AD620仪表放大器仿真

m0_38065333 2017-03-25 10:47:38
最近在写论文,求高手单独指导,qq1210608292.
这是我根据图一在multisim上做电路图,不知道对不对,该怎么仿真,求高手指导!!!!!!!!!!!!!!


...全文
1373 2 打赏 收藏 转发到动态 举报
写回复
用AI写文章
2 条回复
切换为时间正序
请发表友善的回复…
发表回复
m0_38065333 2017-03-25
  • 打赏
  • 举报
回复
这个
m0_38065333 2017-03-25
  • 打赏
  • 举报
回复
电路原理图是这个
东 华 大 学 机 械 工 程 学 院 实验指导书 "实验名称 "单片机应用系统设计与仿真 " "课程名称 "自选综合实验 " "专 业 "机械工程及"学 期 "第一学期 " " "自动化 " " " "姓 名 "Xin.Wei "学 号 " " "指导教师 " "实验成绩 " " 实 验 日 期 年 月 日 一、实验目的及要求 1. 实验目的: 1. 熟练掌握Proteus软件的基本应用 2. 掌握应用keil和Proteus进行单片机系统的仿真方法 (3)学会设计单片机应用系统. (4)掌握MCS51系列单片机的编程 2. 实验要求: (1) 学习Proteus的应用软件 (2) 学习消化已有典型单片机应用系统。 (3) 自行设计出单片机控制系统的软件硬件结构,并制定出其调试方案。 (4) 实验全过程应有比较详细的工作记录,其内容包括:工作日志,电路设计与分析,软件 流程图与源程序,制作、调试中的现象与失误甚至失败的记录,实验原始数据的记录, 实验器材的使用记录等。 二、实验装置 1. 计算机、单片机实验板、 2. Proteus软件 keil软件。 三、实验内容 1、学习Proteus软件,消化已有单片机应用系统 2、设计新的单片机控制的应用系统软硬件结构,并要有所创新。 3、制作出控制系统的硬件并编写控制软件。进行系统的软硬件调试。 四、实验报告要求 1、对采用单片机实现系统原理进行详尽分析与阐述。 2、说明自己设计的控制系统的工作原理和主要特点及创新点。 3、归纳整理实验记录,写出实验测试报告。 4、写出经过本次设计后的体会与收获。 五、实验进度安排 "实验内容 "学时数 " "学习Proteus软件 "6 " "学习典型的单片机应用系统 "8 " "设计新的应用系统 "6 " "软件设计及仿真调试 "8 " "撰写实验报告及验收 "4 " 六、考核方式 需提交资料 实验报告 仿真电路 控制程序 1. 设计任务 题目:基于51单片机的数字万用表设计 检测对象:交直流电压测量,电阻测量,过压自动报警 设计要求:电路系统中包含按键系统、显示系统(七段数码管显示或LCD显示屏显示 ),达到一定的精度要求 2. 设计背景 传统的电桥平衡法等方法在测试过程中不够智能而且体积笨重,价格昂贵,需要外 围环境优越,测试操作过程中需要调整很多参数,而基于单片机的智能数字式万用表价 格便宜,操作简单,显示准确,还有过压报警系统,更加人性化。目前,数字万用表已 被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,表现 出强大的生命力。 3. 整体设计思路 虽然数字万用表种类很多,但基本工作原理则是大同小异。都是把被测的模拟量转 化成数字量显示。所以最关键的是模数转换电路。 本数字万用表主要由直流数字电压表DVM它由阻容滤波器、前置放大器、模数转换器 A/D、发光二极管显示器LED及保护电路等组成。 在数字电压表的基础上再增加交流一直流转换器AC/DC、电阻一电压转换器Ω/V, 就构成了本数字万用表的基本部分。 设计方框图: 4. 分步设计 步骤一:电路图模块设计 电路分为电压衰减模块,电压档位自选模块,电阻档位自选模块,交直流电压判别 模块,绝对值电路模块,电压显示模块,电阻显示模块,绝对值电路模块,AD转换、电 压值处理及LCD显示模块。 各模块设计原理如下。 电压衰减模块:由于待测电压范围太大,高的可到500v,而AD只能参考输入为+- 5V,所以对于未知信号,可以先衰减再测量。 如下图,左端电压输入,在默认继电器导通的情况下经电阻R1、R2分压,将待测电压值 衰减至原来的百分之一。 电压档位自选模块:电压经衰减后的值可分为0-20v、20-200v、200- 500v三档,继电器由单片机控制通断,完成档位的自动选择(利用三极管的导通原理) 。 电阻档位自选模块:电阻按其大小可分为0-1k,1-10k,10k- 100k,大于100k四档,通过单片机控制继电器的开端进行档位的选择。 注:由于电路中继电器数目较多,将单片机的端口经74LS138译码器进行扩展后进行控制 (了解译码器输入输出真值表的对应关系)。 交直流电压判别模块:如下图所示,左端为一反向比较器通过调节变阻器R3阻值输出一 负值到比较器的负向端,而输入电压经衰减分档后的结果与其进行比较,可控制光电耦 合器中光电管的亮灭,进而控制INT_1端输出高低电平。其中,低电平代表交流电压测量 ,高电平代表直流电压测量。 绝对值电路模块:由于电压输入值的正负无法确定,为保证后续测量工作的进行, 需对电压值进行取绝对值处理,如下图所示,经左端的整流及右端的滤波处理后,输出 电压值确保为正值。 电压显示模块:利用LCD输出,选用16x1的显示屏。直流电压显示为DC:X
第一章 超低功耗单片MSP430B - 11 - 1.1 单片机概述 - 11 - 1.1.1 MSP430系列单片机的特点 - 11 - 1.1.2 MSP430操作简介 - 11 - 1.1.3 MSP430系列单片机在系统中的应用 - 12 - 1.2 片内主要模块介绍 - 12 - 1.2.1时钟模块 - 13 - 1.2.1.1 MSP430F449的三个时钟源可以提供四种时钟信号 - 13 - 1.2.1.2 MSP430F449时钟模块寄存器 - 14 - 1.2.1.3 FLL+模块应用举例 - 16 - 1.2.2 低功耗结构 - 17 - 1.2.2.1 系统工作模式 - 17 - 1.2.2.2 低功耗应用原则 - 18 - 1.2.3 I/O端口 - 18 - 1.2.3.1 MSP430的端口 - 18 - 1.2.3.2.端口数据输出特性 - 18 - 1.2.3.3端口P1和P2 - 19 - 1.2.3.4端口P3、P4、P5和P6 - 20 - 1.2.3.5端口COM和S - 20 - 1.2.4定时器A - 22 - 1.2.4.1 Timer_A的结构 - 23 - 1.2.4.2寄存器 - 24 - 1.2.4.3 计数模块 - 28 - 1.2.4.4 捕获/比较模块 - 30 - 1.2.4.5 应用实例 - 31 - 1.2.5液晶驱动 - 36 - 1.2.6串行通信模块的异步模式 - 37 - 1.2.6.1MSP430串行通信概述 - 37 - 1.2.6.2异步操作 - 38 - 1.2.6.3异步通信寄存器 - 40 - 1.2.6.4异步操作应用举例 - 42 - 1.2.7 模数转换 - 43 - 1.2.7.1 ADC12结构 - 43 - 1.2.7.2 ADC12寄存器 - 44 - 1.2.7.3 ADC12转换模式 - 47 - 1.2.8 FLASH存储器模块 - 50 - 1.2.8.1FLASH存储器结构 - 51 - 1.2.8.2FLASH存储器的寄存器及操作 - 51 - 1.3 典型问题分析 - 55 - 1.3.1 关于430的时钟系统分析: - 55 - 1.3.2 看门狗: - 56 - 1.3.3 按键: - 56 - 1.3.4 FLASH: - 56 - 1.3.5 头文件: - 56 - 1.3.6 一种理解: - 57 - 1.3.7 变量命名: - 57 - 1.3.8 I/O口的复位: - 57 - 1.3.9 I/O口的复位: - 57 - 第二章 电源 - 57 - 2.1电源类技术指标与名词解释 - 57 - 2.1.1 技术指标与名词解释 - 57 - 2.1.1.1指标解释 - 57 - 2.1.1.2 测量名词解释 - 58 - 2.1.1.3 三相电压、电流 - 59 - 2.1.1.4 使用调制方式 - 59 - 2.1.2常用元器件介绍 - 59 - 2.1.2.1 电阻分类 - 59 - 2.1.2.2 电容分类 - 60 - 2.1.2.3电感介绍 - 60 - 2.1.2.4变压器介绍 - 61 - 2.1.2.5半导体二极管介绍 - 61 - 2.1.2.6半导体三极管介绍 - 61 - 2.1.2.7场效应管介绍 - 62 - 2.1.2.8晶闸管介绍 - 62 - 2.1.2.9绝缘栅双极晶体管(IGBT)介绍 - 62 - 2.2 直流线性电源 - 62 - 2.2.1 AC-DC变换整流 - 63 - 2.2.1.1 AC-DC变换概述 - 63 - 2.2.1.2按照采用器件的可控性分类介绍 - 63 - 2.2.1.3电子设计竞赛常用整流电路 - 63 - 2.2.1.4相控整流电路应用前景 - 64 - 2.2.2线性直流稳定电源介绍 - 64 - 2.2.2.1线性直流稳定电源概述 - 64 - 2.2.2.2串联型稳压电路 - 64 - 2.2.2.3串联型稳压电路应用 - 66 - 2.2.2.4串联型集成稳压电路 - 66 - 2.2.3串联型集成稳压器应用 - 66 - 2.2.3.1固定三端集成稳压器的应用 - 66 - 2.2.3.2.输出可调三端集成稳压器的应用 - 67 - 2.2.3.3低压差线性稳压器(LDO)的应用 - 68 - 2.2.4 数控直流电流源设计 - 68 - 2.2.4.1数控直流电流源要求 - 68 - 2.2.4.2数控直流电流源设计方案 - 69 - 2.2.4.3数控直流电流源测试方案设计与误差分析 - 72 - 2.3 开关电源(DC-DC变换技术) - 73 - 2.3.1 开关电源控制技术介绍 - 74 - 2.3.1.1 脉宽调制技术(PWM) - 74 - 2.3.2非隔离型DC-DC变换 - 74 - 2.3.2.1 降压Buck电路 - 74 - 2.3.2.2 集成降压Buck电路调节器 - 76 - 2.3.2.3 升压型Boost电路 - 77 - 2.3.2.4 集成Boost升压型电路调节器 - 79 - 2.3.2.5升压-降压型Boost-Buck电路 - 80 - 2.3.3 隔离型DC-DC变换 - 80 - 2.3.3.1正激式变换器 - 81 - 2.3.3.2反激式变换器 - 82 - 2.3.3.3推挽式变换器 - 82 - 2.3.3.4半桥式变换器 - 83 - 2.3.3.5全桥式变换器 - 84 - 2.3.4 典型集成开关电源控制器介绍 - 84 - 2.3.4.1 UC3842开关电源控制器 - 84 - 2.3.4.2 SG3525A开关电源控制器 - 85 - 2.3.5开关稳压电源(2007年大赛题) - 86 - 2.3.5.1题目分析 - 86 - 2.3.5.2系统总体设计方案及实现方框图 - 87 - 2.3.5.3硬件电路设计和理论计算 - 87 - 2.3.5.4软件设计 - 91 - 2.3.5.5测试方法与数据 - 92 - 2.3.5.6结束语 - 93 - 2.3.6高功率因数电源(2008年湖北省赛题) - 93 - 2.3.6.1题目分析 - 93 - 2.3.6.2方案论证 - 94 - 2.3.6.3总体方案设计 - 96 - 2.3.6.4电路设计与参数计算 - 97 - 2.3.6.5软件设计与流程图 - 100 - 2.3.6.6测试方法与数据 - 100 - 2.3.6.7测试结果分析 - 101 - 2.3.7直流电源的均流 - 102 - 2.3.7.1系统指标分析 - 102 - 2.3.7.2系统整体框图 - 102 - 2.3.7.3系统方案论证 - 102 - 2.3.7.4理论分析 - 106 - 2.3.7.5硬件电路设计 - 107 - 2.3.7.6软件设计流程图 - 108 - 2.3.7.7系统测试方法和测试数据 - 109 - 2.4 逆变电源(DC-AC变换技术) - 111 - 2.4.1SPWM控制技术介绍 - 112 - 2.4.1.1单极性正弦脉宽调制 - 112 - 2.4.1.2双极性正弦脉宽调制 - 113 - 2.4.1.3三相正弦脉宽调制 - 114 - 2.4.1.4正弦脉宽调制(SPWM)控制信号的生成 - 114 - 2.4.2三相正弦波变频电源(2005年国赛G题) - 115 - 2.4.2.1 题目分析 - 115 - 2.4.2.2系统总体实现方案及设计框图 - 116 - 2.4.2.3方案论证与选取 - 117 - 2.4.2.4理论分析与计算 - 120 - 2.4.2.5硬件电路的设计与实现 - 122 - 2.4.2.6系统软件设计 - 125 - 2.4.2.7系统测试与分析 - 126 - 2.4.2.8总结分析与结论 - 127 - 2.4.3 UPS(不间断电源)介绍 - 127 - 2.4.3.1后备式UPS - 127 - 2.4.3.2在线式UPS - 128 - 2.4.4 24V交流单相在线式不间断电源(黑龙江08年省赛) - 129 - 2.4.4.1题目要求 - 129 - 2.4.4.2系统介绍 - 130 - 2.4.4.3方案论证与选择 - 130 - 2.4.4.4系统整体方案设计 - 132 - 2.4.4.5理论分析 - 132 - 2.4.4.6硬件计算和设计 - 134 - 2.4.4.7程序设计 - 135 - 2.4.4.8测试方法和数据 - 136 - 2.4.4.9附录 - 137 - 2.5 光复并网专题介绍 - 140 - 2.5.1 背景介绍 - 140 - 2.5.2 光伏并网发电原理 - 140 - 2.5.2.1并网动作方式分析 - 141 - 2.5.2.2并网功率控制理论分析 - 141 - 2.5.2.3同频同相控制方法 - 142 - 2.5.3 光复并网MPPT(最大功率点跟踪)介绍 - 143 - 2.5.3.1 MPPT内阻与负载关系分析 - 143 - 2.5.3.2最大功率点跟踪(MPPT)实现方案分析 - 143 - 2.5.3.3 MPPT控制方法流程 - 144 - 2.5.4 光复并网发电模拟装置(09年国赛A题) - 145 - 2.5.4.1题目要求及任务 - 145 - 2.5.4.2系统及功能介绍 - 146 - 2.5.4.3方案论证 - 147 - 2.5.4.4系统整体方案框图 - 148 - 2.5.4.5理论分析与计算 - 148 - 2.5.4.6电路与程序设计 - 150 - 2.5.4.7测试方案与测试结果 - 153 - 2.5.4.8附录 155 2.5.5 小功率光伏发电并网系统 159 2.5.5.1 系统任务及要求 159 2.5.5.2 题目分析与对比 160 2.5.5.3 系统简介 161 2.5.5.4方案论证 161 2.5.5.5系统整体设计 163 2.5.5.6电路设计和参数计算 163 2.5.5.7测试方法与数据 166 2.5.5.8测试结果分析 167 2.6.1 电池简介 167 2.6.1.1 铅酸蓄电池 167 2.6.1.2 镉镍、镍氢蓄电池 168 2.6.1.3 锂离子电池 169 2.6.2 电能收集充电器(09年国赛E题) 169 2.6.2.1系统任务及要求 169 2.6.2.2 系统介绍 170 2.6.2.3方案选择与论证 171 2.6.2.4理论分析与计算 172 2.6.2.5电路与程序设计 174 2.6.2.6测试条件与测试结果 176 2.6.2.7实验分析与结论 177 2.6.2.8附录 178 2.6.3 蓄电池充电管理集成芯片 178 2.6.3.1镉镍、镍氢电池集成管理芯片 178 2.6.3.2铅酸蓄电池管理集成芯片 179 2.7 D类功率放大器和AC-AC变换 181 2.7.1 D类功率放大器 181 2.7.1.1 D类功率放大器简介 181 2.7.1.2 D类功率放大器的PWM方式 182 2.7.1.3 D类功率放大器的开关频率和滤波器频率 184 2.7.1.4桥式开关电路 184 2.7.1.5 集成的D类功率放大电路 185 2.7.2 AC-AC变换 185 2.7.2.1交流稳压源方案论证 186 2.7.2.2 BUCK-BOOST电路的理论分析与计算 186 2.7.2.3主电路拓扑原理分析 187 2.7.2.4主回路器件选择与参数设计 188 第三章 控制系统 189 3.1 传感器 189 3.1.1传感器分类 189 3.1.2 霍尔传感器 190 3.1.3 温度传感器 191 3.1.4 光电传感器 192 3.1.5 红外传感器 192 3.1.6 超声传感器 193 3.1.6.1 基本原理 193 3.1.6.2 超声测距原理 194 3.1.6.3 误差来源和分析 195 3.1.6.4 注意事项 196 3.1.7金属应变片式传感器 196 3.1.8 接近开关 197 3.1.9 小结 198 3.2 控制系统的组成 198 3.2.1 超声测距 198 3.2.1.1发射部分 198 3.2.1.2 接收部分电路 199 3.2.2 红外传感器的应用 200 3.2.2.1 探测黑线 200 3.2.2.2 检测点滴速度 201 3.2.3 光敏电阻探测光源 202 3.2.4 温度传感器的应用 202 3.2.5 角度测量模块 206 3.2.5.1 角度测量方案 206 3.2.5.2 角度测量电路 206 3.2.6 直流电机的控制和驱动 208 3.2.6.1 电源方案 208 3.2.6.2 电机的驱动电路 208 3.2.7 步进电机的控制和驱动 210 3.2.7.1 步进电机控制原理 210 3.2.7.2 步进电机的的驱动电路 211 3.2.8 语音模块 214 3.2.8.1 前级通道 214 3.2.8.2 后向通道 216 3.2.9 无线收发模块 219 3.3 算法简介 220 3.3.1数字PID 控制算法 220 3.3.1.1 PID控制系统简介 220 3.3.1.2 PID参数控制效果分析 221 3.1.1.3数字PID控制的实现 221 3.3.1.4PID算法的饱和特性 222 3.3.1.5 PID参数整定方法 223 3.3.2大林算法 226 3.3.3模糊控制算法 228 3.3.3.1 模糊控制概述 228 3.3.3.2 模糊控制原理 228 3.3.3.3 模糊控制器设计 229 3.3.3.4 小结 229 3.3.4 运动控制算法 230 3.3.4.1产生线段的整数Bresenham算法 230 3.3.4.2产生圆的整数Bresenham算法 232 3.3.5 其它控制算法 235 3.3.6 压缩算法 236 3.3.6.1 无损压缩 236 3.3.6.2 有损压缩 237 3.3.6.3 压缩算法应用 239 3.3.7 软件滤波 239 3.3.7.1 限幅滤波 240 3.3.7.2 中值滤波 240 3.3.7.3 算术平均滤波 240 3.3.7.4 递推平均滤波 240 3.3.7.5 中值平均滤波 241 3.3.7.6 限幅平均滤波 241 3.3.7.7 一阶滞后滤波 241 3.3.7.8 加权递推平均滤波 241 3.3.7.9 消抖滤波 242 3.3.7.10 限幅消抖滤波 242 3.3.8 曲线拟合 242 3.3.9 控制算法的实际应用 243 3.3.9.1悬挂运动控制系统算法分析 243 3.3.9.2 水温控制系统中的控制算法 245 3.4 MSP430新版使用说明 247 3.4.1 MSP430新版描述 247 3.4.2 MSP430F449系列单片机工作原理和资源配置 247 3.4.3 常用底层模块实例 250 3.5 控制类系统设计 254 3.5.1 简易智能小车 254 3.5.1.1 电动车具体功能阐述 254 3.5.1.2 系统整体设计方案 254 3.5.1.3 理论分析与计算 254 3.5.1.4 系统设计实现 255 3.5.1.5 系统软件设计 256 3.5.1.6 测试结果 258 3.5.1.7总结 258 3.5.2 悬挂运动控制系统 258 3.5.2.1 系统设计指标 258 3.5.2.2方案论证 259 3.5.2.3 系统的总体设计 261 3.5.2.4 算法分析 262 3.5.2.5系统硬件实现 262 3.5.2.6 系统软件设计 263 3.5.2.7 系统调试 264 3.5.3 位移测量装置 264 3.5.3.1题目要求 264 3.5.3.2 方案论证 264 3.5.3.3系统总体方案设计及实现框图 266 3.5.3.4 理论分析与计算 266 3.5.3.5 主要功能电路设计 267 3.5.3.6 软件部分设计 270 3.5.3.7 测试与分析 271 3.5.3.8 总结 271 3.5.4 电梯控制模型 272 3.5.4.1 题目任务要求与相关指标分析 272 3.5.4.2 方案论证 273 3.5.4.3 系统总体方案与实现框图 273 3.5.4.4 主要功能电路的设计 274 3.5.4.5 系统软件的设计 274 3.5.4.6 测试数据与分析 275 3.5.4.7 总结 277 3.6.1 位移测量装置—2008年湖北省“TI”杯电子设计竞赛(本科组A题) 277 3.6.2 温度自动控制系统—2008年湖北省“TI”杯电子设计竞赛(本科组D题) 278 3.6.3 电动车跷跷板—2007年全国大学生电子设计竞赛F题 280 3.6.4 液体点滴速度监控装置 (F题) 281 3.6.5 简易智能电动车(E题) 283 3.6.6 悬挂运动控制系统(E题) 284 第四章 通信类 286 4.1通信系统基本知识 286 4.1.1 调制与解调原理 288 4.1.1.1模拟调制与解调 288 4.1.1.2数字调制与解调 293 4.1.2 信道 294 4.1.2.1自由空间电波的传播损耗 295 4.1.2.2信道容量 295 4.1.3 差错控制编码 296 4.1.4 同步原理 298 4.1.4.1载波同步 298 4.1.4.2码元同步 299 4.1.5 通信协议 299 4.2 通信系统典型电路设计 300 4.2.1载波发生电路 300 4.2.1.1锁相频率合成 300 4.2.1.2单片载波发生电路 302 4.2.2 调制解调电路 304 4.2.2.1 AM(ASK)的产生及解调电路 304 4.2.2.2 FM(FSK)的产生及解调电路 305 4.2.2.3 PSK的产生及解调电路 311 4.2.3 功率放大电路 312 4.2.4阻抗匹配网络 313 4.2.4.1 L形匹配网络 313 4.2.4.2 π形匹配网络 314 4.2.4.3 T形匹配网络 314 4.2.4.4传输线变压器 315 4.2.4.5软件仿真 315 4.2.5滤波器电路 317 4.2.6 电源电压转换电路 318 4.2.7 数字锁相环提取位同步信号电路 319 4.3通信系统设计实例 321 4.3.1单工无线通信系统 322 4.3.1.1系统设计指标 322 4.3.1.2系统设计及方案确定 322 4.3.1.3系统实现 325 4.3.1.4小结 329 4.3.2调频收音机 330 4.3.2.1系统设计指标 330 4.3.2.2系统设计及方案确定 330 4.3.2.3系统实现 332 4.3.2.4小结 334 4.3.3无线识别装置 334 4.3.3.1系统设计指标 334 4.3.3.2系统设计及方案确定 335 4.3.3.3系统实现 337 4.3.3.4小结 339 4.3.4超声数据传输系统 339 4.3.4.1系统设计指标 339 4.3.4.2系统设计及方案确定 340 4.3.4.3理论分析与计算 341 4.3.4.4系统实现 342 4.3.4.5小结 344 4.3.5单路语音处理与传输系统设计 344 4.3.5.1系统设计指标 345 4.3.5.2系统设计及方案确定 345 4.3.5.3理论分析 347 4.3.5.4系统实现 350 4.3.5.5小结 352 第五章 仪器仪表类 352 5.1滤波器 352 5.1.1有源滤波器 352 5.1.1.1 RC有源滤波器 352 5.1.1.2状态变量型有源滤波器 355 5.1.1.3UAF42的使用和性能分析 356 5.1.2无源滤波器 361 5.1.3开关电容滤波器 363 5.2 常用比较器 366 5.2.1比较器的选择和使用 366 5.2.2低频比较器——LM311 368 5.2.3双路低频比较器TLC372 370 5.2.4高频比较器TL3016 TL3116 372 5.3 功率放大器 373 5.3.1功率放大器的工作状态 374 5.3.1.1甲类功率放大器 375 5.3.1.2乙类功率放大器——互补推挽输出 375 5.3.1.3甲乙类功率放大器——准互补推挽输出 377 5.3.2集成运放THS3091实现功率放大 378 5.3.3集成功率放大器TDA2000DX实现音频功率放大 379 5.4 常用A/D转换芯片 383 5.4.1 A/D转换器的选择和使用 383 5.4.2 高精度A/D转换器——ADS1286 384 5.4.3高精度A/D转换器——ADS8505 387 5.4.4高速A/D转换器——ADS803/ADS805 391 5.5 常用D/A转换芯片 395 5.5.1 D/A转换器的分类和应用 395 5.5.2高精度D/A转换芯片——TLV5616 396 5.5.3高精度D/A转换芯片——TLV5618 398 5.5.4高速D/A转换器——DAC90X 401 5.6 相位测量 404 5.6.1移相信源的实现 405 5.6.1.1直接数字频率合成(DDS)技术实现移相信源 405 5.6.1.2移相网络实现移相信源 405 5.6.2相位测量 407 5.6.2.1相位—电压转换法 407 5.6.2.2计数法 408 5.6.2.3DFT相位测量 408 5.7.1频率测量的常用方式 410 5.7.1.1直接测频法 410 5.7.1.2测周法 411 5.7.1.3等精度测频法(相关计数测频法) 411 5.7.2提高频率测量精度 412 5.7.2.1比较器输出影响前级信号的解决方法 412 5.8 峰值、有效值测量的模拟实现 417 5.8.1模拟峰值检波电路 417 5.8.2模拟有效值检波 418 5.8.3数值峰值测量 419 5.8.4数字有效值测量 424 5.9 压缩编码 425 5.9.1无损压缩 425 5.9.2有损压缩 426 5.9.3 ADPCM——自适应差分脉冲编码调制 427 5.10 频谱分析 429 5.10.1频谱分析的常用方法 429 5.10.2基于FFT的音频信号分析仪 430 5.10.2.1 方案论证与比较 431 5.10.2.2系统总体框图 431 5.10.2.3理论分析与计算 432 5.10.2.4 功能电路分析 441 5.10.2.5系统软件设计 444 5.10.2.6总结 445 5.10.3基于扫频外差法的简易频谱分析仪 445 5.10.3.1方案论证与选择 445 5.10.3.2系统总体框图 446 5.10.3.3系统重要模块的理论分析与实际设计 447 5.10.3.4软件设计 450 5.11 自动增益控制电路 456 5.11.1场效应管和运放实现 456 5.11.2 CPU控制实现 457 5.11.3 VGA芯片(AD603)实现 457 5.12程控放大电路 461 5.12.1 VGA芯片(AD603)实现 461 5.12.2乘法器AD835实现 461 5.12.3 VCA芯片(VCA822、VCA824、VCA801)实现 462 5.12.4 PGA芯片(THS7001、THS7002)实现 463 5.13 集成运算放大器的使用 464 5.13.1运算放大器的结构分析 465 5.13.2精密型集成运算放大器 466 5.13.3宽带集成运算放大器 467 5.13.4 AD620的使用及其性能分析 467 5.13.4.1 AD620内部结构 468
很全很系统的电子设计竞赛教程 全国大学生电子设计竞赛训练教程 目 录 第1章电子设计竞赛题目与分析 1.1 全国大学生电子设计竞赛简介 1.1电子设计竞赛题目.doc(49 KB, 下载次数: 4829) 1.2 全国大学生电子设计竞赛命题原则及要求 1.2.1 命题范围 1.2.2 题目要求 1.2.3 题目类型 1.2.4 命题格式 1.2.5 征题办法 1.3 电子设计竞赛的题目分析 1.3.1 电源类题目分析 1.3.1 电源类题目分析.doc(110.5 KB, 下载次数: 7116) 1.3.2信号源类题目分析 1.3.2信号源类题目分析.doc(100.5 KB, 下载次数: 4527) 1.3.3无线电类题目分析 1.3.3 无线电类题目分析.doc(113.5 KB, 下载次数: 4431) 1.3.4放大器类题目分析 1.3.4 放大器类题目分析.doc(135.5 KB, 下载次数: 5214) 1.3.5仪器仪表类题目分析 1.3.5 仪器仪表类题目分析.doc(394.5 KB, 下载次数: 5131) 1.3.6数据采集与处理类题目分析 1.3.6 数据采集与处理类题目分析.doc(153 KB, 下载次数: 5521) 1.3.7控制类题目分析 1.3.7 控制类题目分析.doc(160.5 KB, 下载次数: 6677) 第2章电子设计竞赛基础训练 2.1 电子元器件的识别 2.1 电子元器件的识别.doc(3.69 MB, 下载次数: 13923) 2.1.1 电阻器 2.1.2 电位器 2.1.3 电容器 2.1.4 电感器 2.1.5 半导体分立器件 2.1.6 半导体集成电路 2.1.7 表面贴装元件 2.2 装配工具及方法 2.2 装配工艺及方法.doc(768.5 KB, 下载次数: 5941) 2.2.1 装配工具 2.2.2 焊接材料 2.2.3 焊接工艺和方法 2.3 印制电路板设计与制作 2.3 印制电路板设计与制作.doc(577.5 KB, 下载次数: 6103) 2.3.1 印制电路板设计 2.3.2 印制电路板的制作 第三章 单元电路训练 3.1集成直流稳压电源的设计 3.1 电源电路.doc(941 KB, 下载次数: 9416) 3.1.1 直流稳压电源的基本原理 3.1.2 三端固定式正压稳压器 3.1.3 三端固定式负压稳压器 3.1.4 三端可调式稳压器 3.1.5 正、负输出稳压电源 3.1.6 斩波调压电源电路 3.1.7 精密稳压电源电路 3.1.8 DC-DC电源电压 3.1.9 受控稳压电源 3.1.10 LCD显示器用负压电源 3.2 运算放大器电路 3.2放大电路.doc(541 KB, 下载次数: 8410) 3.2.1 运算放大器基本特性 3.2.2 基本运放应用电路 3.2.3 测量放大电路 3.3信号产生电路 3.3 信号产生电路.doc(2.44 MB, 下载次数: 15153) 3.3.1 分立模拟电路构成矩形波产生电路 3.3.2 正弦波产生电路 3.3.3三角波产生电路 3.3.4 多种信号发生电路 3.4信号处理电路 3.4 信号处理电路.doc(841.5 KB, 下载次数: 8376) 3.4.1 有源滤波电路 3.4.2 电压/频率、频率/电压变换电路 3.4.3 电流-电压变换电路 3.5 声音报警电路 3.5 声音报警电.doc(1018 KB, 下载次数: 8366) 3.5.1 分立元件制作的声音报警电路 3.5.2 与单片机接口的声音报警电路与程序 3.5.3 与可编程逻辑器件接口的声音报警电路与程序 3.6 传感器及其应用电路 3.6 传感器电路.rar(2.64 MB, 下载次数: 15456) 3.6.1 传感器种类介绍 3.6.2 霍尔传感器与应用电路 3.6.3 金属传感器与应用电路 3.6.4 温度传感器与应用电路 3.6.5 光电传感器与应用电路 3.6.6 超声波传感器与应用电路 3.7 功率驱动电路 3.7 功率接口电路.doc(275 KB, 下载次数: 6263) 3.7.1 直流电机驱动接口电路 3.7.2 步进电机及驱动电路 3.7.3 继电器电路 3.7.4 固态继电器电路 3.8显示电路 3.8 显示电路.doc(72.5 KB, 下载次数: 4770) 3.8.1 LED显示器接口电路 3.8.2 LCD显示器的控制 3.9 A/D转换器 3.9 AD与DA接口电路.DOC(351 KB, 下载次数: 7499) 3.9.1 A/D转换器的分类及简介 3.9.2 A/D转换器的主要技术指标 3.9.3 A/D转换器及其相应接口电路选择原则 3.9
目录 一、计算机控制系统概述 - 1 - 1.1计算机控制系统定义 - 1 - 1.2计算机控制系统组成 - 1 - 二、模拟量输入通道 - 2 - 2.1模拟量输入通道作用 - 2 - 2.2 模拟量输入通道的结构组成 - 2 - 2.3各部分组成的作用 - 3 - 2.3.1信号变换器 - 3 - 2.3.2前置滤波器 - 3 - 2.3.3多路模拟开关 - 3 - 2.3.4前置放大器 - 4 - 2.3.5采样保持器 - 5 - 2.3.6 AD转换电路 - 6 - 三、模拟量输出通道 - 7 - 3.1模拟量输出通道结构 - 7 - 3.2 D/A转换器 - 7 - 3.2.1 D/A转换器DAC0832的结构特点 - 7 - 3.2.2 DAC0832的工作原理 - 8 - 四、实际仿真电路 - 9 - 一、计算机控制系统概述 1.1计算机控制系统定义 计算机控制系统(Computer Control System,简称CCS)是应用计算机参与控制并借助一些辅助部件与被控对象相联系,以获 得一定控制目的而构成的系统。这里的计算机通常指数字计算机,可以有各种规模,如 从微型到大型的通用或专用计算机。辅助部件主要指输入输出接口、检测装置和执行装 置等。与被控对象的联系和部件间的联系,可以是有线方式,如通过电缆的模拟信号或 数字信号进行联系;也可以是无线方式,如用红外线、微波、无线电波、光波等进行联 系。被控对象的范围很广,包括各行各业的生产过程、机械装置、交通工具、机器人、 实验装置、仪器仪表、家庭生活设施、家用电器和儿童玩具等。控制目的可以是使被控 对象的状态或运动过程达到某种要求,也可以是达到某种最优化目标。 与一般控制系统相同,计算机控制系统可以是闭环的,这时计算机要不断采集被控对 象的各种状态信息,按照一定的控制策略处理后,输出控制信息直接影响被控对象。它 也可以是开环的,这有两种方式:一种是计算机只按时间顺序或某种给定的规则影响被 控对象;另一种是计算机将来自被控对象的信息处理后,只向操作人员提供操作指导信 息,然后由人工去影响被控对象。 1.2计算机控制系统组成 计算机控制系统由控制部分和被控对象组成,其控制部分包括硬件部分和软件部分, 这不同于模拟控制器构成的系统只由硬件组成。计算机控制系统软件包括系统软件和应 用软件。系统软件一般包括操作系统、语言处理程序和服务性程序等,它们通常由计算 机制造厂为用户配套,有一定的通用性。应用软件是为实现特定控制目的而编制的专用 程序,如数据采集程序、控制决策程序、输出处理程序和报警处理程序等。它们涉及被 控对象的自身特征和控制策略等,由实施控制系统的专业人员自行编制。 计算机控制系统通常具有精度高、速度快、存储容量大和有逻辑判断功能等特点,因 此可以实现高级复杂的控制方法,获得快速精密的控制效果。计算机技术的发展已使整 个人类社会发生了可观的变化,自然也应用到工业生产和企业管理中。而且,计算机所 具有的信息处理能力,能够进一步把过程控制和生产管理有机的结合起来(如CIMS), 从而实现工厂、企业的全面自动化管理。 二、模拟量输入通道 2.1模拟量输入通道作用 模拟量输入通道的任务:实现模拟量到数字量的转换 组成核心:A/D转换器 2.2 模拟量输入通道的结构组成 模拟量输入通道一般由I/V变换,多路转换器、采样保持 器、A/D转换器、接口及控制逻辑等组成。 过程参数由传感元件和变送器测量并转换为电流(或电压) 形式后,再送至多路开关;在微机的控制下,由多路开关将各 个过程参数依次地切换到后级,进行采样和A/D转换,实现过 程参数的巡回检测模拟量输入通道的任务是把从系统中检测到的模拟 信号,变成二进制数字信号,经接口送往计算机。 传感器:它是一种检测装置,能感受到被测量的信 息,并能将检测感受到的信息,按一定规律变换成为 电信号或其他所需形式的输出。是将生产过程工艺参 数转换为电参数的装置,大多数传感器的输出是直流 电压(或电流)信号。为了避免低电平模拟信号传输带来的麻烦,经常要 将测量元件的输出信号经变送器变送,如温度变送器、 压力变送器、流量变送器等,将温度、压力、流量的 电信号变成 0 ~ 10mA。然后经过 模拟量输入通道来处理。 2.3各部分组成的作用 2.3.1信号变换器 把各种非电模拟信号变换为A/D转换器能够接受的电信号,如电流信号、电压信号等 ,还可以根据需要对这些输出信号值的变化范围进行规范化,以便A/D转换器处理。例如 ,电流信号幅度的标准变化范围可以是0~10mA、4~20mA等;电压信号幅度的标准变化范 围可以是0~40mA、0~5V、-5~5V、-10~10V等。 2.3.2前置滤波器 考虑到通道输入信号本身可能含有噪声,或者在传输过程中受到

488

社区成员

发帖
与我相关
我的任务
社区描述
硬件使用 非技术区
社区管理员
  • 非技术区社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧