cannot read property 'layer' of null

Web 开发 > JavaScript [问题点数:100分]
等级
本版专家分:0
结帖率 66.67%
等级
本版专家分:1392
勋章
Blank
GitHub 绑定GitHub第三方账户获取
Blank
黄花 2019年12月 扩充话题大版内专家分月排行榜第二
crszhi

等级:

layer.js 报错 cannot read property 'XXX' of null

如上图所示,前端页面引用了layer的相关内容。经最后排查问题是本人进行引用的时候数据为空导致的! ...cannot read property 'parents' of null  综上 只需在引用相关函数的时候保证内容不为...

出现 Cannot read property 'xxxxxx' of null 问题思路

Cannot read property 'xxxxxx' of null 的问题时很难查找到改原因的出处今天在项目中看到页面出现 Cannot read property 'xxxxxx' of null 的字样如下:对于像我这样的前端菜鸡根本,一开始以为是layer插件出现...

绘制Canvas出现Cannot read property 'getContext' of null;

我在Chrome浏览器上出现这个问题的。 解决方法: 将绘制方法,即绘制图片的方法,放在body 下面 因为chrome下需要文档载入完成后才能获得canvas对象

“js Uncaught TypeError: Cannot read property 'style' of null”——问题解决思路

1. 你调用属性的object是空的,你看看是不是没有找到你想要的对象,可能你调用的对象(对象名写错)调用错了;  2....  3. 在页面还没加载完成就获取那个元素的属性,导致获取属性失败( window.onload=function(){...

【cocos2d-js系列问题】Cannot read property 'x' of null错误解决办法

Cannot read property 'x' of null 的错误 一般都是节点(Node , Layer...)在new以后debug中出现上述错误。 出现这个问题的原因是:ctor中没有调用this._super(); var node = cc.Node.extend({

openlayers Uncaught TypeError: Cannot read property 'wrapDateLine' of null

今天想在地图上添加一个geoserver发布的vectorlayer, 浏览器就报了个错误 解决方法: 添加基础图层 添加个wms图层

Cannot read property 'top' of undefined错误分析

Cannot read property 'top' of undefined 很奇怪,一开始以为是JQuery写错了,JQuery引用错了,后来在大神的指点下,明白了,原来是外层div样式的细微差别。 问题分析: div中position:relative与position:...

vue中报Error in render function: "TypeError: Cannot read property ‘ ’ of null

vue项目中报:Error in render function: “TypeError: Cannot read property ‘id’ of null ;  vue数据:定义了一个数组,存放后台传过来的对象集合,这个没问题 var shopModal = new Vue({ el : '#...

Cannot read property 'length' of undefined

浏览器调试中遇到的错误

html创建canvas画布失败"cannot read property 'getContext' of null

自己在使用canvas画布时遇到了这样的错误,最后才知道是script位置引发的问题。 一般,script可以放在head中,也可以放在body标签结束前,但是两者是有一定的区别的。 在head标签中时,一般只是进行加载,并不立即...

Cannot read property 'render' of undefined

Cannot read property 'render' of undefined 報錯, 本地和debug環境訪問正常 進行了以下排查 先查看了其他業務 訪問正常 排除全局性錯誤 推斷應該是引入組件的問題 斷點查看各個步驟下scope 發現了某個組件缺少模塊...

Cannot read property 'add' of null

Cannot read property 'add' of null

layer——提交时报错Cannot read property 'parents' of null

是因为提交返回值内没有内容,为空导致的报错

vue2.0 使用canvas报错:Cannot read property 'getContext' of null

简单的原代码canvas加载失败:Cannot read property 'getContext' of null" 原因是canvas父级用到了v-if ,vue Dom节点 重新渲染导致methods 方法获取不到对象,所以把v-if改成v-show,就能加载成功了! ...

layer.js:2 Uncaught TypeError: Cannot read property 'extend' of undefined

转载: 在引用layer.js插件进行前端编程的时候,如果报这个错,解决办法只需: 把layer的引用放在有冲突的js库前面就行了  

CANNOT READ PROPERTY ‘opera’ OF UNDEFINED解决方法

升级jQuery到1.9后,发现报错 CANNOT READ PROPERTY ‘opera’ OF UNDEFINED. 原因 $.browser这个方法从1.9开始废除 解决方法 方法一: 官方提供jQuery migrate插件解决迁移兼容问题,引入以下js即可...

jQuery报错"Cannot read property'defaultView'of undefined

$(".start").click(function() { //检验是否支持更改状态 let $onlineStatue=$(this).parent().next().find("div").find("img"); //如果是半离线,则可以 ... if($onlineStatue.eq(4).css("display") == "block...

layer.confirm容易出现的几个问题

出现问题1:点击确定按钮无效果,报错提示:Cannot read property 'layer' of null 出现问题2:执行到询问是否怎么样的时候一闪而过,连点击按钮都没有 总结:此时促发事件的button要添加type='button',加上之后...

js报错Uncaught TypeError: Cannot read property '1' of null

![图片说明]... !... 字符串可以正常输出到控制台,并且相同的字符串在控制台运行这段代码没有问题,找了很多解决方法,加入非空判断,把代码放到后等都无用

Layui layer.open报错 layui.all.js:5 Uncaught TypeError: s.parents is not a function

报错提示: 报错代码: /*添加权限页面*/ function createAuthoritypage() { console.log("... layer.open({ type: 1, title: "添加权限", area:["40%","35%"], ...

疑难杂症(1) -- layer关闭刷新父界面

layer是一款近年来备受青睐的web弹层组件,她具备全方位的解决方案,致力于服务各水平段的开发人员,您的页面会轻松地拥有丰富友好的操作体验。

Hadoop3 50070端口访问不到HDFS页面(hadoop的默认配置)

Hadoop3 50070端口访问不到HDFS页面 hadoop3配置注意事项:... hadoop3 hdfs web端口改为9870 <property> <name>dfs.namenode.http-address</name> &...

hbase-default.xml详解--注释

<?xml version="1.0"?> <?xml-stylesheet type="text/xsl"...-- hbase的本地临时目录,每次机器重启数据会丢失,建议放到某个持久化文件目录下 --&...lt

ioS开发--Warning警告处理

去除警告的方法: #pragma clang diagnostic push #pragma clang diagnostic ignored"-Wunused-function" local void free_linkedlist(ll) linkedlist_data* ll; { free_datablock(ll->first_block);...

ORA_ERROR大全

常见错误: -60 ORA00060: deadlock detected while waiting for resource 一般错误:  - 1 ORA00001: unique constraint (.) violated  -17 ORA00017: session requested to set trace event ...

ArcEngine错误提示

错误代码 错误名称 错误描述 HRESULT:0x80040201 FDO_E_LOADING_RESOURCE “Failed to load a resource (string, icon, bitmap, etc).” ... FDO_E_INDEX_OUT_OF_RANGE The index passed was not wit

ArcGIS API for JS Uncaught (in promise) TypeError: Cannot read property 'name' of undefined

错误截图: 出错的代码片段: L.set({ field: x, config: G, ... group: null, layer: C, value: f.getValue(x.name) }); 错误原因:fieldConfig中的字段名称和源文件中的字段名不一致 ...

Relative to SQLCE Various Errors Information

Understanding Common ErrorsThis table lists common errors (and suggested solutions) that you might encounter when you use Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

MFC上位机与STM32下位机通讯精讲

本课程主要介绍C++类库MFC上位机与STM32单片机的RS232、RS422、RS485、USB、LWIP以太网、CAN等接口进行稳定通信。课程主要从MFC和STM32基础开始,以编写上位机以及下位机为主,非常注重实践。 本课程主要目标是让大家学会MFC上位机的编程、STM32下位机编程。单单的会上位机或者下位机有时候体会不到通讯的乐趣,如果你单单会下位机,你学了本课程,你可以把你的数据以任何方式在windows上呈现出来,如果你只会上位机,你学了本课程你可以通过windows的串口、以太网、USB控制任何硬件设备。本课程的目标就是补偿大家的短处,让大家成为综合性人才,同时让大家体会到通讯中的更多乐趣。

相关热词 c# 获取泛型参数 c# 获取引用变量地址 c# 加载系统自带的字体 c# unity 结构体 c# 路径提示拒绝访问 c# 换行连接 c# 创建接口 c# 取绝对值函数 c# 打印机首选项 c# json通用类