社区
脚本语言
帖子详情
书籍Deep Learning for Computer Vision with Python源码
qinzhenpku
2018-03-15 09:49:18
请问谁有Deep Learning for Computer Vision with Python这本书的源码?作者是Adrian Rosebrock。谢谢
...全文
1164
5
打赏
收藏
书籍Deep Learning for Computer Vision with Python源码
请问谁有Deep Learning for Computer Vision with Python这本书的源码?作者是Adrian Rosebrock。谢谢
复制链接
扫一扫
分享
转发到动态
举报
AI
作业
写回复
配置赞助广告
用AI写文章
5 条
回复
切换为时间正序
请发表友善的回复…
发表回复
打赏红包
月光吉他
2020-04-29
打赏
举报
回复
https://github.com/dloperab/PyImageSearch-CV-DL-CrashCourse 给你!我最近也开始学习 好想找pdf的 但是原版的好贵啊,我看reddit上别人写的review好像说不值得那么多钱买
大望dawang
2019-08-11
打赏
举报
回复
Deep Learning For Computer Vision With Python概述
https://mp.csdn.net/postedit/98944654
parsleysage
2019-01-30
打赏
举报
回复
Github上有
欢乐的小猪
2018-05-25
打赏
举报
回复
没看过。我想说一般书里会写在哪里下载源码的
20083959
2018-05-24
打赏
举报
回复
请联系QQ 2862464839
Deep
L
ear
ning
for Computer
Vision
with
Python
Dr. Adrian Rosebrock
Deep
L
ear
ning
for Computer
Vision
with
Python
【free】
Deep
L
ear
ning
for Computer
Vision
with
Python
.zip
Welcome to the Practitioner Bundle of
Deep
L
ear
ning
for Computer
Vision
with
Python
! This volume is meant to be the next logical step in your
deep
l
ear
ning
for computer
vision
education after completing the Starter Bundle. At this point, you should have a strong understanding of the fundamentals of parameterized l
ear
ning
, neural net works, and Convolutional Neural Networks (CNNs). You should also feel relatively comfortable using the Keras library and the
Python
programming language to train your own custom
deep
l
ear
ning
networks. The purpose of the Practitioner Bundle is to build on your knowledge gained from the Starter Bundle and introduce more advanced algorithms, concepts, and tricks of the trade — these tech- niques will be covered in three distinct parts of the book. The first part will focus on methods that are used to boost your classification accuracy in one way or another. One way to increase your classification accuracy is to apply transfer l
ear
ning
methods such as fine-tu
ning
or treating your network as a feature extractor. We’ll also explore ensemble methods (i.e., trai
ning
multiple networks and combi
ning
the results) and how these methods can give you a nice classification boost with little extra effort. Regularization methods such as data augmentation are used to generate additional trai
ning
data – in n
ear
ly all situations, data augmentation improves your model’s ability to generalize. More advanced optimization algorithms such as Adam [1], RMSprop [2], and others can also be used on some datasets to help you obtain lower loss. After we review these techniques, we’ll look at the optimal pathway to apply these methods to ensure you obtain the maximum amount of benefit with the least amount of effort.
计算机视觉深度学习(
Python
)(
Deep
L
ear
ning
for Computer
Vision
with
Python
)
资源下载链接为: https://pan.quark.cn/s/7f96aa74c7ff (最新版、最全版本)计算机视觉深度学习(
Python
)(
Deep
L
ear
ning
for Computer
Vision
with
Python
)
Deep
L
ear
ning
for Computer
Vision
with Tensorflow
首尔国立大学17年8月课程讲义,介绍Tensorflow及其应用在计算机视觉深度学习中的方法,包含算法内容tf
源码
Deep
_L
ear
ning
_for_Computer_
Vision
_with_
Python
(section1-5
源码
)
经典
书籍
:
Deep
_L
ear
ning
_for_Computer_
Vision
_with_
Python
的section1-5的
源码
。
脚本语言
37,743
社区成员
34,211
社区内容
发帖
与我相关
我的任务
脚本语言
JavaScript,VBScript,AngleScript,ActionScript,Shell,Perl,Ruby,Lua,Tcl,Scala,MaxScript 等脚本语言交流。
复制链接
扫一扫
分享
社区描述
JavaScript,VBScript,AngleScript,ActionScript,Shell,Perl,Ruby,Lua,Tcl,Scala,MaxScript 等脚本语言交流。
社区管理员
加入社区
获取链接或二维码
近7日
近30日
至今
加载中
查看更多榜单
试试用AI创作助手写篇文章吧
+ 用AI写文章