strcpy提示内存溢出

C/C++ > C++ 语言 [问题点数:40分,结帖人u011685213]
等级
本版专家分:11
结帖率 93.59%
等级
本版专家分:216
等级
本版专家分:20188
黎前点星

等级:

一个strcpy溢出例子

编译器gcc [cpp] view plaincopyprint? char s[]="123456789"; char d[]="123"; strcpy(d,s); printf("result: %s, \n%s",d,s);  char s[]="123456789"; char d[]="123"; strcpy(d,s); printf

C语言中常见的内存错误与解决方法

关于内存的一些知识已在内存分配中提及,现记录与分享常见的内存错误与对策。 类型 1:内存未分配成功,却使用了它。 方 法:在使用之前检查指针是否为NULL。  1)当指针p是函数的参数时,在函数入口处用语句...

C语言常见内存错误及解决方法

关于内存的一些知识已在内存分配中提及,现记录与分享常见的内存错误与对策。 类型 1:内存未分配成功,却使用了它。 方 法:在使用之前检查指针是否为NULL。  1)当指针p是函数的参数时,在函数入口处用语句...

strcpy函数处理溢出的建议

C 中大多数缓冲区溢出问题可以直接追溯到标准 C 库。最有害的罪魁祸首是不进行自变量检查的、有问题的字符串操作(strcpy、strcat、sprintf 和 gets)。一般来讲,象“避免使用 strcpy()”和“永远不使用 gets()”...

内存泄露、内存溢出以及解决方法

内存溢出即用户在对其数据缓冲区操作时,超过了其缓冲区的边界;尤其是对缓冲区写操作时,缓冲区的溢出很可能导致程序的异常。 A) 比如在程序中多使用strcpy_s、memcpy_s等具有缓冲区大小检查的函数,去取代strcpy...

什么是堆,栈,内存泄漏和内存溢出

一个由c/C++编译的程序占用的内存分为以下几个部分 1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、堆区(heap) — 一般由程...

strcpy 溢出问题

今天编译一个老程序,后来发现了是strcpy溢出了,这个老程序...简单的说就是strcpy 不考虑目的地址的剩余空间,假设你已经分配了足够的空间, 它会一直赋值到源字符串结尾遇到\0 位置才停止, 所以有可能会触发一些内存

内存溢出和内存泄漏的区别

内存溢出 out of memory,是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;比如申请了一个integer,但给它存了long才能存下的数,那就是内存溢出。 内存泄露 memory leak,是指程序在申请...

内存溢出攻击分析

简单的说,内存溢出就是程序向内存写入了比分配更多的空间更多的内容。攻击者据此控制程序执行的路径,冒名执行它的代码。对那些好奇这一切都是如何发生的人,本文试图详细介绍攻击的实现机制并提出一些预防措施。 ...

堆,栈,内存泄露,内存溢出介绍

堆,栈,内存泄露,内存溢出介绍

堆,栈,内存泄漏和内存溢出

简单的可以理解为: heap:是由malloc之类函数分配...一个由c/C++编译的程序占用的内存分为以下几个部分 1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中

strcpy()带来的溢出错误

如果出现s长度大于d的长度就会出现溢出显示不全; 方法1: 将char* d s转换成为string类型,因为string类型是空间是可以改变的。 方法2: 方法3:不建议 销毁,重新开辟空间:malloc(); ...

strcpy溢出的攻击示例

在学习c/c++的时候,就讲到了一些C类型的字符串函数不是安全的,比如strcpy没有检查长度会溢出,推荐使用strncpy,笔试面试也经常问到。同时经常浏览安全相关的新闻,缓冲区溢出攻击是很常见的一种。那缓冲区溢出为...

C++项目总结二之内存溢出

内存溢出用一个比较形象的比喻就好比向一个容量300ml的杯子中倒水。如果倒的水超出300ml,水就溢出。在程序中如果我们写入(或读取)数据的范围超出了变量的“容量”就可有可导致未知的程序行为。本方将从两个方面...

【转】strcpy溢出的攻击示例

在学习c/c++的时候,就讲到了一些C类型的字符串函数不是安全的,比如strcpy没有检查长度会溢出,推荐使用strncpy,笔试面试也经常问到。同时经常浏览安全相关的新闻,缓冲区溢出攻击是很常见的一种。那缓冲区溢出为...

内存溢出之黑客篇

内存溢出已经是软件开发历史上存在了近40年的“老大难”问题,象在“红色代码”病毒事件中表现的那样,它已经成为黑客攻击企业网络的“罪魁祸首”。 如在一个域中输入的数据超过了它的要求就会引发数据溢出问题,...

Linux内存泄露与溢出

Linux系统下真正有危害的...堆内存是指程式从堆中分配的,大小任意的(内存块的大小能够在程式运行期决定),使用完后必须显示释放的内存。应用程式一般使用malloc,realloc,new等函数从堆中分配到一块内存,使用完后

内存泄漏、内存溢出和解决方案

内存溢出即用户在对其数据缓冲区操作时。超过了其缓冲区的边界;尤其是对缓冲区写操作时,缓冲区的溢出非常可能导致程序的异常。 一.内存泄露 “知己知彼。方能百战不殆”,假设我们可以比較清楚的了解在编程...

【漏洞分析】两个例子-数组溢出修改返回函数与strcpy覆盖周边内存地址

修改返回函数 return 0 ...但是在执行Magic()函数中时,数组下标指向了Printf()函数的内存地址,然后数组下标越界在内存中修改了retrun 0 的地址。就输出了Printf()函数中("Hello World \n "); #include "...

关于 自己遇到的内存溢出问题

首先,为什么为造成堆内存的溢出? 申请的内存 在使用的时候 扩大的他的内存 这时就造成了内存溢出 注意这是堆内存 当然栈的溢出其实都差不多啦  容易造成这种问题的几个函数 ...提示是 堆内存溢出

120718 -- C程序字符串复制时内存溢出

今天再次出现了溢出: char fPath[]= "D:\\Microsoft Visual Studio\\MyProjects\\"; char pfWelName[]="0"; strcpy(pfWelName,fPath); char fWelName[]="title.txt"; strcat(pfWelName,fWelName); printf("%s\n...

堆(heap)和栈(stack)、内存泄漏(memory leak)和内存溢出

静态 栈 堆

Java系列技术之工具Maven

Java系列技术之必学工具Maven是在JavaWeb入门课程的后续课程,也是以后课程里都要用的实用级工具,所以大家一定要学会,Maven 是目前在生产环境下多框架、多模块整合开发的项目自动化构建工具,是我们学习Java的技术人必须要学会的一个工具, 大型项目开发过程中不可或缺的重要工具。 这里将带着大家了解 Maven 的作用,常用命令,配置依赖,以及依赖的范围、依赖的传递性、依赖的排除、生命周期等重要概念,以及继承、聚合、部署的 Maven 配置。全部配置操作,手把手演示操作,绝对能提升大家的实际操作能力!

个人简历模板

优质简历模板,目前最前全的模板收藏,需要换工作的小伙伴们可以试试

Linux视频教学从入门到精通

不管你是Linux小白还是有linux基础,通过本课程学习都能让你掌握足够多的linux的实战经验,本课程从Linux安装开始手把手教你如何成为Linux高手,学好服务器端操作系统Linux至关重要,互联网项目离不开Linux,分布式离不开linux,大数据离不开linux,想要高薪更离不开Linux,本课程是你好的教材。 不管你是Linux小白还是有linux基础,通过本课程学习都能让你掌握足够多的linux的实战经验,本课程从Linux安装开始手把手教你如何成为Linux高手,学好服务器端操作系统Linux至关重要,互联网项目离不开Linux,分布式离不开linux,大数据离不开linux,想要高薪更离不开Linux,本课程是你最好的教材。

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

Qt程序设计进阶

Qt是一个1991年由奇趣科技开发的跨平台C++图形用户界面应用程序开发框架。它既可以开发GUI程序,也可用于开发非GUI程序,比如控制台工具和服务器。Qt是面向对象的框架,使用特殊的代码生成扩展(称为元对象编译器(Meta Object Compiler, moc))以及一些宏,易于扩展,允许组件编程。 Linux环境图形用户界面应用程序开发,面向对象程序设计,Linux/Windows多平台图形应用开发,嵌入式设备图形界面开发。Qt绘图,事件机制,网络,数据库,嵌入式移植。

Pygame中文手册 完整版

Pygame 是一组用来开发游戏软件的 Python 程序模块,基于 SDL 库的基础上开发。允许你在 Python 程序中创建功能丰富的游戏和多媒体程序,Pygame 是一个高可移植性的模块可以支持多个操作系统。 《pygame中文手册》为Python程序员介绍了pygame库。Pygame是一个Python扩展库,它包装了SDL库及其助手。本文档详细的介绍了Pygame的属性和方法,方便大家查询和使用,感兴趣的可以下载学习

微信小程序源码-合集6.rar

微信小程序源码,包含:图片展示、外卖点餐、小工具类、小游戏类、演绎博览、新闻资讯、医疗保健、艺术生活等源码。

C#高性能大容量SOCKET并发完成端口例子(有C#客户端)完整实例源码

例子主要包括SocketAsyncEventArgs通讯封装、服务端实现日志查看、SCOKET列表、上传、下载、远程文件流、吞吐量协议,用于测试SocketAsyncEventArgs的性能和压力,最大连接数支持65535个长连接,最高命令交互速度达到250MB/S(使用的是127.0.0.1的方式,相当于千兆网卡1Gb=125MB/S两倍的吞吐量)。服务端用C#编写,并使用log4net作为日志模块; 同时支持65536个连接,网络吞吐量可以达到400M。

相关热词 c# 测试并发 c# 如何提交地址 c# 反射 转 原码 c#mvc项目 c# 示例 长连接 c# 开发网站 c#通过反射获取类型信息 c# lock 的参数 c# stream 复制 android c#