Hands-On Computer Vision with Julia [EPUB]下载

PIPI_333 2018-10-20 09:13:53
Hands-On Computer Vision with Julia: Build complex applications with advanced Julia packages for image processing, neural networks, and Artificial Intelligence

Explore the various packages in Julia that support image processing and build neural networks for video processing and object tracking.

Key Features
Build a full-fledged image processing application using JuliaImages
Perform basic to advanced image and video stream processing with Julia's APIs
Understand and optimize various features of OpenCV with easy examples
Book Description
Hands-On Computer Vision with Julia is a thorough guide for developers who want to get started with building computer vision applications using Julia. Julia is well suited to image processing because it's easy to use and lets you write easy-to-compile and efficient machine code.

This book begins by introducing you to Julia's image processing libraries such as Images.jl and ImageCore.jl. You'll get to grips with analyzing and transforming images using JuliaImages; some of the techniques discussed include enhancing and adjusting images. As you make your way through the chapters, you'll learn how to classify images, cluster them, and apply neural networks to solve computer vision problems. In the concluding chapters, you will explore OpenCV applications to perform real-time computer vision analysis, for example, face detection and object tracking. You will also understand Julia's interaction with Tesseract to perform optical character recognition and build an application that brings together all the techniques we introduced previously to consolidate the concepts learned.

By end of the book, you will have understood how to utilize various Julia packages and a few open source libraries such as Tesseract and OpenCV to solve computer vision problems with ease.

What you will learn
Analyze image metadata and identify critical data using JuliaImages
Apply filters and improve image quality and color schemes
Extract 2D features for image comparison using JuliaFeatures
Cluster and classify images with KNN/SVM machine learning algorithms
Recognize text in an image using the Tesseract library
Use OpenCV to recognize specific objects or faces in images and videos
Build neural network and classify images with MXNet
Who This Book Is For
Hands-On Computer Vision with Julia is for Julia developers who are interested in learning how to perform image processing and want to explore the field of computer vision. Basic knowledge of Julia will help you understand the concepts more effectively.

Table of Contents
Chapter 1 Getting Started with JuliaImages
Chapter 2 Image Enhancement
Chapter 3 Image Adjustment
Chapter 4 Image Segmentation
Chapter 5 Image Representation
Chapter 6 Introduction to Neural Networks
Chapter 7 Using Pre-Trained Neural Networks
Chapter 8 Open CV
Chapter 9 Case Study: Book cover classification, analysis and recognition
相关下载链接://download.csdn.net/download/zs7203/10733161?utm_source=bbsseo
...全文
231 回复 打赏 收藏 转发到动态 举报
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
Hands-On Computer Vision with Julia is a thorough guide for developers who want to get started with building computer vision applications using Julia. Julia is well suited to image processing because it's easy to use and lets you write easy-to-compile and efficient machine code. This book begins by introducing you to Julia's image processing libraries such as Images.jl and ImageCore.jl. You'll get to grips with analyzing and transforming images using JuliaImages; some of the techniques discussed include enhancing and adjusting images. As you make your way through the chapters, you'll learn how to classify images, cluster them, and apply neural networks to solve computer vision problems. In the concluding chapters, you will explore OpenCV applications to perform real-time computer vision analysis, for example, face detection and object tracking. You will also understand Julia's interaction with Tesseract to perform optical character recognition and build an application that brings together all the techniques we introduced previously to consolidate the concepts learned. By end of the book, you will have understood how to utilize various Julia packages and a few open source libraries such as Tesseract and OpenCV to solve computer vision problems with ease. What you will learn Analyze image metadata and identify critical data using JuliaImages Apply filters and improve image quality and color schemes Extract 2D features for image comparison using JuliaFeatures Cluster and classify images with KNN/SVM machine learning algorithms Recognize text in an image using the Tesseract library Use OpenCV to recognize specific objects or faces in images and videos Build neural network and classify images with MXNet Who This Book Is For Hands-On Computer Vision with Julia is for Julia developers who are interested in learning how to perform image processing and want to explore the field of computer vision. Basic knowledge of Julia will help you understand the concepts more effectively.
Hands-On Computer Vision with Julia: Build complex applications with advanced Julia packages for image processing, neural networks, and Artificial Intelligence Explore the various packages in Julia that support image processing and build neural networks for video processing and object tracking. Key Features Build a full-fledged image processing application using JuliaImages Perform basic to advanced image and video stream processing with Julia's APIs Understand and optimize various features of OpenCV with easy examples Book Description Hands-On Computer Vision with Julia is a thorough guide for developers who want to get started with building computer vision applications using Julia. Julia is well suited to image processing because it's easy to use and lets you write easy-to-compile and efficient machine code. This book begins by introducing you to Julia's image processing libraries such as Images.jl and ImageCore.jl. You'll get to grips with analyzing and transforming images using JuliaImages; some of the techniques discussed include enhancing and adjusting images. As you make your way through the chapters, you'll learn how to classify images, cluster them, and apply neural networks to solve computer vision problems. In the concluding chapters, you will explore OpenCV applications to perform real-time computer vision analysis, for example, face detection and object tracking. You will also understand Julia's interaction with Tesseract to perform optical character recognition and build an application that brings together all the techniques we introduced previously to consolidate the concepts learned. By end of the book, you will have understood how to utilize various Julia packages and a few open source libraries such as Tesseract and OpenCV to solve computer vision problems with ease. What you will learn Analyze image metadata and identify critical data using JuliaImages Apply filters and improve image quality and color schemes Extract 2D features for image com
TensorFlow For Machine Intelligence: A hands-on introduction to learning algorithms by Sam Abrahams English | 23 July 2016 | ASIN: B01IZ43JV4 | 322 Pages | AZW3/MOBI/EPUB/PDF (conv) | 26.87 MB This book is a hands-on introduction to learning algorithms. It is for people who may know a little machine learning (or not) and who may have heard about TensorFlow, but found the documentation too daunting to approach. The learning curve is gentle and you always have some code to illustrate the math step-by-step. TensorFlow, a popular library for machine learning, embraces the innovation and community-engagement of open source, but has the support, guidance, and stability of a large corporation. Because of its multitude of strengths, TensorFlow is appropriate for individuals and businesses ranging from startups to companies as large as, well, Google. TensorFlow is currently being used for natural language processing, artificial intelligence, computer vision, and predictive analytics. TensorFlow, open sourced to the public by Google in November 2015, was made to be flexible, efficient, extensible, and portable. Computers of any shape and size can run it, from smartphones all the way up to huge computing clusters. This book starts with the absolute basics of TensorFlow. We found that most tutorials on TensorFlow start by attempting to teach both machine learning concepts and TensorFlow terminology at the same time. Here we first make sure you've had the opportunity to become comfortable with TensorFlow's mechanics and core API before covering machine learning concepts.

13,657

社区成员

发帖
与我相关
我的任务
社区描述
CSDN 下载资源悬赏专区
其他 技术论坛(原bbs)
社区管理员
  • 下载资源悬赏专区社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧