AlexNet - ImageNet Classification with Deep Convolutional Neural Networks 译文下载 [问题点数:0分]

Bbs1
本版专家分:0
结帖率 70.94%
NIPS2012-ImageNet Classification with Deep Convolutional Neural Networks
图像分类的一个里程碑,另外一个经典的CNN网络!
AlexNet - ImageNet Classification with Deep Convolutional Neural Networks 译文
AlexNet - ImageNet Classification with Deep Convolutional Neural Networks <em>译文</em>
深度学习文章阅读(一)——Alexnet
《ImageNet Classification with Deep Convolutional Neural Networks》 1 文章简要介绍 背景:这篇文章是Hinton团队参加ImageNet2012比赛用的网络,这是第一次用深度网络的方法参加ImageNet比赛,效果较之前的方法获得了极大提升。这个网络又被称为Alexnet,在这个网络之后,更多优秀的网络,如VGG,ResNet被...
ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks
1. AlexNet 论文总结
1.网络结构: imput Conv - RNL - Maxpooling - ReLU Conv - RNL - Maxpooling - ReLU Conv - ReLU Conv - ReLU Conv - Maxpooling - ReLU fullyConnected - ReLU fullyConnected - ReLU fullyConnected - ReLU 100-way-...
AlexNet:深度卷积神经网络的ImageNet分类
https://www.toutiao.com/a6640032761132368392/   2018-12-28 21:18:21 该模型赢得了ILSVRC 2012大赛 本文内容 在ImageNet数据上训练网络,其中包含超过22,000个类别的超过1500万张图像。 本文使用ReLU激活函数进行非线性。发现ReLU降低了训练的运行时间,因为它比传统的tanh函数更快。 实...
ImageNet_Classification_with_Deep_Convolutional_Neural_Networks
ImageNet_Classification_with_Deep_Convolutional_Neural_Networks.pdf
ImageNet classification with deep convolutional neural networks中文翻译
ImageNet <em>classification</em> with <em>deep</em> <em>convolutional</em> <em>neural</em> <em>networks</em> 中文翻译
理解卷及神经网络应用在自然语言处理的学习笔记
博客地址:http://www.wildml.com/2015/11/understanding-<em>convolutional</em>-<em>neural</em>-<em>networks</em>-for-nlp/ 首先申明本人的英语很搓,看英文非常吃力,只能用这种笨办法来方便下次阅读。有理解错误的地方,请别喷我。CNN怎么应用到NLP什么是卷积和什么是卷积神经网络就不讲了,自行google。从在自然语言处理的应用开始(SO, HOW D
ImageNet Classification with Deep Convolutional Neural Networks的翻译
ImageNet Classification with Deep Convolutional Neural Networks的翻译
Recurrent Convolutional Neural Networks for Text Classification
找到了国外的一篇文章《Recurrent Convolutional Neural Network For Text Classification》
四大经典CNN架构之一(ALexNet)
本资源详细解读了经典论文ImageNet Classification with Deep Convolutional Neural Networks,主要介绍ALexNet的架构、特点、计算流程
嵌入式/压缩神经网络相关工作汇总
原文链接:https://www.ctolib.com/ZhishengWang-Embedded-Neural-Network.html Papers Reading List. This is a collection of papers aiming at reducing model sizes or the ASIC/FPGA accelerator for Machin
Multi-focus image fusion with a deep convolutional neural network
本论文是最近发表的关于神经网络算法对多聚焦融合的一个改进算法,效果很好。
Real-Time Grasp Detection Using Convolutional Neural Networks
机械臂
Practical Convolutional Neural Networks
“Practical Convolutional Neural Networks: Implement advanced <em>deep</em> learning models using Python” Md. Rezaul Karim,Mohit Sewak,Pra<em>deep</em> Pujari 2018年2月 epub文件,内含示例源码
ImageNet Classification with Deep Convolutional Neural Network
ImageNet Classification with Deep Convolutional Neural Network
Convolutional Neural Networks.pdf
Convolutional Neural Networks are very similar to ordinary Neural Networks from the previous chapter: they are made up of neurons that have learnable weights and biases. Each neuron receives some inputs, performs a dot product and optionally follows it with a non-linearity.
给研一同学们的深度学习学习规划
学习路线 完成cs231n学习. 熟悉python,并完成对应assignment. 按照课程基础部分阅读相应基础paper. 按兴趣阅读特定应用方向paper. 学习某一种深度学习框架,并实现复现感兴趣方向一篇paper的实验结果. 总结汇报
Relation Classification via Convolutional Deep Neural Network
The state-of-the-art methods used for relation <em>classification</em> are primarily based on statistical machine learning, and their performance strongly depends on the quality of the extracted features. The extracted features are often derived from the output of pre-existing natural language processing (NLP) systems, which leads to the propagation of the errors in the existing tools and hinders the performance of these systems.
鉴别力感知的通道剪枝——Discrimination-aware Channel Pruning
&quot;Discrimination-aware Channel Pruning for Deep Neural Networks&quot;这篇文章首先认为通道剪枝能够确保剪枝后模型与现有深度学习框架兼容,避免非规整的稀疏运算。其次基于训练的通道剪枝策略,需要在训练过程中施加稀疏约束或正则化约束,通常消耗较大的训练时间。另外基于最小化输出特征重建误差、layer-by-layer方式的剪枝策略(channel ...
Deep Learning and Convolutional Neural Networks for Medical Image Computing
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets (Advances in Computer Vision and Pattern Recognition) by Le Lu, Yefeng Zheng, Gustavo Carneiro, Lin Yang 2017 | ISBN: 3319429981 | English | 326 pages | PDF | 14 MB This book presents a detailed review of the state of the art in <em>deep</em> learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of <em>convolutional</em> <em>neural</em> <em>networks</em>, with the theory supported by practical examples. Features: highlights how the use of <em>deep</em> <em>neural</em> <em>networks</em> can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of <em>deep</em> learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using <em>deep</em> learning principles in medical imaging; introduces a novel approach to interleaved text and image <em>deep</em> mining on a large-scale radiology image database.
系统学习深度学习(十五)--AlexNet译文
转自:http://www.aichengxu.com/other/2557713.htm http://blog.csdn.net/maweifei/article/details/53117830 本深度学习网络是Alex和Hinton参加ILSVRC2012比赛的卷积网络论文,本网络结构也是开启ImageNet数据集更大,更深CNN的开山之作,本文对CNN的一些改进成为以后CNN网络
Visualizing and Understanding Convolutional Networks 译文(“看懂”卷积神经网络)
Visualizing and Understanding Convolutional Networks <em>译文</em>(“看懂”卷积神经网络)
Multi-column Deep Neural Networks for Image Classification
Multi-column Deep Neural Networks for Image Classification
[卷积神经网络]课程:Deep convolutional models习题解析
这是&amp;lt;&amp;lt;卷积神经网络&amp;gt;&amp;gt;课程第二周的习题,一共10道。 从课程给出的众多卷积神经网络示例上看,卷积通常是减少宽高尺寸,增加通道数,比如: 答案为选项3 同样,经典的卷积神经网络通常是几个卷积层后面带一个池化层,接近输出的地方再加上全连接层,所以选择选项1和3 池化层用于减少宽/高,卷积层填充也有避免图像缩小过快的原因,但问题出在题目中的only,卷积...
视频理解论文和数据集
转自:https://github.com/sujiongming/awesome-video-understanding Awesome Video Understanding Understanding Video: Perceiving dynamic actions could be a huge advance in how software makes sense of
卷积神经网络研究分类
目前卷积神经网络的研究主要在两个方面:1 network structures 神经网络结构的这方面的论文有A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer <em>networks</em> in unsupervised feature learning. Journal ofMachine Learning Research, 2011....
个人阅读的Deep Learning方向的paper整理
http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类。目前只整理了部分,剩余部分还会持续更新。 一 RNN 1 Recurrent n
IGC(Interleaved Group Convolutions) 【IGC代替卷积,获得更小、更快、更准的深度学习模型IGCV】
下面是微软研究院张婷研究员的报告PPT节选。视频:https://www.bilibili.com/video/av23295590?from=search&amp;amp;seid=7224169471719308503深度学习被引起关注是在2012年用神经网络训练的一个分类模型在ImagNet上取得了第一名,而且其分类精度比第二名高出10多个点,当时所使用的模型为AlexNet,现在看来其为一个比较简...
Deep Inside Convolutional Networks
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Convolutional Neural Networks for Sentence Classification
十分好的文章。
cs231n-(8)理解和可视化卷积网络
理解卷积神经网络学习内容,可视化
语义分割深度学习方法集锦
转载:https://github.com/handong1587/handong1587.github.io/edit/master/_posts/<em>deep</em>_learning/2015-10-09-segmentation.mdPapersDeep Joint Task Learning for Generic Object Extraction intro: NIPS 2014 homepage
上海科技大学信息科学与技术研讨会(SSIST day3)笔记
一、Deep Network and Beyond presenters: Alan L. Yuille Johns Hopkins University 1.More Structured Attacks:Occlusion Jianyu Wang et al. Annals of Mathematical Sciences. 2018 2.DeepVote Dee...
Deep Neural Networks for YouTube Recommendations论文翻译.pdf
Deep Neural Networks for YouTube Recommendations论文翻译
文献打包-An Introduction Of Densely Connected Convolutional Networks
DenseNet综述介绍_An Introduction Of Densely Connected Convolutional Networks.ppt 引用的参考文献,包含DeepLearning学习重要的几种网络的发表paper。 Deep Residual Learning for Image Recognition [ResNet] Densely Connected Convolutional Networks [DenseNet] Going <em>deep</em>er with convolutions [GoogleNet] Gradient-Based Learning Applied to Document Recognition [LeNet-5] ImageNet Classification with Deep Convolutional Neural Networks [ALexNet] VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION [VGGNet]
论文阅读笔记(二十四):Non-local Neural Networks
Both <em>convolutional</em> and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for...
GAN对抗网络相关资源
AdversarialNetsPapers The classical Papers about adversarial nets The First paper ✅ [Generative Adversarial Nets] [Paper] [Code](the first paper about it) Unclassified ✅ [Deep Gener
【深度学习笔记】个人阅读的Deep Learning方向的paper整理
转载来源: 人阅读的Deep Learning方向的paper整理 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类。目前只整理了部分,剩余部分还会持续更新。 一 RNN 1 Recurrent <em>neural</em> network based language
论文笔记|Fast R-CNN
Author Ross Girshick Abstract Compared to SPP net, Fast R-CNN trains VGG16 x3 faster, tests 10x faster, and is more accurate. 1 Introduction Localization challenges: 1. numerous candidate ob
深度神经网络加速和压缩
模型加速与压缩方法分类总结 • Low-Rank • Pruning • Quantization • Knowledge Distillation • Compact Network Design   Low-Rank Previous low-rank based methods: • SVD - Zhang et al., “Accelerating Very Deep Conv...
Learning-Deep-Learning(学习深度学习)
作者:chen_h 微信号 &amp;amp; QQ:862251340 微信公众号:coderpai Learning Deep Learning(学习深度学习) There are lots of awesome reading lists or posts that summarized materials related to Deep Learning. So why would...
一步一步分析讲解深度神经网络基础-Convolutional Neural Network
Convolutional Neural Network 参考http://cs231n.github.io/<em>convolutional</em>-<em>networks</em>/history Convolutional Neural Networks (CNNs / ConvNets)Convolutional Neural Networks are very similar to ordinary Neural
基于 CNN的年龄和性别检测
自2012年深度学习火起来后,AlexNet,vgg16,vgg19,gooGleNet,caffeNet,faster RCNN等,各种模型层出不群,颇有文艺复兴时的形态。 在各种顶会论文中,对年龄和性别的检测的论文还是比较少的。而本文将要讲解的是2015年的一篇cvpr,Age and Gender Classification using Convolutional Neural Netw...
【今日CS 视觉论文速览】 21 Jan 2019
生成对抗分类器用于超分辨、高维滤波、文档二值化以及人群计数、红细胞生成等。
家庭网络的主要应用
你还在为争着使用打印机而焦头烂额吗?或者楼上楼下的疲于奔命只为了收一封 E-MAIL?你的小孩经常占用着你的电脑,因为只有你的电脑才能连接上 Internet?其实你只需要建起一个家庭网络,所有的问题都将迎刃而解。下面我来举几个如何用家庭网络使你的工作更加轻松的例子。 资源共享 通过家庭网络,所有的成员都可以同时登陆 Internet,使用共享的外部设备,进行各自的学习、工作、娱乐而互不干扰,
神经网络压缩综述
1.研究背景 对模型预测精度无明显影响 压缩模型的参数数量、深度来降低模型空间复杂度 全连接层参数多,模型大小由全连接层主导 不显著提高训练时间复杂度,降低预测时间复杂度(计算量) 卷积层计算量大,计算代价由卷积操作主导 2.方法 2.1.更精细模型的设计 Aggregated Residual Transformations for Deep Neural Networ...
ECG的ML/DL算法碎碎念:主动学习(Active Learning)—— Patient Specific
0 写在前面    很高兴前面的一些总结可以帮助到在这个领域做研究的同学们,不过也有同学有更多的问题。下面也是几点说明吧,先说两个问题:1. 有人反映Matlab的分类代码不能正常运行(报错:未定义函数或变量 'Classification'),这一点是我的责任。主要是文件名有问题(“Classification-SVM.m”和“Classification-CNN.m”),忽略了m文件名不能有横...
Learning Deep Learning(学习深度学习)
作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 简书地址:https://www.jianshu.com/p/e98c5f61a6f2Learning Deep Learning(学习深度学习)There are lots of awesome reading lists or posts that summarized materials relate
(笔记)脉冲深度残差网络Spiking Deep Residual Network
原文链接 摘要 方法一 方法二 实验 原文链接 https://arxiv.org/abs/1805.01352 摘要 本文提供一种有效的把ResNet转成脉冲神经网络(SNN)的方法。主要提出两个方法。 一,针对残差结构的归一化,把连续激活函数值转成发射频率(firerate)。 二,分层的误差补偿。 方法一 针对残差结构的归一化,把连续激活函数值转成发射频率(f...
Jake Bouvrie, Notes on Convolutional Neural Networks
这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的。该作者是剑桥的研究认知科学的。【英文版】
Learning a Deep Convolutional Network for Image Super-Resolution
Learning a Deep Convolutional Network for Image Super-Resolution
[神经网络与深度学习] Shallow Neural Networks习题解析
这是[神经网络与深度学习]课程第三周的习题,一共10道。 解答: 本课程中[i]表示第i层神经网络,(i)代表第i个样本,而下标i表示某层神经网络上第i个神经元。X是将训练样本横向排列而来,a代表激励输出向量。 所以答案是选项1、3、4、6 解答: 课程中讲到,tanh的输出在-1和1之间,数据具有归一化的分布,使得下一层的学习变得更加简单。 答案是True 解答: 计...
PYNQ Classification - Python on Zynq FPGA for Neural Networks
PYNQ Classification - Python on Zynq FPGA for Neural Networks
Python Deep Learning: Exploring deep learning techniques, neural network
Exploring an advanced state of the art <em>deep</em> learning models and its applications using Popular python libraries like Keras, Tensorflow, and Pytorch Key Features • A strong foundation on <em>neural</em> <em>networks</em> and <em>deep</em> learning with Python libraries. • Explore advanced <em>deep</em> learning techniques and their applications across computer vision and NLP. • Learn how a computer can navigate in complex environments with reinforcement learning. Book Description With the surge of Artificial Intelligence in each and every application catering to both business and consumer needs, Deep Learning becomes the prime need of today and future market demands. This book explores <em>deep</em> learning and builds a strong <em>deep</em> learning mindset in order to put them into use in their smart artificial intelligence projects. This second edition builds strong grounds of <em>deep</em> learning, <em>deep</em> <em>neural</em> <em>networks</em> and how to train them with high-performance algorithms and popular python frameworks. You will uncover different <em>neural</em> <em>networks</em> architectures like <em>convolutional</em> <em>networks</em>, recurrent <em>networks</em>, long short term memory (LSTM) and solve problems across image recognition, natural language processing, and time-series prediction. You will also explore the newly evolved area of reinforcement learning and it will help you to understand the state-of-the-art algorithms which are the main engines behind popular game Go, Atari, and Dota. By the end of the book, you will be well versed with practical <em>deep</em> learning knowledge and its real-world applications What you will learn • Grasp mathematical theory behind <em>neural</em> <em>networks</em> and <em>deep</em> learning process. • Investigate and resolve computer vision challenges using <em>convolutional</em> <em>networks</em> and capsule <em>networks</em>. • Solve Generative tasks using Variational Autoencoders and Generative Adversarial Nets (GANs). • Explore Reinforcement Learning and understand how agents behave in a complex environment. • Implement complex natural language processing tasks using recurrent <em>networks</em> (LSTM, GRU), and attention models. Who This Book Is For This book is for Data Science practitioners, Machine Learning Engineers and Deep learning aspirants who have a basic foundation of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired
CVPR2015一些文章整理
简单看了一部分CVPR2015的文章。整理了一下
图像滤镜艺术---换脸算法资源收集
关于人脸变形、换脸的资源
论文阅读笔记(四十五):Deformable Convolutional Networks
Convolutional <em>neural</em> <em>networks</em> (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in their building modules. In this work, we introduce two new modul...
Alex《利用深度卷积神经网络对图像进行分类》
利用深度卷积神经网络对图像进行分类 1_Alex_《ImageNet Classification with Deep Convolutional Neural Networks》2012
卷积神经网络可视化套路
类型一:公式类型 此种类型,无非是建立一个可视化模型,公式有两部分组成,前半部分是主要部分,后半部分是正则项或类似正则项的东西。 《Understanding Neural Networks Through DeepVisualization》 《Deep Inside Convolutional Networks:Visualising Im
正则化技术(分类识别):PatchShuffle Regularization 论文阅读笔记
PatchShuffle Regularization论文<em>下载</em>:https://arxiv.org/abs/1707.07103 论文详细信息: 过拟合问题发生的本质是模型更多的去学习噪声而不是捕捉潜在的存在于数据中的Varations关键因素,即由于缺少数据的多样性或者模型过于复杂使得模型的学习被不相关的局部信息所误导,学习了没用的噪声数据,考虑人的机制,即观察图像整体结构不变情况下,局部
数据压缩算法方面相关文章整理【转】
AI硬件相关会议论文整理 主要是对这几年ISCA ASPLOS DAC DATE ICCAD ASP-DAC等会议上有关AI硬件的文章进行整理: 有名的综述和期刊文章 - Efficient processing of <em>deep</em> <em>neural</em> <em>networks</em>: A tutorial and survey. Proceedings of the IEEE. (2017) Massa...
循环神经网络(Recurrent Neural Network)
Introduction Framework RNN Example Variants of RNN Jordan Network store output into memory Bidirectional RNN Long Short-term Memory LSTM Framework Relationship with original networkIntroduction假设我们想做一个
图谱卷积论文(Convolutional Neural Networks on Graphs)
《Convolutional Neural Networks on Graphs》,目前对非矩阵向量卷积学习最深入的论文,发表人多年来始终在图谱卷积方向努力。
Convolutional Neural Networks in Visual Computing A Concise Guide 无水印原版pdf
Convolutional Neural Networks in Visual Computing A Concise Guide 英文无水印原版pdf pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
回顾一些重要的CNN改进模型(你真的了解 Convolutional Neural Networks 么)
转载自: 干货 | 你真的了解 Convolutional Neural Networks 么 https://mp.weixin.qq.com/s?__biz=MzAwMjM3MTc5OA==&mid=403231780&idx=1&sn=4d6b282e45a016df274b72f08ddf8492&scene=1&srcid=0111p2ycZ4HF6hZ8N9eohts2&ascen
一张图看懂深度神经网络(Deep Neural Network)
首先构造出线性分类器,再将线性分类器组合成非线性分类器,然后还可将非线性分类器组和成更为复杂的非线性分类器。其中线性分类的核心就是用S函数将偏差转换为概率,再以交叉熵来量化分类的好坏,然后最小化交叉熵来实现分类(S函数只是激活函数的一种)。 ...
论文阅读:Deep Neural Networks with Multitask Learning(多任务模型应w用到自然语言处理)
文章摘要文章讲述一个使用基于单一卷积神经网络的多任务学习模型,可以给一个句子输出预测一系列语法或语义上的输出:如词性标注、命名实体识别、语言角色,语义相近的单词,自然语言模型(句子有意义的概率)。所有这些任务上使用一个网络实现权重共享,即一个多任务学习实例。除了语言模型,所有的任务都使用打标签的数据,这样的组合代表了一个通过共享任务的进行半监督学习形式【语言模型是无监督的,而其他任务有监督】。文中...
Hands-On Deep Learning with TensorFlow
Title: Hands-On Deep Learning with TensorFlow Author: Dan Van Boxel Length: 174 pages Language: English Publisher: Packt Publishing Publication Date: 2017-07-31 ISBN-10: B071G32F1Z Table of Contents Chapter 1. Getting Started Chapter 2. Deep Neural Networks Chapter 3. Convolutional Neural Networks Chapter 4. Recurrent Neural Networks Chapter 5. Wrapping Up
DeepRebirth——通过融合加速网络
这里介绍2017ICLR OpenReview中的一篇有关网络加速的文章《DeepRebirth: A General Approach for Accelerating Deep Neural Network Execution on Mobile Devices》。 看文章标题觉得高大上,看方法细节觉得卧槽好水,看自己的验证结果好像还有点用。附:2017ICLR openreview http:
【计算机视觉】Visual Tracking 领域最新进展(论文与源码)
最近在研究 tracking,所以总结了一些较新的 tracking 相关的论文和源码。希望能够为刚进入这个领域的同学节省一些时间。如您有其他优秀的paper或者code,欢迎在回复中留言~谢谢!
【论文】模型剪枝(Network Pruning)论文详细翻译
前言: 这是关于模型剪枝(Network Pruning)的一篇论文,论文题目是:Learning both weights and connections for efficient <em>neural</em> <em>networks</em>,作者在论文中提出了一种通过网络剪枝对模型进行压缩的思路,详细地描述了模型剪枝的思路,流程和方法。 论文地址:Learning both weights and connecti...
CNN算法流程详解
这个ppt是对论文《ImageNet Classification with Deep Convolutional Neural Networks》的流程解析,分析了论文里面的重要贡献,对于学习这个网络很有帮助
vechicle classification using convolutional neural networks
vechicle <em>classification</em>;<em>convolutional</em> <em>neural</em> <em>networks</em>
深度学习【6】二值网络(Binarized Neural Networks)学习与理解
http://blog.csdn.net/linmingan/article/details/51008830           Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or−1的工作是基于BinaryConnect: Training...
学习对称形式的量化(Learning Symmetric Quantization)
&quot;SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks&quot;这篇文章提出了基于梯度的对称量化(SYQ: Learning Symmetric Quantization)方法设计高效率的二值化或三值化深度网络(1-bit或2-bit权重量化),并在pixel-wise或row-wise而非layer-wise定义细...
Hands-On Convolutional Neural Networks with TensorFlow
Convolutional Neural Networks (CNN) are one of the most popular architectures used in computer vision apps. This book is an introduction to CNNs through solving real-world problems in <em>deep</em> learning while teaching you their implementation in popular Python library - TensorFlow. By the end of the book, you will be training CNNs in no time!
论文笔记:DualCNN(结构和细节分别训练)
论文笔记:Learning Dual Convolutional Neural Networks for Low-Level Vision 参考文献:Learning Dual Convolutional Neural Networks for Low-Level Vision Jinshan Pan1 Sifei Liu2 Deqing Sun2 Jiawei Zhang3 Yang Liu...
ImageNet Classification with Deep Convolutional Neural Networks自翻译
最近看了一下Alexnet经典的那篇论文,自己看完英文版就忘记了,结合翻译软件,自己翻译了一点,有很多地方不准确,见谅,第一次上传文档,如有侵权,抱歉
ABCnet——高精度二值化网络(Binary Neural Network)
&quot;Towards Accurate Binary Convolutional Neural Network&quot;这篇文章提出了ABCnet,是一种表示精度较高的二值化网络结构(作为XNORnet的演进)。有关XNORnet及其优势可以参考论文:&quot;XNORNet: ImageNet Classification Using Binary Convolutional Neural Networks&quot;。 ...
Neural Network and Deep Learning高清中英文双版pdf
深度学习很好的入门书籍,高清版本pdf建议打印下来看,Neural Network and Deep Learning高清中英文双版
DEEP COMPRESSION(深度学习网络参数压缩)
DEEP COMPRESSION: DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED QUANTIZATION AND HUFFMAN CODING github 源码地址Introduce本篇论文是ICLR2016年的best paper,主要讲述关于深度学习网络参数的压缩工作。论文主要从下三点出发:
Dex-Net 2.0 论文翻译
一、绪论1)本文的主要贡献 1、制作dex-net2.0数据集,该数据集包括670万点云数据,又从1500个 3D模型通过GWS(抓手运行空间分析)得到手爪的运行规划 2、设计Grasp Quality Convolutional Neural Network (GQ-CNN),去得到一系列鲁棒性良好的抓取规划 3、设置一种抓取机制,可以对得到的鲁棒性良好的一组抓取规划进行 rank排序,
几篇CVPR关于multi-task的整理
几篇CVPR关于multi-task的论文笔记整理,包括 一、 多任务课程学习Curriculum Learning of Multiple Tasks 1 --------------^CVPR2015/CVPR2016v--------------- 5 二、 词典对分类器驱动卷积神经网络进行对象检测Dictionary Pair Classifier Driven Convolutional Neural Networks for Object Detection 5 三、 用于同时检测和分割的多尺度贴片聚合(MPA)* Multi-scale Patch Aggregation (MPA) for Simultaneous Detection and Segmentation ∗ 7 四、 通过多任务网络级联实现感知语义分割Instance-aware Semantic Segmentation via Multi-task Network Cascades 10 五、 十字绣网络多任务学习Cross-stitch Networks for Multi-task Learning 15 --------------^CVPR2016/CVPR2017v--------------- 23 六、 多任务相关粒子滤波器用于鲁棒物体跟踪Multi-Task Correlation Particle Filter for Robust Object Tracking 23 七、 多任务网络中的全自适应特征共享与人物属性分类中的应用Fully-Adaptive Feature Sharing in Multi-Task Networks With Applications in Person Attribute Classification 28 八、 超越triplet loss:一个深层次的四重网络,用于人员重新识别Beyond triplet loss: a <em>deep</em> quadruplet network for person re-identification 33 九、 弱监督级联卷积网络Weakly Supervised Cascaded Convolutional Networks 38 十、 从单一图像深度联合雨水检测和去除Deep Joint Rain Detection and Removal from a Single Image 43 十一、 什么可以帮助行人检测?What Can Help Pedestrian Detection? (将额外的特征聚合到基于CNN的行人检测框架) 46 十二、 人员搜索的联合检测和识别特征学习Joint Detection and Identification Feature Learning for Person Search 50 十三、 UberNet:使用多种数据集和有限内存训练用于低,中,高级视觉的通用卷积神经网络UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory 62 一共13篇,希望能够帮助到大家
Neural Networks and Deep Learning-中文版.pdf
Neural Networks and Deep Learning的中文版pdf。作者是深度学习领域的专家,内容通俗易懂而又详略得当,适合初学者入门,是一本深度学习入门的良好教材。
自然语言处理领域的相关干货整理
自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域。本文作者为NLP初学者整理了一份庞大的自然语言处理领域的概览。选取的参考文献与资料都侧重于最新的深度学习研究成果。这些资源能为想要深入钻研一个NLP任务的人们提供一个良好的开端。 论文自动评分 论文:Automatic Text Scoring Using Neural Networks...
机器学习加速器文献整理
William J Dally 团队 文献一SCNN An Accelerator for Compresse d-sparse Convolutional Neural Networks1 文献二EIE Efficient Inference Engine on Compressed Deep Neural Network2 寒武纪团队 文献一DianNao A Small-Footpr...
PyTorch超级资源列表(Github 2.4K星)包罗万象
PyTorch超级资源列表(Github 2.4K星)包罗万象。发现了一份极棒的 PyTorch 资源列表,该列表包含了与 PyTorch 相关的众多库、教程与示例、论文实现以及其他资源。实践派赶紧收藏,以备不时之需。由于是资源列表,仅翻译了一级标题,看官见谅。 项目地址:https://github.com/bharathgs/Awesome-pytorch-list
Neural Networks and Deep Learning-神经网络与深度学习
Michael Nielsen所著的Neural Networks and Deep Learning,非常适合用来入门神经网络和深度学习。原书为网页版书籍。这里提供PDF版本书籍。PDF版本制作者:欧拉。欧拉的博客:www.liuhao.me
【今日CV 视觉论文速览】05 Dec 2018
今日CS.CV计算机视觉论文速览 Wed, 5 Dec 2018 Totally 58 papers Daily Computer Vision Papers [1] Title: Learning 3D Human Dynamics from Video Authors:Angjoo Kanazawa, Jason Zhang, Panna Felsen, Jitendra Malik ...
视频行为识别论文阅读[4]
[9]A Key Volume Mining Deep Framework for Action Recognition[2016CVPR] 之前介绍的文章很多都是不同的融合技巧,这一篇文章是从输入入手,提取关键帧进行检测。
3D物体识别相关
  前言:      在物体识别或者是三维研究领域,我们知道RGB中包含了纹理、颜色和表观信息,而RGB信息对于光照等因素的鲁棒性不好,深度信息或者说是有关空间三维的信息来说,它能够对于光照等因素有较好的鲁棒性.因此三维物体相关研究也十分火热.它主要分为以下几个部分多视图图像、体积的、点云、多边形网格、本原来进行相关研究. 内容1: 此部分是根据另个人总结拿过来用的,总结的很好.链接地址[1...
Neural Networks and Deep Learning: A Textbook
This book covers both classical and modern models in <em>deep</em> learning. The primary focus is on the theory and algorithms of <em>deep</em> learning. The theory and algorithms of <em>neural</em> <em>networks</em> are particularly important for understanding important concepts, so that one can understand the important design concepts of <em>neural</em> architectures in different applications. Why do <em>neural</em> <em>networks</em> work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training <em>neural</em> <em>networks</em> so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how <em>neural</em> architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image <em>classification</em>, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of <em>neural</em> <em>networks</em>: Many traditional machine learning models can be understood as special cases of <em>neural</em> <em>networks</em>. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and <em>neural</em> <em>networks</em>. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of <em>neural</em> <em>networks</em>. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of <em>neural</em> <em>networks</em>: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) <em>networks</em> and restricted Boltzmann machines. Advanced topics in <em>neural</em> <em>networks</em>: Chapters 7 and 8 discuss recurrent <em>neural</em> <em>networks</em> and <em>convolutional</em> <em>neural</em> <em>networks</em>. Several advanced topics like <em>deep</em> reinforcement learning, <em>neural</em> Turing machines, Kohonen self-organizing maps, and generative adversarial <em>networks</em> are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
R-CNN matlab 代码: Regions with Convolutional Neural Network Features
R-CNN, matlab 代码: Regions with Convolutional Neural Network Features,卷积神经网络,此代码容易看懂,实现,适合学习 改进!
ECCV 2018 完整论文集 -- List & 下载链接
下文列表为ECCV2018官网得到了今年接收论文列表,共779篇: 持续更新<em>下载</em>链接 Oral: Convolutional Networks with Adaptive Computation Graphs Progressive Neural Architecture Search Diverse Image-to-Image Translation via Dise...
Large-Scale Video Classification with Convolutional Neural Networks
论文:Large-Scale Video Classification with Convolutional Neural Networks
Visualizing and Understanding Convolutional Networks论文原文加翻译
Visualizing and Understanding Convolutional Networks论文原文加翻译
Neural+Networks+and+Deep+Learning-神经网络与深度学习.pdf中文完整版
Neural+Networks+and+Deep+Learning-神经网络与深度学习.pdf中文完整版
从2017年顶会论文看 Attention Model
从2017年顶会论文看 Attention Model 转载来自:https://zhuanlan.zhihu.com/p/29918534?utm_source=wechat_session&utm_medium=social 前言:2017年KDD,Sigir以及Recsys会议被接收的论文早已公示,本文对这些会议中Attention Model相关的10篇论文进行了整理,
private shell 3.1 破解版下载
1.安装privateshell.exe 2.用pshell.exe覆盖安装目录下的同名文件。 相关下载链接:[url=//download.csdn.net/download/eastgrand/3793120?utm_source=bbsseo]//download.csdn.net/download/eastgrand/3793120?utm_source=bbsseo[/url]
html播放flv用到的flash下载
html播放flv用到的flashhtml播放flv用到的flashhtml播放flv用到的flashhtml播放flv用到的flashhtml播放flv用到的flashhtml播放flv用到的flashhtml播放flv用到的flashhtml播放flv用到的flash 相关下载链接:[url=//download.csdn.net/download/coolcloud520/1976541?utm_source=bbsseo]//download.csdn.net/download/coolcloud520/1976541?utm_source=bbsseo[/url]
PCom配置问题-解决反复出现打印的问题下载
为了避免出现打印设置对话框,用户需要对pcom配置文件中的配置信息进行修改。 相关下载链接:[url=//download.csdn.net/download/newneng/2229412?utm_source=bbsseo]//download.csdn.net/download/newneng/2229412?utm_source=bbsseo[/url]
文章热词 设计制作学习 机器学习教程 Objective-C培训 交互设计视频教程 颜色模型
相关热词 mysql关联查询两次本表 native底部 react extjs glyph 图标 大数据培训下载 java机器学习 下载
我们是很有底线的