《apue》信号处理程序中调用不可重入函数的疑问

jack_ooneil 2015-09-24 10:22:59
问题:
1. 为什么信号处理程序只调用了一次?
2. 为什么信号处理程序中只打印了第一句“in signal handler”?
3. 处理这种异步的程序我们该怎么调试呢?

困扰我很久了,一直找不到答案,希望前辈指点迷津,在此先谢过。
我GDB调试的时候,会出现“Program terminated with signal SIGALRM, Alarm clock.”
然后就停止了,无法调试啊,怎么办?

代码如下:
#include <apue.h>
#include <pwd.h>

static void my_alarm(int signo);

int main(void)
{
struct passwd *ptr;
unsigned int timeleft;
int count = 0;

signal(SIGALRM, my_alarm);
timeleft = alarm(1);
printf("[main]timeleft = %d\n", timeleft);

while(1)
{
if((ptr = getpwnam("lpf")) == NULL)
{
err_quit("getpwname error");
}
if(strcmp("lpf", ptr->pw_name)!=0)
{
printf("return value corrupted! pw_name = %s\n", ptr->pw_name);
exit(0);
}
}

exit(0);
}

static void my_alarm(int signo)
{
struct passwd *rootptr;

printf("in signal handler\n");

if(signal(SIGALRM, my_alarm) == SIG_ERR)
{
perror("signal error");
}
if((rootptr = getpwnam("root")) == NULL)
{
err_sys("getpwname root error");
}
printf("[my_alarm] root name = %s\n", rootptr->pw_name);
alarm(1);
}
...全文
265 7 打赏 收藏 转发到动态 举报
写回复
用AI写文章
7 条回复
切换为时间正序
请发表友善的回复…
发表回复
goodpaperman 2018-06-29
  • 打赏
  • 举报
回复
不可能吧~~~
jack_ooneil 2015-09-24
  • 打赏
  • 举报
回复
忘了贴程序运行结果: [root@localhost chapter10]# ./a.out [main]timeleft = 0 in signal handler 一直停在这里
jack_ooneil 2015-09-24
  • 打赏
  • 举报
回复
恩,我把getpwnam()注释了,运行就正常了,谢谢你的耐心解答 但是,那如果是在printf中断的话,中断处理函数应该可以执行完的啊,但是我试了很多次,main中加不加printf,结果都一样啊?
nswcfd 2015-09-24
  • 打赏
  • 举报
回复
frame就是bt命令显示的stack的层数。 在loop里加入printf之后,主要的cpu时间就用在printf上了,而不是getpwnam上, 因此被信号中断的函数是getpwname的概率就小多了。 可以修改成每1000次打印一下,或者每1秒打印一下。
jack_ooneil 2015-09-24
  • 打赏
  • 举报
回复
谢谢~ 你写的frame#8 frame#4 等指的是什么啊,以前没见过。 不过我在main loop里面添加打印的话,可以一直打出来,说明主循环中被中断的getpwname(frame#8)可以继续往下执行啊?@nswcfd
nswcfd 2015-09-24
  • 打赏
  • 举报
回复
可以假设~不可重入~的getpwnam的入口有一个类似于mutex_lock或者spin_lock的加锁函数(退出的时候释放),使得getpwnam的调用串行化。 在main的loop里,当前getpwname(frame#8)在执行,已经持有lock的时候发生了信号(frame#4),在信号处理函数里再次调用getpwnam(frame#2),再次尝试get lock(fframe#1&frame#0),由于lock已经被(frame#8)锁住,自然无法获得。 无法拿到lock,嵌套的getpwnam(frame#2)的无法结束,singal handler就无法完成,被中断的getpwname(frame#8)无法继续执行,也就走不到返回并释放lock的语句。 这属于典型的self-deadlock
nswcfd 2015-09-24
  • 打赏
  • 举报
回复
(gdb) r Starting program: /home/xxx/test [main]timeleft = 0 in signal handler ^C Program received signal SIGINT, Interrupt. 0x0000003aa5af806e in __lll_lock_wait_private () from /lib64/libc.so.6 Missing separate debuginfos, use: debuginfo-install glibc-2.12-1.107.el6.x86_64 (gdb) bt #0 0x0000003aa5af806e in __lll_lock_wait_private () from /lib64/libc.so.6 #1 0x0000003aa5aab770 in _L_lock_15 () from /lib64/libc.so.6 #2 0x0000003aa5aab666 in getpwnam () from /lib64/libc.so.6 #3 0x00000000004007b8 in my_alarm (signo=14) at test.c:50 #4 <signal handler called> #5 0x0000003aa5a70f30 in fgets_unlocked () from /lib64/libc.so.6 #6 0x00007ffff7dc4e95 in _nss_files_getpwnam_r () from /lib64/libnss_files.so.2 #7 0x0000003aa5aabcbd in getpwnam_r@@GLIBC_2.2.5 () from /lib64/libc.so.6 #8 0x0000003aa5aab6a0 in getpwnam () from /lib64/libc.so.6 #9 0x0000000000400713 in main () at test.c:25
线程概念 什么是线程 LWP:light weight process 轻量级的进程,本质仍是进程(在Linux环境下) 进程:独立地址空间,拥有PCB 线程:也有PCB,但没有独立的地址空间(共享) 区别:在于是否共享地址空间。 独居(进程);合租(线程)。 Linux下: 线程:最小的执行单位 进程:最小分配资源单位,可看成是只有一个线程的进程。 Linux内核线程实现原理 类Unix系统,早期是没有“线程”概念的,80年代才引入,借助进程机制实现出了线程的概念。因此在这类系统,进程和线程关系密切。 1. 轻量级进程(light-weight process),也有PCB,创建线程使用的底层函数和进程一样,都是clone 2. 从内核里看进程和线程是一样的,都有各自不同的PCB,但是PCB指向内存资源的三级页表是相同的 3. 进程可以蜕变成线程 4. 线程可看做寄存器和栈的集合 5. 在linux下,线程最是小的执行单位;进程是最小的分配资源单位 察看LWP号:ps –Lf pid 查看指定线程的lwp号。 三级映射:进程PCB --> 页目录(可看成数组,首地址位于PCB) --> 页表 --> 物理页面 --> 内存单元 参考:《Linux内核源代码情景分析》 ----毛德操 对于进程来说,相同的地址(同一个虚拟地址)在不同的进程,反复使用而不冲突。原因是他们虽虚拟址一样,但,页目录、页表、物理页面各不相同。相同的虚拟址,映射到不同的物理页面内存单元,最终访问不同的物理页面。 但!线程不同!两个线程具有各自独立的PCB,但共享同一个页目录,也就共享同一个页表和物理页面。所以两个PCB共享一个地址空间。 实际上,无论是创建进程的fork,还是创建线程的pthread_create,底层实现都是调用同一个内核函数clone。 如果复制对方的地址空间,那么就产出一个“进程”;如果共享对方的地址空间,就产生一个“线程”。 因此:Linux内核是不区分进程和线程的。只在用户层面上进行区分。所以,线程所有操作函数 pthread_* 是库函数,而非系统调用。 线程共享资源 1.文件描述符表 2.每种信号的处理方式 3.当前工作目录 4.用户ID和组ID 5.内存地址空间 (.text/.data/.bss/heap/共享库) 线程非共享资源 1.线程id 2.处理器现场和栈指针(内核栈) 3.独立的栈空间(用户空间栈) 4.errno变量 5.信号屏蔽字 6.调度优先级 线程优、缺点 优点: 1. 提高程序并发性 2. 开销小 3. 数据通信、共享数据方便 缺点: 1. 库函数,不稳定 2. 调试、编写困难、gdb不支持 3. 对信号支持不好 优点相对突出,缺点均不是硬伤。Linux下由于实现方法导致进程、线程差别不是很大。 线程控制原语 pthread_self函数 获取线程ID。其作用对应进程 getpid() 函数。 pthread_t pthread_self(void); 返回值:成功:0; 失败:无! 线程ID:pthread_t类型,本质:在Linux下为无符号整数(%lu),其他系统可能是结构体实现 线程ID是进程内部,识别标志。(两个进程间,线程ID允许相同) 注意:不应使用全局变量 pthread_t tid,在子线程通过pthread_create传出参数来获取线程ID,而应使用pthread_self。 pthread_create函数 创建一个新线程。 其作用,对应进程fork() 函数。 int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg); 返回值:成功:0; 失败:错误号 -----Linux环境下,所有线程特点,失败均直接返回错误号。 参数: pthread_t:当前Linux可理解为:typedef unsigned long int pthread_t; 参数1:传出参数,保存系统为我们分配好的线程ID 参数2:通常传NULL,表示使用线程默认属性。若想使用具体属性也可以修改该参数。 参数3:函数指针,指向线程主函数(线程体),该函数运行结束,则线程结束。 参数4:线程主函数执行期间所使用的参数。 在一个线程调用pthread_create()创建新的线程后,当前线程从pthread_create()返回继续往下执行,而新的线程所执行的代码由我们传给pthread_create的函数指针start_routine决定。star
本书全面介绍了UNIX系统的程序设计界面—系统调用界面和标准C库提供的许多函数。 本书的前15章着重于理论知识的阐述,主要内容包括UNIX文件和目录、进程环境、进程控制、进程间通信以及各种I/O。在此基础上,分别按章介绍了多个应用实例,包括如何创建数据库函数库,PostScript 打印机驱动程序,调制解调器拨号器及在伪终端上运行其他程序程序等。 本书内容丰富权威,概念清晰精辟,一直以来被誉为UNIX编程的“圣经”,对于所有UNIX程序员—无论是初学者还是专家级人士—都是一本无价的参考书籍。 目 录 译者序 译者简介 前言 第1章 UNIX基础知识 1 1.1 引言 1 1.2 登录 1 1.2.1 登录名 1 1.2.2 shell 1 1.3 文件和目录 2 1.3.1 文件系统 2 1.3.2 文件名 2 1.3.3 路径名 2 1.3.4 工作目录 4 1.3.5 起始目录 4 1.4 输入和输出 5 1.4.1 文件描述符 5 1.4.2 标准输入、标准输出和标准 出错 5 1.4.3 不用缓存的I/O 5 .1.4.4 标准I/O 6 1.5 程序和进程 7 1.5.1 程序 7 1.5.2 进程和进程ID 7 1.5.3 进程控制 7 1.6 ANSI C 9 1.6.1 函数原型 9 1.6.2 类属指针 9 1.6.3 原始系统数据类型 10 1.7 出错处理 10 1.8 用户标识 11 1.8.1 用户ID 11 1.8.2 组ID 12 1.8.3 添加组ID 12 1.9 信号 12 1.10 UNIX时间值 14 1.11 系统调用和库函数 14 1.12 小结 16 习题 16 第2章 UNIX标准化及实现 17 2.1 引言 17 2.2 UNIX标准化 17 2.2.1 ANSI C 17 2.2.2 IEEE POSIX 18 2.2.3 X/Open XPG3 19 2.2.4 FIPS 19 2.3 UNIX实现 19 2.3.1 SVR4 20 2.3.2 4.3+BSD 20 2.4 标准和实现的关系 21 2.5 限制 21 2.5.1 ANSI C限制 22 2.5.2 POSIX限制 22 2.5.3 XPG3限制 24 2.5.4 sysconf、pathconf 和fpathconf 函数 24 2.5.5 FIPS 151-1要求 28 2.5.6 限制总结 28 2.5.7 未确定的运行时间限制 29 2.6 功能测试宏 32 2.7 基本系统数据类型 32 2.8 标准之间的冲突 33 2.9 小结 34 习题 34 第3章 文件I/O 35 3.1 引言 35 3.2 文件描述符 35 3.3 open函数 35 3.4 creat函数 37 3.5 close函数 37 3.6 lseek函数 38 3.7 read函数 40 3.8 write函数 41 3.9 I/O的效率 41 3.10 文件共享 42 3.11 原子操作 45 3.11.1 添加至一个文件 45 3.11.2 创建一个文件 45 3.12 dup和dup2函数 46 3.13 fcntl函数 47 3.14 ioctl函数 50 3.15 /dev/fd 51 3.16 小结 52 习题 52 第4章 文件和目录 54 4.1 引言 54 4.2 stat, fstat和lstat函数 54 4.3 文件类型 55 4.4 设置-用户-ID和设置-组-ID 57 4.5 文件存取许可权 58 4.6 新文件和目录的所有权 60 4.7 access函数 60 4.8 umask函数 62 4.9 chmod和fchmod函数 63 4.10 粘住位 65 4.11 chown, fchown和 lchown函数 66 4.12 文件长度 67 4.13 文件截短 68 4.14 文件系统 69 4.15 link, unlink, remove和rename 函数 71 4.16 符号连接 73 4.17 symlink 和readlink函数 76 4.18 文件的时间 76 4.19 utime函数 78 4.20 mkdir和rmdir函数 79 4.21 读目录 80 4.22 chdir, fchdir和getcwd函数 84 4.23 特殊设备文件 86 4.24 sync和fsync函数 87 4.25 文件存取许可权位小结 88 4.26 小结 89 习题 89 第5章 标准I/O库 91 5.1 引言 91 5.2 流和FILE对象 91 5.3 标准输入、标准输出和标准出错 91 5.4 缓存 91 5.5 打开流 94 5.6 读和写流 96 5.6.1 输入函数 96 5.6.2 输出函数 97 5.7 每次一行I/O 98 5.8 标准I/O的效率 99 5.9 二进制I/O 100 5.10 定位流 102 5.11 格式化I/O 103 5.11.1 格式化输出 103 5.11.2 格式化输入 103 5.12 实现细节 104 5.13 临时文件 105 5.14 标准I/O的替代软件 108 5.15 小结 108 习题 108 第6章 系统数据文件和信息 110 6.1 引言 110 6.2 口令文件 110 6.3 阴影口令 112 6.4 组文件 113 6.5 添加组ID 114 6.6 其他数据文件 115 6.7 登录会计 116 6.8 系统标识 116 6.9 时间和日期例程 117 6.10 小结 121 习题 121 第7章 UNIX进程的环境 122 7.1 引言 122 7.2 main 函数 122 7.3 进程终止 122 7.3.1 exit和_exit函数 122 7.3.2 atexit函数 124 7.4 命令行参数 125 7.5 环境表 126 7.6 C程序的存储空间布局 126 7.7 共享库 127 7.8 存储器分配 128 7.9 环境变量 130 7.10 setjmp 和longjmp函数 132 7.10.1 自动、寄存器和易失变量 134 7.10.2 自动变量的潜在问题 136 7.11 getrlimit 和setrlimit函数 136 7.12 小结 139 习题 140 第8章 进程控制 141 8.1 引言 141 8.2 进程标识 141 8.3 fork函数 142 8.4 vfork 函数 145 8.5 exit函数 147 8.6 wait和waitpid函数 148 8.7 wait3和wait4函数 152 8.8 竞态条件 153 8.9 exec函数 156 8.10 更改用户ID和组ID 160 8.10.1 setreuid 和setregid函数 162 8.10.2 seteuid和 setegid函数 163 8.10.3 组ID 163 8.11 解释器文件 164 8.12 system函数 167 8.13 进程会计 171 8.14 用户标识 175 8.15 进程时间 176 8.16 小结 178 习题 178 第9章 进程关系 180 9.1 引言 180 9.2 终端登录 180 9.2.1 4.3+BSD终端登录 180 9.2.2 SVR4终端登录 182 9.3 网络登录 182 9.3.1 4.3+BSD网络登录 182 9.3.2 SVR4网络登录 183 9.4 进程组 183 9.5 对话期 184 9.6 控制终端 185 9.7 tcgetpgrp 和tcsetpgrp函数 187 9.8 作业控制 187 9.9 shell执行程序 189 9.10 孤儿进程组 193 9.11 4.3+BSD实现 195 9.12 小结 197 习题 197 第10章 信号 198 10.1 引言 198 10.2 信号的概念 198 10.3 signal函数 203 10.3.1 程序起动 205 10.3.2 进程创建 206 10.4 不可靠的信号 206 10.5 断的系统调用 207 10.6 可再入函数 209 10.7 SIGCLD语义 211 10.8 可靠信号术语和语义 213 10.9 kill和raise函数 213 10.10 alarm和pause函数 214 10.11 信号集 219 10.12 sigprocmask 函数 220 10.13 sigpending函数 222 10.14 sigaction函数 223 10.15 sigsetjmp 和siglongjmp函数 226 10.16 sigsuspend函数 229 10.17 abort函数 234 10.18 system函数 235 10.19 sleep函数 240 10.20 作业控制信号 241 10.21 其他特征 243 10.21.1 信号名字 243 10.21.2 SVR4信号处理程序的附 加参数 244 10.21.3 4.3+BSD信号处理程序的附 加参数 244 10.22 小结 244 习题 244 第11章 终端I/O 246 11.1 引言 246 11.2 综述 246 11.3 特殊输入字符 250 11.4 获得和设置终端属性 254 11.5 终端选择标志 254 11.6 stty命令 258 11.7 波特率函数 259 11.8 行控制函数 260 11.9 终端标识 260 11.10 规范方式 263 11.11 非规范方式 266 11.12 终端的窗口大小 270 11.13 termcap, terminfo和 curses 271 11.14 小结 272 习题 272 第12章 高级I/O 273 12.1 引言 273 12.2 非阻塞I/O 273 12.3 记录锁 275 12.3.1 历史 276 12.3.2 fcntl记录锁 276 12.3.3 锁的隐含继承和释放 280 12.3.4 4.3+BSD的实现 281 12.3.5 建议性锁和强制性锁 284 12.4 流 288 12.4.1 流消息 289 12.4.2 putmsg和putpmsg函数 290 12.4.3 流ioctl操作 291 12.4.4 write至流设备 294 12.4.5 写方式 294 12.4.6 getmsg和getpmsg函数 294 12.4.7 读方式 295 12.5 I/O多路转接 296 12.5.1 select函数 298 12.5.2 poll函数 301 12.6 异步I/O 303 12.6.1 SVR4 303 12.6.2 4.3+BSD 303 12.7 readv和writev函数 304 12.8 readn和writen函数 306 12.9 存储映射I/O 307 12.10 小结 311 习题 311 第13章 精灵进程 312 13.1 引言 312 13.2 精灵进程的特征 312 13.3 编程规则 313 13.4 出错记录 314 13.4.1 SVR4流log驱动程序 315 13.4.2 4.3+BSD syslog设施 316 13.5 客户机-服务器模型 319 13.6 小结 319 习题 319 第14章 进程间通信 320 14.1 引言 320 14.2 管道 320 14.3 popen和pclose函数 325 14.4 协同进程 330 14.5 FIFO 333 14.6 系统V IPC 335 14.6.1 标识符和关键字 336 14.6.2 许可权结构 337 14.6.3 结构限制 337 14.6.4 优点和缺点 337 14.7 消息队列 338 14.8 信号量 342 14.9 共享存储 346 14.10 客户机-服务器属性 351 14.11 小结 353 习题 353 第15章 高级进程间通信 355 15.1 引言 355 15.2 流管道 355 15.3 传送文件描述符 358 15.3.1 SVR4 360 15.3.2 4.3BSD 361 15.3.3 4.3+BSD 364 15.4 open服务器第1版 366 15.5 客户机-服务器连接函数 371 15.5.1 SVR4 372 15.5.2 4.3+BSD 375 15.6 open服务器第2版 378 15.7 小结 385 习题 385 第16章 数据库函数库 386 16.1 引言 386 16.2 历史 386 16.3 函数库 386 16.4 实现概述 388 16.5 集式或非集式 390 16.6 并发 391 16.6.1 粗锁 391 16.6.2 细锁 391 16.7 源码 392 16.8 性能 409 16.8.1 单进程的结果 410 16.8.2 多进程的结果 410 16.9 小结 412 习题 412 第17章 与PostScript打印机通信 413 17.1 引言 413 17.2 PostScript通信机制 413 17.3 假脱机打印 415 17.4 源码 417 17.5 小结 434 习题 434 第18章 调制解调器拨号器 435 18.1 引言 435 18.2 历史 435 18.3 程序设计 436 18.4 数据文件 437 18.5 服务器设计 439 18.6 服务器源码 439 18.7 客户机设计 463 18.7.1 终端行规程 463 18.7.2 一个进程还是两个进程 464 18.8 客户机源码 465 18.9 小结 474 习题 474 第19章 伪终端 476 19.1 引言 476 19.2 概述 476 19.2.1 网络登录服务器 477 19.2.2 script程序 478 19.2.3 expect程序 479 19.2.4 运行协同进程 479 19.2.5 观看长时间运行程序的输出 479 19.3 打开伪终端设备 480 19.3.1 SVR4 481 19.3.2 4.3+BSD 482 19.4 pty_fork函数 484 19.5 pty程序 486 19.6 使用pty程序 489 19.6.1 utmp文件 489 19.6.2 作业控制交互 489 19.6.3 检查长时间运行程序的输出 491 19.6.4 script程序 491 19.6.5 运行协同进程 492 19.6.6 用非交互模式驱动交互式 程序 492 19.7 其他特性 494 19.7.1 打包模式 494 19.7.2 远程模式 494 19.7.3 窗口大小变化 495 19.7.4 信号发生 495 19.8 小结 495 习题 495 附录A 函数原型 497 附录B 其他源代码 512 附录C 习题答案 518 参考书目 536

4,436

社区成员

发帖
与我相关
我的任务
社区描述
Linux/Unix社区 内核源代码研究区
社区管理员
  • 内核源代码研究区社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧