.4 多播与Winsock 268 11.4.1 Winsock 1多播 268 11.4.2 Winsock 2多播 274 11.4.3 常用的Winsock选项 288 11.4.4 拨号网络多播的一处限制 290 11.5 小结 291 第12章 常规服务质量 292 12.1 背景知识 292 12.1.1 资源预约协议 292 12.1.2 网络组件 293 12.1.3 应用组件 294 12.1.4 策略组件 296 12.2 QoS和Winsock 296 12.2.1 QoS结构 297 12.2.2 QoS调用函数 299 12.3 QoS止 303 12.4 QoS编程 311 12.4.1 RSVP和套接字类型 312 12.4.2 QoS通知 314 12.4.3 QoS模板 316 12.5 示例 318 12.5.1 单播TCP 318 12.5.2 单播UDP 336 12.5.3 多播UDP 337 12.6 ATM和QoS 338 12.7 小结 339 第13章 原始套接字 340 13.1 原始套接字的创建 340 13.2 Internet控制消息协议 341 13.2.1 Ping示例 342 13.2.2 Traceroute示例 351 13.3 Internet组管理协议 352 13.4 IP_HDRINCL的使用 354 13.5 小结 362 第14章 Winsock 2服务提供者接口 363 14.1 SPI基础 363 14.1.1 SPI命名规则 364 14.1.2 Winsock 2 API和SPI函数之间的映 射 364 14.2 传输服务提供者 364 14.2.1 WSPStartup 365 14.2.2 参数 366 14.2.3 实例计数 369 14.2.4 套接字句柄 369 14.2.5 Winsock I/O模型支持 371 14.2.6 扩展函数 380 14.2.7 传输服务提供者的安装 381 14.3 命名空间服务提供者 386 14.3.1 名字空间的安装 386 14.3.2 名字空间的实施 387 14.3.3 名字空间提供者示范 392 14.4 Winsock SPI函数的调试追踪 396 14.5 小结 396 第15章 微软Visual Basic Winsock控件 397 15.1 属性 397 15.2 方法 398 15.3 事件 399 15.4 UDP示例 400 15.4.1 UDP消息的发送 403 15.4.2 UDP消息的接收 404 15.4.3 获取Winsock信息 404 15.4.4 运行UDP示例 405 15.4.5 UDP状态 405 15.5 TCP示例 406 15.5.1 TCP服务器 412 15.5.2 TCP客户机 413 15.5.3 获取Winsock信息 414 15.5.4 运行TCP示例 414 15.5.5 TCP状态 415 15.6 存在的局限 415 15.7 常见错误 416 15.8 Windows CE的Winsock控件 417 15.8.1 Windows CE Winsock示例 417 15.8.2 已知的问题 421 15.9 小结 422 第三部分 远程访问服务 第16章 RAS客户机 423 16.1 编译和链接 424 16.2 数据结构和平台兼容问题 424 16.3 DUN 1.3升级和Windows 95 425 16.4 RASDIAL 425 16.4.1 同步模式 427 16.4.2 异步模式 428 16.4.3 状态通知 432 16.4.4 关闭连接 432 16.5 电话簿 433 16.5.1 电话簿条目的增添 440 16.5.2 电话簿条目的重命名 442 16.5.3 电话簿条目的删除 442 16.5.4 电话簿条目的列举 443 16.5.5 用户凭据的管理 443 16.5.6 多链接电话簿的子条目 445 16.6 连接管理 446 16.7 小结 450 第四部分 附录录录 附录A NetBIOS命令索引 451 附录B IP助手函数 464 附录C Winsock错误代码 481
Visual C++/Turbo C串口通信编程实践及源代码 第1章 轻松体验串口通信编程与调试 1 1.1 使用串口调试助手来体验串口通信 1 1.2 体验windows环境下的visual c++串口通信编程 4 1.3 体验dos环境下turbo c串口通信编程 12 第2章 多线程串口编程工具cserialport类 16 2.1 cserialport类的功能及成员函数介绍 16 2.2 应用cserialport类编制基于对话框的应用程序 30 2.3 应用cserialport类编制基于单文档的应用程序 35 2.4 对cserialport类的改进 40 2.4.1 改进一:ascii文本和二进制数据发送方式兼容 40 2.4.2 改进二:也许能解决内存泄漏 43 2.4.3 改进三:彻底关闭串口,释放串口资源 44 第3章 控件mscomm串口编程 46 3.1 mscomm控件介绍 46 3.1.1 vc应用mscomm控件编程步骤 46 3.1.2 mscomm控件串行通信处理方式 47 3.1.3 mscomm 控件的属性说明 48 3.1.4 mscomm控件错误信息 55 3.2 使用mscomm控件的几个疑难问题 56 3.2.1 使用variant 和safearray 数据类型从串口读写数据 56 .3.2.2 mscomm控件能离开对话框独立存在吗 59 3.2.3 如何发送接收ascii值为0和大于128的字符 60 3.2.4 在同一程序用mscomm控件控制多个串口的具体操作方法 62 3.2.5 解决使用控件编程时程序占用的内存会不断增大的问题 62 3.2.6 在mscomm控件串口编程时遇到的其他问题 63 3.3 在基于单文档(sdi)程序应用mscomm控件 63 3.4 应用mscomm控件控制多个串口实例 69 3.5 串口与modem拨号应用简例 76 3.5.1 创建工程 76 3.5.2 代码分析 78 3.5.3 应用 85 第4章 windows api串口编程 87 4.1 windows api串口编程概述 87 4.2 api串口编程用到的结构及相关概念说明 89 4.2.1 dcb(device control block)结构 89 4.2.2 超时设置commtimeouts结构 92 4.2.3 overlapped异步i/o重叠结构 94 4.2.4 通信错误与通信设备状态 95 4.2.5 串行通信事件 96 4.3 windows api串行通信函数 97 4.4 win32 api串口通信编程的一般流程和特殊实例 116 4.4.1 win32 api串口通信编程的一般流程 116 4.4.2 用查询方式读串口 116 4.4.3 同步i/o读写数据 117 4.4.4 关于流控制的设置问题 118 4.5 cserialport类的api函数编程应用剖析 119 4.6 win32 api串口编程tty(虚拟终端)实例 128 4.6.1 建立程序工程 128 4.6.2 建立串口设置对话框 129 4.6.3 编写ctermdoc类的相关代码 132 4.6.4 小结 141 4.6.5 在ctermview类字添加符键入处理代码与串口接收处理代码 142 第5章 串口调试助手v2.2编程 147 5.1 建立scomm程序工程实现界面功能 147 5.2 串口的初始化及关闭 150 5.3 串口数据发送与接收及十六进制数据的处理 151 5.3.1 十六进数据发送处理 152 5.3.2 手动发送处理 152 5.3.3 自动发送处理 153 5.3.4 接收处理及十六进制显示 154 5.4 其他辅助功能的实现 156 5.4.1 接收数据的文件保存 156 5.4.2 实现小文件发送 158 5.4.3 图钉按钮功能使程序能浮在最上层 161 5.4.4 对话框动画图标的实现 162 5.4.5 超链接功能的实现 164 5.4.6 如何打开帮助网页文件 164 第6章 dos环境下的turbo c串口编程及通用实例gserial类 168 6.1 pc机异步通信适配器8250及其编程操作 169 6.1.1 ins8250内部寄存器及其选择方式 169 6.1.2 波特率设置 169 6.1.3 数据位、奇偶校验、停止位等数据格式设置 170 6.1.4 查询i/o方式相关设置 171 6.1.5 断i/o通信方式相关设置 171 6.1.6 modem寄存器 172 6.2 comrxtx程序实例 173 6.3 通用实例程序gserial类 175 6.4 用gserial类控制多串口 186 6.5 多串口编程pc机高号断8259a可编程断控制器的控制 195 第7章 串口通信用户层协议的编制与数据处理方法 197 7.1 通信协议的编制 197 7.1.1 为什么要编制用户通信协议 197 7.1.2 串口通信用户层协议编制原则 199 7.1.3 在串口通信几种常用的用户层协议 200 7.2 串口通信数据包处理方法编程实例 202 7.2.1 编程任务 203 7.2.2 编程步骤 203 7.2.3 程序测试 216 第8章 单片机串口通信 218 8.1 单片机串口硬件系统及c51程序开发 218 8.1.1 较典型的单片机硬件系统实例 218 8.1.2 c51语言及程序简介 220 8.1.3 开发c51程序的利器keil c51 uvision2及串口程序仿真 221 8.2 c51单片机串口通信程序实例 226 8.2.1 实例一 226 8.2.2 实例二 227 第9章 串口与网络结合的解决方案及编程 230 9.1 串口与网络结合的硬件解决方案 230 9.2典型串口与联网的设备 231 9.2.1 nport5400系列产品的特点 231 9.2.2 nport 5400系列产品的典型应用介绍 233 9.2.3 nport5400系列产品的设置与编程测试 235 9.3 与access数据库结合的串口通信实例 237 9.3.1 微机网络检测系统说明 237 9.3.2 创建odbc数据源 238 9.3.3 创建工程 239 9.3.4 程序简介 244 9.4 与winsock结合的串口通信实例 246 9.4.1 客户端应用程序 247 9.4.2 服务器应用程序 252 9.5 在已经编好的串口通信程序加入网络通信功能 260 9.5.1参照mfc appwizard创建winsockets程序 261 9.5.2 利用windows sockets api和第三方提供的类进行编程 262 9.6 串口通信用于遥控操作简例 262 第10章 计算机串口与其他设备通信编程实例 266 10.1通过串口收发短消息 266 10.1.1 sms编码规范及编码与解码例程 266 10.1.2 at命令收发短消息实例 273 10.1.3 "实时"接收短消息的方法 281 10.1.4 用串口收发sms短信编程的一些讨论 283 10.2 计算机与rabbit 2000嵌入式系统通信编程实例 286 10.2.1 rabbit 2000微处理器介绍 286 10.2.2 动态c(dynamic c)语言介绍 287 10.2.3 某车载无线调度系统实例介绍 288 10.3 计算机与plc通信程序实例 294 10.4 matlab环境串口编程通信实例 295 10.4.1 matlab串口类serial应用 295 10.4.2 通过串口使matlab simulink与下位机通讯进行控制 299 10.4.3 xpc目标环境下串口通信实现 299 第11章 串口通信基本概念及标准 302 11.1 串口通信基本概念 302 11.1.1 串行通信概述 302 11.1.2 单工、半双工和全双工的定义 305 11.1.3 同步传送与异步传送 306 11.1.4 串行通信协议 306 11.2 rs-232-c串口标准 309 11.2.1 rs-232-c标准 309 11.2.2 rs-232-c串行通信接线实例 312 11.3 rs-422/485串口标准 314 11.3.1 概述 314 11.3.2 rs-422与rs-485串行接口标准 315 11.3.3 rs-422与rs-485的网络安装注意要点 317 11.3.4 rs-232、rs422、rs485电气参数对比 318 11.4 串口调试注意事项 318 11.5 常用数据校验法 318 11.5.1 奇偶校验 318 11.5.2 循环冗余码校验 319 11.6 串口连接和tcp/ip连接对比 320 11.7 现场总线与rs-232、rs-485的本质区别 320 11.8 modem通信技术 320 11.8.1 modem的基本工作原理 320 11.8.2 modem的功能 322 11.8.3 modem的分类 322 11.8.4 modem的安装 324 11.8.5 modem v.92标准介绍 326 11.8.6 modem的速度 327 11.8.7 modem优化方法 328 11.8.8 modem命令/at命令 329 第12章 不占用串口的串口数据捕捉 338 12.1 驱动程序的基本概念:vxd与wdm 338 12.1.1 虚拟设备驱动程序vxd 338 12.1.2 win32驱动程序模型wdm 340 12.1.3 在不同操作系统下选用哪种驱动程序模式 341 12.2 vxd示例程序介绍--vtoolsd的commhook 341 12.3 串口数据捕捉实例程序 351 12.3.1 编程任务 351 12.3.2 编程步骤 351 12.4 虚拟串口简介 364 附录a turbo c说明 366 附录b ascii码表 376
Visual C++/Turbo C串口通信编程实践及源代码 第1章 轻松体验串口通信编程与调试 1 1.1 使用串口调试助手来体验串口通信 1 1.2 体验windows环境下的visual c++串口通信编程 4 1.3 体验dos环境下turbo c串口通信编程 12 第2章 多线程串口编程工具cserialport类 16 2.1 cserialport类的功能及成员函数介绍 16 2.2 应用cserialport类编制基于对话框的应用程序 30 2.3 应用cserialport类编制基于单文档的应用程序 35 2.4 对cserialport类的改进 40 2.4.1 改进一:ascii文本和二进制数据发送方式兼容 40 2.4.2 改进二:也许能解决内存泄漏 43 2.4.3 改进三:彻底关闭串口,释放串口资源 44 第3章 控件mscomm串口编程 46 3.1 mscomm控件介绍 46 3.1.1 vc应用mscomm控件编程步骤 46 3.1.2 mscomm控件串行通信处理方式 47 3.1.3 mscomm 控件的属性说明 48 3.1.4 mscomm控件错误信息 55 3.2 使用mscomm控件的几个疑难问题 56 3.2.1 使用variant 和safearray 数据类型从串口读写数据 56 .3.2.2 mscomm控件能离开对话框独立存在吗 59 3.2.3 如何发送接收ascii值为0和大于128的字符 60 3.2.4 在同一程序用mscomm控件控制多个串口的具体操作方法 62 3.2.5 解决使用控件编程时程序占用的内存会不断增大的问题 62 3.2.6 在mscomm控件串口编程时遇到的其他问题 63 3.3 在基于单文档(sdi)程序应用mscomm控件 63 3.4 应用mscomm控件控制多个串口实例 69 3.5 串口与modem拨号应用简例 76 3.5.1 创建工程 76 3.5.2 代码分析 78 3.5.3 应用 85 第4章 windows api串口编程 87 4.1 windows api串口编程概述 87 4.2 api串口编程用到的结构及相关概念说明 89 4.2.1 dcb(device control block)结构 89 4.2.2 超时设置commtimeouts结构 92 4.2.3 overlapped异步i/o重叠结构 94 4.2.4 通信错误与通信设备状态 95 4.2.5 串行通信事件 96 4.3 windows api串行通信函数 97 4.4 win32 api串口通信编程的一般流程和特殊实例 116 4.4.1 win32 api串口通信编程的一般流程 116 4.4.2 用查询方式读串口 116 4.4.3 同步i/o读写数据 117 4.4.4 关于流控制的设置问题 118 4.5 cserialport类的api函数编程应用剖析 119 4.6 win32 api串口编程tty(虚拟终端)实例 128 4.6.1 建立程序工程 128 4.6.2 建立串口设置对话框 129 4.6.3 编写ctermdoc类的相关代码 132 4.6.4 小结 141 4.6.5 在ctermview类字添加符键入处理代码与串口接收处理代码 142 第5章 串口调试助手v2.2编程 147 5.1 建立scomm程序工程实现界面功能 147 5.2 串口的初始化及关闭 150 5.3 串口数据发送与接收及十六进制数据的处理 151 5.3.1 十六进数据发送处理 152 5.3.2 手动发送处理 152 5.3.3 自动发送处理 153 5.3.4 接收处理及十六进制显示 154 5.4 其他辅助功能的实现 156 5.4.1 接收数据的文件保存 156 5.4.2 实现小文件发送 158 5.4.3 图钉按钮功能使程序能浮在最上层 161 5.4.4 对话框动画图标的实现 162 5.4.5 超链接功能的实现 164 5.4.6 如何打开帮助网页文件 164 第6章 dos环境下的turbo c串口编程及通用实例gserial类 168 6.1 pc机异步通信适配器8250及其编程操作 169 6.1.1 ins8250内部寄存器及其选择方式 169 6.1.2 波特率设置 169 6.1.3 数据位、奇偶校验、停止位等数据格式设置 170 6.1.4 查询i/o方式相关设置 171 6.1.5 断i/o通信方式相关设置 171 6.1.6 modem寄存器 172 6.2 comrxtx程序实例 173 6.3 通用实例程序gserial类 175 6.4 用gserial类控制多串口 186 6.5 多串口编程pc机高号断8259a可编程断控制器的控制 195 第7章 串口通信用户层协议的编制与数据处理方法 197 7.1 通信协议的编制 197 7.1.1 为什么要编制用户通信协议 197 7.1.2 串口通信用户层协议编制原则 199 7.1.3 在串口通信几种常用的用户层协议 200 7.2 串口通信数据包处理方法编程实例 202 7.2.1 编程任务 203 7.2.2 编程步骤 203 7.2.3 程序测试 216 第8章 单片机串口通信 218 8.1 单片机串口硬件系统及c51程序开发 218 8.1.1 较典型的单片机硬件系统实例 218 8.1.2 c51语言及程序简介 220 8.1.3 开发c51程序的利器keil c51 uvision2及串口程序仿真 221 8.2 c51单片机串口通信程序实例 226 8.2.1 实例一 226 8.2.2 实例二 227 第9章 串口与网络结合的解决方案及编程 230 9.1 串口与网络结合的硬件解决方案 230 9.2典型串口与联网的设备 231 9.2.1 nport5400系列产品的特点 231 9.2.2 nport 5400系列产品的典型应用介绍 233 9.2.3 nport5400系列产品的设置与编程测试 235 9.3 与access数据库结合的串口通信实例 237 9.3.1 微机网络检测系统说明 237 9.3.2 创建odbc数据源 238 9.3.3 创建工程 239 9.3.4 程序简介 244 9.4 与winsock结合的串口通信实例 246 9.4.1 客户端应用程序 247 9.4.2 服务器应用程序 252 9.5 在已经编好的串口通信程序加入网络通信功能 260 9.5.1参照mfc appwizard创建winsockets程序 261 9.5.2 利用windows sockets api和第三方提供的类进行编程 262 9.6 串口通信用于遥控操作简例 262 第10章 计算机串口与其他设备通信编程实例 266 10.1通过串口收发短消息 266 10.1.1 sms编码规范及编码与解码例程 266 10.1.2 at命令收发短消息实例 273 10.1.3 "实时"接收短消息的方法 281 10.1.4 用串口收发sms短信编程的一些讨论 283 10.2 计算机与rabbit 2000嵌入式系统通信编程实例 286 10.2.1 rabbit 2000微处理器介绍 286 10.2.2 动态c(dynamic c)语言介绍 287 10.2.3 某车载无线调度系统实例介绍 288 10.3 计算机与plc通信程序实例 294 10.4 matlab环境串口编程通信实例 295 10.4.1 matlab串口类serial应用 295 10.4.2 通过串口使matlab simulink与下位机通讯进行控制 299 10.4.3 xpc目标环境下串口通信实现 299 第11章 串口通信基本概念及标准 302 11.1 串口通信基本概念 302 11.1.1 串行通信概述 302 11.1.2 单工、半双工和全双工的定义 305 11.1.3 同步传送与异步传送 306 11.1.4 串行通信协议 306 11.2 rs-232-c串口标准 309 11.2.1 rs-232-c标准 309 11.2.2 rs-232-c串行通信接线实例 312 11.3 rs-422/485串口标准 314 11.3.1 概述 314 11.3.2 rs-422与rs-485串行接口标准 315 11.3.3 rs-422与rs-485的网络安装注意要点 317 11.3.4 rs-232、rs422、rs485电气参数对比 318 11.4 串口调试注意事项 318 11.5 常用数据校验法 318 11.5.1 奇偶校验 318 11.5.2 循环冗余码校验 319 11.6 串口连接和tcp/ip连接对比 320 11.7 现场总线与rs-232、rs-485的本质区别 320 11.8 modem通信技术 320 11.8.1 modem的基本工作原理 320 11.8.2 modem的功能 322 11.8.3 modem的分类 322 11.8.4 modem的安装 324 11.8.5 modem v.92标准介绍 326 11.8.6 modem的速度 327 11.8.7 modem优化方法 328 11.8.8 modem命令/at命令 329 第12章 不占用串口的串口数据捕捉 338 12.1 驱动程序的基本概念:vxd与wdm 338 12.1.1 虚拟设备驱动程序vxd 338 12.1.2 win32驱动程序模型wdm 340 12.1.3 在不同操作系统下选用哪种驱动程序模式 341 12.2 vxd示例程序介绍--vtoolsd的commhook 341 12.3 串口数据捕捉实例程序 351 12.3.1 编程任务 351 12.3.2 编程步骤 351 12.4 虚拟串口简介 364 附录a turbo c说明 366 附录b ascii码表 376
Visual C++/Turbo C串口通信编程实践 及源代码 第1章 轻松体验串口通信编程与调试 1 1.1 使用串口调试助手来体验串口通信 1 1.2 体验windows环境下的visual c++串口通信编程 4 1.3 体验dos环境下turbo c串口通信编程 12 第2章 多线程串口编程工具cserialport类 16 2.1 cserialport类的功能及成员函数介绍 16 2.2 应用cserialport类编制基于对话框的应用程序 30 2.3 应用cserialport类编制基于单文档的应用程序 35 2.4 对cserialport类的改进 40 2.4.1 改进一:ascii文本和二进制数据发送方式兼容 40 2.4.2 改进二:也许能解决内存泄漏 43 2.4.3 改进三:彻底关闭串口,释放串口资源 44 第3章 控件mscomm串口编程 46 3.1 mscomm控件介绍 46 3.1.1 vc应用mscomm控件编程步骤 46 3.1.2 mscomm控件串行通信处理方式 47 3.1.3 mscomm 控件的属性说明 48 3.1.4 mscomm控件错误信息 55 3.2 使用mscomm控件的几个疑难问题 56 3.2.1 使用variant 和safearray 数据类型从串口读写数据 56 .3.2.2 mscomm控件能离开对话框独立存在吗 59 3.2.3 如何发送接收ascii值为0和大于128的字符 60 3.2.4 在同一程序用mscomm控件控制多个串口的具体操作方法 62 3.2.5 解决使用控件编程时程序占用的内存会不断增大的问题 62 3.2.6 在mscomm控件串口编程时遇到的其他问题 63 3.3 在基于单文档(sdi)程序应用mscomm控件 63 3.4 应用mscomm控件控制多个串口实例 69 3.5 串口与modem拨号应用简例 76 3.5.1 创建工程 76 3.5.2 代码分析 78 3.5.3 应用 85 第4章 windows api串口编程 87 4.1 windows api串口编程概述 87 4.2 api串口编程用到的结构及相关概念说明 89 4.2.1 dcb(device control block)结构 89 4.2.2 超时设置commtimeouts结构 92 4.2.3 overlapped异步i/o重叠结构 94 4.2.4 通信错误与通信设备状态 95 4.2.5 串行通信事件 96 4.3 windows api串行通信函数 97 4.4 win32 api串口通信编程的一般流程和特殊实例 116 4.4.1 win32 api串口通信编程的一般流程 116 4.4.2 用查询方式读串口 116 4.4.3 同步i/o读写数据 117 4.4.4 关于流控制的设置问题 118 4.5 cserialport类的api函数编程应用剖析 119 4.6 win32 api串口编程tty(虚拟终端)实例 128 4.6.1 建立程序工程 128 4.6.2 建立串口设置对话框 129 4.6.3 编写ctermdoc类的相关代码 132 4.6.4 小结 141 4.6.5 在ctermview类字添加符键入处理代码与串口接收处理代码 142 第5章 串口调试助手v2.2编程 147 5.1 建立scomm程序工程实现界面功能 147 5.2 串口的初始化及关闭 150 5.3 串口数据发送与接收及十六进制数据的处理 151 5.3.1 十六进数据发送处理 152 5.3.2 手动发送处理 152 5.3.3 自动发送处理 153 5.3.4 接收处理及十六进制显示 154 5.4 其他辅助功能的实现 156 5.4.1 接收数据的文件保存 156 5.4.2 实现小文件发送 158 5.4.3 图钉按钮功能使程序能浮在最上层 161 5.4.4 对话框动画图标的实现 162 5.4.5 超链接功能的实现 164 5.4.6 如何打开帮助网页文件 164 第6章 dos环境下的turbo c串口编程及通用实例gserial类 168 6.1 pc机异步通信适配器8250及其编程操作 169 6.1.1 ins8250内部寄存器及其选择方式 169 6.1.2 波特率设置 169 6.1.3 数据位、奇偶校验、停止位等数据格式设置 170 6.1.4 查询i/o方式相关设置 171 6.1.5 断i/o通信方式相关设置 171 6.1.6 modem寄存器 172 6.2 comrxtx程序实例 173 6.3 通用实例程序gserial类 175 6.4 用gserial类控制多串口 186 6.5 多串口编程pc机高号断8259a可编程断控制器的控制 195 第7章 串口通信用户层协议的编制与数据处理方法 197 7.1 通信协议的编制 197 7.1.1 为什么要编制用户通信协议 197 7.1.2 串口通信用户层协议编制原则 199 7.1.3 在串口通信几种常用的用户层协议 200 7.2 串口通信数据包处理方法编程实例 202 7.2.1 编程任务 203 7.2.2 编程步骤 203 7.2.3 程序测试 216 第8章 单片机串口通信 218 8.1 单片机串口硬件系统及c51程序开发 218 8.1.1 较典型的单片机硬件系统实例 218 8.1.2 c51语言及程序简介 220 8.1.3 开发c51程序的利器keil c51 uvision2及串口程序仿真 221 8.2 c51单片机串口通信程序实例 226 8.2.1 实例一 226 8.2.2 实例二 227 第9章 串口与网络结合的解决方案及编程 230 9.1 串口与网络结合的硬件解决方案 230 9.2典型串口与联网的设备 231 9.2.1 nport5400系列产品的特点 231 9.2.2 nport 5400系列产品的典型应用介绍 233 9.2.3 nport5400系列产品的设置与编程测试 235 9.3 与access数据库结合的串口通信实例 237 9.3.1 微机网络检测系统说明 237 9.3.2 创建odbc数据源 238 9.3.3 创建工程 239 9.3.4 程序简介 244 9.4 与winsock结合的串口通信实例 246 9.4.1 客户端应用程序 247 9.4.2 服务器应用程序 252 9.5 在已经编好的串口通信程序加入网络通信功能 260 9.5.1参照mfc appwizard创建winsockets程序 261 9.5.2 利用windows sockets api和第三方提供的类进行编程 262 9.6 串口通信用于遥控操作简例 262 第10章 计算机串口与其他设备通信编程实例 266 10.1通过串口收发短消息 266 10.1.1 sms编码规范及编码与解码例程 266 10.1.2 at命令收发短消息实例 273 10.1.3 "实时"接收短消息的方法 281 10.1.4 用串口收发sms短信编程的一些讨论 283 10.2 计算机与rabbit 2000嵌入式系统通信编程实例 286 10.2.1 rabbit 2000微处理器介绍 286 10.2.2 动态c(dynamic c)语言介绍 287 10.2.3 某车载无线调度系统实例介绍 288 10.3 计算机与plc通信程序实例 294 10.4 matlab环境串口编程通信实例 295 10.4.1 matlab串口类serial应用 295 10.4.2 通过串口使matlab simulink与下位机通讯进行控制 299 10.4.3 xpc目标环境下串口通信实现 299 第11章 串口通信基本概念及标准 302 11.1 串口通信基本概念 302 11.1.1 串行通信概述 302 11.1.2 单工、半双工和全双工的定义 305 11.1.3 同步传送与异步传送 306 11.1.4 串行通信协议 306 11.2 rs-232-c串口标准 309 11.2.1 rs-232-c标准 309 11.2.2 rs-232-c串行通信接线实例 312 11.3 rs-422/485串口标准 314 11.3.1 概述 314 11.3.2 rs-422与rs-485串行接口标准 315 11.3.3 rs-422与rs-485的网络安装注意要点 317 11.3.4 rs-232、rs422、rs485电气参数对比 318 11.4 串口调试注意事项 318 11.5 常用数据校验法 318 11.5.1 奇偶校验 318 11.5.2 循环冗余码校验 319 11.6 串口连接和tcp/ip连接对比 320 11.7 现场总线与rs-232、rs-485的本质区别 320 11.8 modem通信技术 320 11.8.1 modem的基本工作原理 320 11.8.2 modem的功能 322 11.8.3 modem的分类 322 11.8.4 modem的安装 324 11.8.5 modem v.92标准介绍 326 11.8.6 modem的速度 327 11.8.7 modem优化方法 328 11.8.8 modem命令/at命令 329 第12章 不占用串口的串口数据捕捉 338 12.1 驱动程序的基本概念:vxd与wdm 338 12.1.1 虚拟设备驱动程序vxd 338 12.1.2 win32驱动程序模型wdm 340 12.1.3 在不同操作系统下选用哪种驱动程序模式 341 12.2 vxd示例程序介绍--vtoolsd的commhook 341 12.3 串口数据捕捉实例程序 351 12.3.1 编程任务 351 12.3.2 编程步骤 351 12.4 虚拟串口简介 364 附录a turbo c说明 366 附录b ascii码表 376 不好意思,我只能上传15M文件,分4个压缩包

16,472

社区成员

发帖
与我相关
我的任务
社区描述
VC/MFC相关问题讨论
社区管理员
  • 基础类社区
  • Web++
  • encoderlee
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告

        VC/MFC社区版块或许是CSDN最“古老”的版块了,记忆之中,与CSDN的年龄几乎差不多。随着时间的推移,MFC技术渐渐的偏离了开发主流,若干年之后的今天,当我们面对着微软的这个经典之笔,内心充满着敬意,那些曾经的记忆,可以说代表着二十年前曾经的辉煌……
        向经典致敬,或许是老一代程序员内心里面难以释怀的感受。互联网大行其道的今天,我们期待着MFC技术能够恢复其曾经的辉煌,或许这个期待会永远成为一种“梦想”,或许一切皆有可能……
        我们希望这个版块可以很好的适配Web时代,期待更好的互联网技术能够使得MFC技术框架得以重现活力,……

试试用AI创作助手写篇文章吧