算法集锦2

文修 2016-02-16 01:47:44
设树深度为k,k=[log2n]+1。从根到叶的筛选,元素比较次数至多2(k-1)次。所以,在建好堆后,排序过程中的筛选次数不超过下式:
2([log2(n-1)]+[log2(n-2)]+…+log22)<2n([log2n])
而建堆时的比较次数不超过4n次,因此堆排序最坏情况下,时间复杂度为O(nlogn)





交换排序-冒泡排序(Bubble Sort)

在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数一次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现他们的排序与排序要求相反时,就将他们互换。

冒泡排序的示例:

算法的实现
void bubbleSort(int a[], int n){
for(int i =0 ; i< n-1; ++i) {
for(int j = 0; j < n-i-1; ++j) {
if(a[j] > a[j+1])
{
int tmp = a[j] ; a[j] = a[j+1] ; a[j+1] = tmp;
}
}
}
}

对冒泡排序常见的改进方法是加入一标志性变量exchange,用于标志某一趟排序过程中是否有数据交换,如果进行某一趟排序时并没有进行数据交换,则说明数据已经按要求排列好,可立即结束排序,避免不必要的比较过程。本文再提供以下两种改进算法:
1、 设置一标志性变量pos,用于记录每趟排序中最后一次进行交换的位置。由于pos位置之后的记录均已交换到位,故在进行下一趟排序时只要扫描到pos位置即可。
void Bubble_1 ( int r[], int n) {
int i= n -1; //初始时,最后位置保持不变
while ( i> 0) {
int pos= 0; //每趟开始时,无记录交换
for (int j= 0; j< i; j++)
if (r[j]> r[j+1]) {
pos= j; //记录交换的位置
int tmp = r[j]; r[j]=r[j+1];r[j+1]=tmp;
}
i= pos; //为下一趟排序作准备
}
}
2、 传统冒泡排序中每一趟排序操作只能找到一个最大值或最小值,我们考虑利用每趟排序中进行正向和反向两遍冒泡的方法一次可以得到两个最终值(最大值和最小值),从而是排序趟数几乎减少了一半。
改进后的算法实现为:
void Bubble_2 ( int r[], int n){
int low = 0;
int high= n -1; //设置变量的初始值
int tmp,j;
while (low < high) {
for (j= low; j< high; ++j) //正向冒泡,找到最大者
if (r[j]> r[j+1]) {
tmp = r[j]; r[j]=r[j+1];r[j+1]=tmp;
}
--high; //修改high值, 前移一位
for ( j=high; j>low; --j) //反向冒泡,找到最小者
if (r[j]<r[j-1]) {
tmp = r[j]; r[j]=r[j-1];r[j-1]=tmp;
}
++low; //修改low值,后移一位
}
}


交换排序-快速排序(Quick Sort)
1) 选择一个基准元素,通常选择第一个元素或者最后一个元素,
2) 通过一趟排序将待排序的记录分割成独立的两部分,其中一部分的元素值均比基准元素值小。另一部分记录的元素值比基准值大。
3) 此时基准元素在其排好序后的正确位置
4) 然后分别对这两部分记录用同样的方法继续进行排序,直到整个序列有序。

快速排序的示例:
(1) 一趟排序的过程:

(b)排序的全过程

算法的实现:
递归实现:
#include <iostream>

using namespace std::cout;
using namespace std::endl;

void print(int a[], int n){
for(int j= 0; j<n; j++){
cout<<a[j] <<" ";
}
cout<<endl;
}

void swap(int *a, int *b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}

int partition(int a[], int low, int high)
{
int privotKey = a[low]; //基准元素
while(low < high){ //从表的两端交替地向中间扫描
while(low < high && a[high] >= privotKey) --high; //从high 所指位置向前搜索,至多到low+1 位置。将比基准元素小的交换到低端
swap(&a[low], &a[high]);
while(low < high && a[low] <= privotKey ) ++low;
swap(&a[low], &a[high]);
}
print(a,10);
return low;
}


void quickSort(int a[], int low, int high){
if(low < high){
int privotLoc = partition(a, low, high); //将表一分为二
quickSort(a, low, privotLoc -1); //递归对低子表递归排序
quickSort(a, privotLoc + 1, high); //递归对高子表递归排序
}
}

int main(){
int a[10] = {3,1,5,7,2,4,9,6,10,8};
cout<<"初始值:";
print(a,10);
quickSort(a,0,9);
cout<<"结果:";
print(a,10);

}

分析:
快速排序是通常被认为在同数量级O(nlog2n)的排序方法中平均性能最好的。但若初始序列按关键码有序或基本有序时,快速排序反而蜕化为冒泡排序。为改进之,通常以“三者取中法”来选取基准记录,即将排序区间的两个端点与中点三个记录关键码居中的调整为支点记录。快速排序是一个不稳定的排序方法。

快速排序的改进
在本改进算法中,只对长度大于K的子序列递归调用快速排序,让原序列基本有序,然后再对基本有序序列插入排序算法排序。实践证明,改进后的算法时间复杂度有所降低,且当K取值为8左右时,改进算法的性能最佳。算法的思想如下:
void print(int a[], int n){
for(int j= 0; j<n; j++){
cout<<a[j] <<" ";
}
cout<<endl;
}

void swap(int *a, int *b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}

int partition(int a[], int low, int high)
{
int privotKey = a[low]; //基准元素
while(low < high){ //从表的两端交替地向中间扫描
while(low < high && a[high] >= privotKey) --high; //从high 所指位置向前搜索,至多到low+1 位置。将比基准元素小的交换到低端
swap(&a[low], &a[high]);
while(low < high && a[low] <= privotKey ) ++low;
swap(&a[low], &a[high]);
}
print(a,10);
return low;
}


void qsort_improve(int r[ ],int low,int high, int k){
if( high -low > k ) { //长度大于k时递归, k为指定的数
int pivot = partition(r, low, high); // 调用的Partition算法保持不变
qsort_improve(r, low, pivot - 1,k);
qsort_improve(r, pivot + 1, high,k);
}
}
void quickSort(int r[], int n, int k){
qsort_improve(r,0,n,k);//先调用改进算法Qsort使之基本有序

//再用插入排序对基本有序序列排序
for(int i=1; i<=n;i ++){
int tmp = r[i];
int j=i-1;
while(tmp < r[j]){
r[j+1]=r[j]; j=j-1;
}
r[j+1] = tmp;
}

}



int main(){
int a[10] = {3,1,5,7,2,4,9,6,10,8};
cout<<"初始值:";
print(a,10);
quickSort(a,9,4);
cout<<"结果:";
print(a,10);

}

归并排序(Merge Sort)
基本思想
归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
归并排序示例:

合并方法:
设[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i+1、n-m。
1、 j=m+1;k=I;i=I;//置两个子表的起始下标及辅助数组的起始下标
2、 若i>m或j>n,转(4)//其中一个子表已合并完,比较选取结束
3、 选取r[i]和r[j]较小的存入辅助数组rf
如果r[i]<r[j],rf[k]=r[i];i++;k++; 转(2)
否则,rf[k]=r[j];j++;k++;转(2)
4、 将尚未处理完的子表中元素存入rf
如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空
如果j<=n,将r[j…n]存入rf[k…n] //后一子表非空
5、 合并结束

一个元素的表总是有序的。所以对n个元素的待排序列,每个元素可看成是1个有序子表。对子表两两合并生成n/2个子表,所得子表除最后一个子表长度可能为1外,其余子表长度均为2.再进行两两合并,知道生成n个元素按关键码有序的表。

桶排序/基数排序(Radix Sort)
说基数排序之前,我们先说桶排序
基本思想:是将阵列分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递回方式继续使用桶排序进行排序)。桶排序是鸽巢排序的一种归纳结果。当要被排序的阵列内的数值是均匀分配时候,桶排序使用线性时间(O(n))。但桶排序并不是比较排序,他不受到O(nlogn)下限的影响。
简单来说,就是把数据分组,放在一个个的桶中,然后对每个桶里面的进行排序。
例如要对大小为[1…1000]范围内的n个整数A[1…n]排序

首先,可以把桶设大大小为10的范围,具体而言,设集合B[1]存储[1…10]整数,集合B[2]存储(10..20)的整数,。。。集合B[i]存储((i-1)*10,i*10)的整数,i=1,2,…100.总共有100个桶。
然后,对A[1…n]从头到尾扫描一遍,把每个A[i]放如对应的桶B[j].再这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任何排序法都可以。
最后,依次输入每个桶里面的数字,且每个桶中的数字从小到大输出,这样得到所有数字排好序的一个序列了。
假设有n个数字,有m个桶,如果数字是平均分布的,则每个桶里面平均有n/m个数字。如果对每个桶中的数字采用快速排序,那么整个算法的复杂度是
O(n+m*n/m*log(n/m))=O(n+nlogn-nlogm)

从上式看出,当m接近n的时候,桶排序复杂度接近O(n)
当然,以上复杂度的计算是基于输入的n个数字是平均分布这个假设。这个假设是很强,实例应用中效果并没有这么好。如果所有的数字都落在同一桶,那就退化成一般的排序了。
前面说的几大排序算法,大部分时间复杂度都是O(n2),也有部分排序算法时间复杂度O(nlogn)。而桶式排序能实现O(n)的时间复杂读。但桶排序的缺点是:
1、 首先是桶空间复杂比较高,需要的额外开销大。排序有两个数组的控件开销,一个存放待排序数组,一个就是所谓的桶,比如待排序值是从0到m-1,那就需要m个桶,这个桶数组就要至少m个空间
2、 其次待排序的元素都要在一定的范围内等等。
桶式排序是一种分配排序。分配排序的特定是不需要进行关键码的比较,但前提是要知道待排序列的一些具体情况。
分配排序的基本思想:说白了就是进行多次的桶式排序。
基数排序过程无须比较关键字,而是通过“分配”和“收集”过程来实现排序。它们的时间复杂度可达到线性阶:O(n)。
实例:
扑克牌中52 张牌,可按花色和面值分成两个字段,其大小关系为:
花色: 梅花< 方块< 红心< 黑心
面值: 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K < A
若对扑克牌按花色、面值进行升序排序,得到如下序列:



即两张牌,若花色不同,不论面值怎样,花色低的那张牌小于花色高的,只有在同花色情况下,大小关系才由面值的大小确定。这就是多关键码排序。
为得到排序结果,我们讨论两种排序方法。
方法1:先对花色排序,将其分为4 个组,即梅花组、方块组、红心组、黑心组。再对每个组分别按面值进行排序,最后,将4 个组连接起来即可。
方法2:先按13 个面值给出13 个编号组(2 号,3 号,...,A 号),将牌按面值依次放入对应的编号组,分成13 堆。再按花色给出4 个编号组(梅花、方块、红心、黑心),将2号组中牌取出分别放入对应花色组,再将3 号组中牌取出分别放入对应花色组,……,这样,4 个花色组中均按面值有序,然后,将4 个花色组依次连接起来即可。
设n 个元素的待排序列包含d 个关键码{k1,k2,…,kd},则称序列对关键码{k1,k2,…,kd}有序是指:对于序列中任两个记录r[i]和r[j](1≤i≤j≤n)都满足下列有序关系:

其中k1 称为最主位关键码,kd 称为最次位关键码 。

两种多关键码排序方法:
多关键码排序按照从最主位关键码到最次位关键码或从最次位到最主位关键码的顺序逐次排序,分两种方法:
最高位优先(Most Significant Digit first)法,简称MSD 法:
1)先按k1 排序分组,将序列分成若干子序列,同一组序列的记录中,关键码k1 相等。
2)再对各组按k2 排序分成子组,之后,对后面的关键码继续这样的排序分组,直到按最次位关键码kd 对各子组排序后。
3)再将各组连接起来,便得到一个有序序列。扑克牌按花色、面值排序中介绍的方法一即是MSD 法。
最低位优先(Least Significant Digit first)法,简称LSD 法:
1) 先从kd 开始排序,再对kd-1进行排序,依次重复,直到按k1排序分组分成最小的子序列后。
2) 最后将各个子序列连接起来,便可得到一个有序的序列, 扑克牌按花色、面值排序中介绍的方法二即是LSD 法。

基于LSD方法的链式基数排序的基本思想
  “多关键字排序”的思想实现“单关键字排序”。对数字型或字符型的单关键字,可以看作由多个数位或多个字符构成的多关键字,此时可以采用“分配-收集”的方法进行排序,这一过程称作基数排序法,其中每个数字或字符可能的取值个数称为基数。比如,扑克牌的花色基数为4,面值基数为13。在整理扑克牌时,既可以先按花色整理,也可以先按面值整理。按花色整理时,先按红、黑、方、花的顺序分成4摞(分配),再按此顺序再叠放在一起(收集),然后按面值的顺序分成13摞(分配),再按此顺序叠放在一起(收集),如此进行二次分配和收集即可将扑克牌排列有序。

基数排序:
是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以是稳定的。
算法实现:
Void RadixSort(Node L[],length,maxradix)
{
int m,n,k,lsp;
k=1;m=1;
int temp[10][length-1];
Empty(temp); //清空临时空间
while(k<maxradix) //遍历所有关键字
{
for(int i=0;i<length;i++) //分配过程
{
if(L[i]<m)
Temp[0][n]=L[i];
else
Lsp=(L[i]/m)%10; //确定关键字
Temp[lsp][n]=L[i];
n++;
}
CollectElement(L,Temp); //收集
n=0;
m=m*10;
k++;
}
}

各种排序的稳定性,时间复杂度和控件复杂度总结:

...全文
438 1 打赏 收藏 转发到动态 举报
写回复
用AI写文章
1 条回复
切换为时间正序
请发表友善的回复…
发表回复
ooolinux 2016-02-17
  • 打赏
  • 举报
回复
实例: 扑克牌中52 张牌,可按花色和面值分成两个字段,其大小关系为: 花色: 梅花< 方块< 红心< 黑心 面值: 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K < A 若对扑克牌按花色、面值进行升序排序,得到如下序列:

1,221

社区成员

发帖
与我相关
我的任务
社区描述
C++ Builder Windows SDK/API
社区管理员
  • Windows SDK/API社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧