random.randint 和random.randrange有什么区别

MS-SQL Server > 基础类 [问题点数:50分]
等级
本版专家分:0
结帖率 0%
qq_44736050

等级:

python中 random.randint random.randrange区别

python中 random.randint random.randrange区别 在python中,通过导入random库,就能使用randint randrange 这两个方法来产生随机整数。那这两个方法的区别在于什么地方呢?让我们一起来看看! 区别: ...

python --- random.randint random.randrange区别

python中 random.randint random.randrange区别

python中随机整数生成random.randint和random.randrange区别

在python中,通过导入random库,就能使用randint randrange这两个方法来产生随机整数。那这两个方法的区别在于什么地方呢?让我们一起来看看! 区别1——例子: randint 示例: import random while True: rdt =...

python中randint什么意思_python中random.randint和random.randrange区别详解

在python中,通过导入random库,就能使用randint randrange这两个方法来产生随机整数。那这两个方法的区别在于什么地方呢?让我们一起来看看!区别:randint 产生的随机数区间是包含左右极限的,也就是说左右都是...

random.randint()与numpy.random.randint()的区别

random.randint() import random for n in range(5): for i in range(10): print(random.randint(1,5),end=' ') print() #运行结果 1 5 5 3 3 1 3 1 5 2 4 4 4 4 4 4 3 1 5 2 3 2 3 1 1 5 5 1 4 3 3 ...

Python学习之:random.randint random.randrange区别

文章目录区别区别1:randint 是左右闭区间 ,而randrange取值是左闭右开,即取不到最右边的值区别2:randint 只是随机产生某个区间内的一个值,但是randrange则可以按固定的间隔来产生随机数 区别 区别1:randint 是...

if random.randint(2):用法含义

在看代码时会出现 if random.randint(2):的用法,因为不太清楚什么意思,所以做了一个小试验。 from numpy import random x=random.randint(2) if x: print('aaa',x) else: print('bbb',x) random.randint(2)...

python:random.randint  numpy.random.uniform

1. random.randint(a,b): 随机生成一个a到b之间的一个整数(a<=n<=b) 用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,生成的随机数n:a<=n<=b 2. random.uniform(a,b):随机生成一个...

random.randint()、np.random,randint()

random.randint()[1,5]左闭右闭、np.random,randint()[1,5)左闭右开 Help on method randint in module random: randint(a, b) method of random.Random instance Return random integer in range [a, b], ...

python 2.7.5 random.randint(0,1) 错误

coin=random.randint(0,1) AttributeError: 'builtin_function_or_method' object has no attribute 'randint' import random import math from pylab import * def flipTrial(numFlips): heads,tails=0,0 ...

python中random.randint和random.randrange区别详解

主要介绍了python中random.randint和random.randrange区别详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

python从入门到放弃篇2(random.randint)实现猜数字小游戏

#引子,random函数(随机函数)是一个比较用处的函数,无论是做普通的编程娱乐,还是做随机算法,都是一个不错的选择,random里面一些常用的函数,例如random.randintrandom.randrangerandom.seek、random....

Python中的random.[random、uniform、randintrandrange、choice、shuffle、sample、RandomState、...

结构为: ...3、random.randint: 用于生成一个指定范围内的整数 **4、random.randrange:**从指定范围内,按指定基数递增的集合中 获取一个随机数。 5、random.choice: 从序列中获取一个随机元素。 6...

python--随机函数(random,uniform,randint,randrange,shuffle,sample) random()

python–随机函数(random,uniform,randint,randrange,shuffle,sample) random() random()方法:返回随机生成的一个实数,它在[0,1)范围内 运用random()方法的语法: import random #random()方法不能直接访问,...

randint()与randrange()参数以及开闭区间

random.randrange and random.randint mishandle large ints

<div><p>When a number larger than 2^31 - 1 is passed as the upper limit to random.randrange or random.randint, (with 0 as the lower limit, both implicitly and explicitly), those functions sometimes ...

[164]python3 randrange()和random()函数

描述 randrange() 方法返回指定递增基数集合中的一个随机数,基数缺省值为1。 语法 ...注意:randrange()是不能直接访问的,需要导入 random 模块,然后通过 random 静态对象调用该方法。 参...

2019美赛ABCDEF题题目(附C题数据)

2019美赛题目,完全是从官网下载,无翻译,可使用有道软件翻译浏览

2020美赛C题数据

2020美赛C题数据

python爬虫20个案例

讲诉python爬虫的20个案例 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

JAVA WEB开发实战

走进JSP、掌握JSP语法、JSP内置对象、Servlet技术、综合实验(一)——JSP使用Model2实现登录模块、EL表达式语言、JSTL核心标签库、综合实验(二)——结合JSTL与EL技术开发通讯录模块、JSP操作XML、JavaScript脚本语言、综合实验(三)——Ajax实现用户注册模块——可以轻松领会Java Web程序开发的精髓,提高开发技能。 快速提高自己的java web项目开发能力

Notepad++ 7.9.1

notepad++是一个免费的、开放源码的文本和源代码编辑器。notepad++是用c++编程语言编写的,它以减少不必要的功能和简化过程而自豪,从而创建了一个轻便高效的文本记事本程序。实际上,这意味着高速和易访问的、用户友好的界面。 notepad++已经存在了将近20年,没有任何迹象表明它的受欢迎程度会下降。记事本绝对证明了你不需要投资在昂贵的软件来编写代码从舒适的自己的家。自己尝试一下,你就会明白为什么Notepad能坚持这么久。

历年美赛题目及翻译

历年美国大学生数学建模竞赛题目及翻译.pdf,你值得拥有!

2020年美赛优秀论文集.zip

2020年美赛优秀论文集,论文为完整版,包含附录,可以上手实操,不过全为英文,推荐结合CopyTranslator阅读:https://copytranslator.github.io/

轻松学Linux系列课程

从0开始,Linux云计算系列课程,包含Linux初级运维、运维、初级架构师、云计算运维及开发..... a:0:{}

Visio_2016

visio_2016下载安装,亲测可用,不需要破解,而且无秘钥。简单方便实用

2020美赛O奖论文.zip

包含2020美赛所有题目的所有O奖论文,A题8篇,B题5篇,C题6篇,D题7篇,E题5篇,F题6篇。

2020年美赛C题O奖论文(含6篇)

2020年美赛C题O奖论文(含6篇)

奥特曼大全及关系明细.pdf

此文档有详细奥特曼大全及关系明细

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

相关热词 c#无法设置断点 c# cv emgu c# 服务启动调试 c# 实现屏幕录制 c# word 读取 c#类的无参构造方法 c#remove的用法 c# 自定义控件属性 c#正则生成工具 c#操作其他应用程序