社区
下载资源悬赏专区
帖子详情
model based vehicle detection and tracking下载
weixin_39821746
2019-05-14 10:30:16
model based vehicle detection and tracking
相关下载链接:
//download.csdn.net/download/jpthank/2213737?utm_source=bbsseo
...全文
60
回复
打赏
收藏
model based vehicle detection and tracking下载
model based vehicle detection and tracking 相关下载链接://download.csdn.net/download/jpthank/2213737?utm_source=bbsseo
复制链接
扫一扫
分享
转发到动态
举报
AI
作业
写回复
配置赞助广告
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
打赏红包
model
based
vehicle
detection
and
tracking
model
based
vehicle
detection
and
tracking
Vehicle
Detection
and
Tracking
in Car Video
Based
on Motion
Model
Vehicle
Detection
and
Tracking
in Car Video
Based
on Motion
Model
--This work aims at real-time in-car video analysis to detect and track
vehicle
s ahead for safety, auto-driving, and target tracing. This paper describes a comprehensive approach to localize target
vehicle
s in video under various environmental conditions. The extracted geometry features from the video are projected onto a 1D profile continuously and are tracked constantly. We rely on temporal information of features and their motion behaviors for
vehicle
identification, which compensates for the complexity in recognizing
vehicle
shapes, colors, and types. We
model
the motion in the field of view probabilistically according to the scene characteristic and
vehicle
motion
model
. The Hidden Markov
Model
is used for separating target
vehicle
s from background, and
tracking
them probabilistically. We have investigated videos of day and night on different types of roads, showing that our approach is robust and effective in dealing with changes in environment and illumination, and that real time processing becomes possible for
vehicle
borne cameras.
Robust_car_
tracking
_using_Kalman_Filtering.rar_image tracker_ka
We present a real-time
model
-
based
vision approach for detecting and
tracking
vehicle
s from a moving platform. It was developed in the context of the CMU Navlab project and is intended to provide the Navlabs with situational awareness in mixed trac.
Tracking
is done by combining a simple image processing technique with a 3D extended Kalman lter and a measurement equation that projects from the 3D
model
to image space. No ground plane assumption is made. The resulting system runs at frame rate or higher, and produces excellent estimates of road curvature, distance to and relative speed of a tracked
vehicle
. We have complemented the tracker with a novel machine learning
based
algorithm for car
detection
, the CANSS algorithm, which serves to initialize
tracking
Deep_Space_Optical_communications_2
Table of Contents Foreword..............................................................................................................xvii Preface...................................................................................................................xix Acknowledgments .............................................................................................. xxiii Contributors......................................................................................................... xxv Chapter 1: Introduction ................................................................................. 1 by James R. Lesh 1.1 Motivation for Increased Communications .................................... 1 1.2 History of JPL Optical Communications Activities..................... 5 1.3 Component/Subsystem Technologies............................................. 7 1.3.1 Laser Transmitters .......................................................................... 8 1.3.2 Spacecraft Telescopes................................................................... 10 1.3.3 Acquisition,
Tracking
, and Pointing............................................ 10 1.3.4 Detectors........................................................................................ 12 1.3.5 Filters ............................................................................................. 14 1.3.6 Error Correction Coding............................................................... 14 1.4 Flight Terminal Developments.......................................................... 16 1.4.1 Optical Transceiver Package (OPTRANSPAC) ......................... 16 1.4.2 Optical Communications Demonstrator (OCD) ......................... 17 1.4.3 Lasercom Test and Evaluation Station (LTES) .......................... 19 1.4.4 X2000 Flight Terminal ................................................................. 20 1.4.5 International Space Station Flight Terminal ............................... 22 1.5 Reception System and Network Studies....................................... 23 1.5.1 Ground Telescope Cost
Model
.................................................... 24 1.5.2 Deep Space Optical Reception Antenna (DSORA).................... 25 1.5.3 Deep Space Relay Satellite System (DSRSS) Studies ............... 26 1.5.4 Ground-
Based
Antenna Technology Study (GBATS) ............... 27 1.5.5 Advanced Communications Benefits Study (ACBS) ................. 28 1.5.6 Earth Orbit Optical Reception Terminal (EOORT) Study......... 29 1.5.7 EOORT Hybrid Study .................................................................. 30 1.5.8 Spherical Primary Ground Telescope.......................................... 30 1.5.9 Space-
Based
versus Ground-
Based
Reception Trades............... 31 1.6 Atmospheric Transmission ............................................................... 34 vi 1.7 Background Studies............................................................................. 36 1.8 Analysis Tools........................................................................................ 37 1.9 System-Level Studies .......................................................................... 38 1.9.1 Venus Radar Mapping (VRM) Mission Study ........................... 38 1.9.2 Synthetic Aperture Radar-C (SIR-C) Freeflyer .......................... 38 1.9.3 ER-2 to Ground Study .................................................................. 39 1.9.4 Thousand Astronomical Unit (TAU) Mission and Interstellar Mission Studies............................................................................. 40 1.10 System-Level Demonstrations ......................................................... 41 1.10.1 Galileo Optical Experiment (GOPEX) ........................................ 41 1.10.2 Compensated Earth–Moon–Earth Retro-Reflector Laser Link (CEMERLL) .............................................................. 43 1.10.3 Ground/Orbiter Lasercomm Demonstration (GOLD)................ 44 1.10.4 Ground–Ground Demonstrations................................................. 47 1.11 Other Telecommunication Functions............................................. 50 1.11.1 Opto-Metric Navigation ............................................................... 50 1.11.2 Light Science................................................................................. 51 1.12 The Future................................................................................................ 52 1.12.1 Optical Communications Telescope Facility (OCTL) ............... 52 1.12.2 Unmanned Arial
Vehicle
(UAV)–Ground Demonstration ........ 52 1.12.3 Adaptive Optics ............................................................................ 53 1.12.4 Optical Receiver and Dynamic Detector Array .......................... 55 1.12.5 Alternate Ground-Reception Systems ......................................... 56 1.13 Mars Laser Communication Demonstration................................ 57 1.14 Summary of Following Chapters ..................................................... 58 References ......................................................................................................... 60 Chapter 2: Link and System Design ....................................................... 83 by Chien-Chung Chen 2.1 Overview of Deep-Space Lasercom Link...................................... 85 2.2 Communications Link Design........................................................... 87 2.2.1 Link Equation and Receive Signal Power ................................... 89 2.2.2 Optical-Receiver Sensitivity ........................................................ 91 2.2.2.1 Photon
Detection
Sensitivity....................................... 95 2.2.2.2 Modulation Format ...................................................... 95 2.2.2.3 Background Noise Control.......................................... 96 2.2.3 Link Design Trades....................................................................... 98 2.2.3.1 Operating Wavelength................................................. 98 Table of Contents vii 2.2.3.2 Transmit Power and Size of Transmit and Receive Apertures........................................................ 99 2.2.3.3 Receiver Optical Bandwidth and Field of View versus Signal Throughput............................................ 99 2.2.3.4 Modulation and Coding............................................. 100 2.2.4 Communications Link Budget ................................................... 100 2.2.5 Link Availability Considerations............................................... 100 2.2.5.1 Short-Term Data Outages.......................................... 101 2.2.5.2 Weather-Induced Outages ......................................... 103 2.2.5.3 Other Long-Term Outages ........................................ 104 2.2.5.4 Critical-Mission-Phase Coverage ............................. 106 2.3 Beam Pointing and
Tracking
........................................................... 106 2.3.1 Downlink Beam Pointing ........................................................... 107 2.3.1.1 Jitter Isolation and Rejection..................................... 107 2.3.1.2 Precision Beam Pointing and Point Ahead .............. 108 2.3.2 Uplink Beam Pointing ................................................................ 110 2.3.3 Pointing Acquisition ................................................................... 111 2.4 Other Design Drivers and Considerations ................................. 113 2.4.1 System Mass and Power ............................................................. 113 2.4.2 Impact on Spacecraft Design ..................................................... 114 2.4.3 Laser Safety................................................................................. 115 2.5 Summary ................................................................................................ 115 References ....................................................................................................... 118 Chapter 3: The Atmospheric Channel .................................................. 121 by Abhijit Biswas and Sabino Piazzolla 3.1 Cloud Coverage Statistics................................................................ 123 3.1.1 National Climatic Data Center Data Set.................................... 124 3.1.2 Single-Site and Two-Site Diversity Statistics ........................... 126 3.1.3 Three-Site Diversity.................................................................... 130 3.1.4 NCDC Analysis Conclusion ...................................................... 135 3.1.5 Cloud Coverage Statistics by Satellite Data Observation ........ 137 3.2 Atmospheric Transmittance and Sky Radiance ....................... 140 3.2.1 Atmospheric Transmittance ....................................................... 140 3.2.2 Molecular Absorption and Scattering........................................ 141 3.2.3 Aerosol Absorption and Scattering............................................ 145 3.2.3.1 Atmospheric Attenuation Statistics .......................... 148 3.2.4 Sky Radiance............................................................................... 151 3.2.4.1 Sky Radiance Statistics.............................................. 156 3.2.5 Point Sources of Background Radiation ................................... 159 viii 3.3 Atmospheric Issues on Ground Telescope Site Selection for an Optical Deep Space Network..................................................... 169 3.3.1 Optical Deep Space Network..................................................... 169 3.3.2 Data Rate/BER of a Mission...................................................... 174 3.3.3 Telescope Site Location ............................................................. 174 3.3.4 Network Continuity and Peaks .................................................. 178 3.4 Laser Propagation Through the Turbulent Atmosphere ....... 184 3.4.1 Atmospheric Turbulence ............................................................ 184 3.4.2 Atmospheric “Seeing” Effects ................................................... 190 3.4.3 Optical Scintillation or Irradiance Fluctuations........................ 198 3.4.4 Atmospheric Turbulence Induced Angle of Arrival ................. 204 References ....................................................................................................... 207 Chapter 4: Optical Modulation and Coding........................................ 215 by Samuel J. Dolinar, Jon Hamkins, Bruce E. Moision, and Victor A. Vilnrotter 4.1 Introduction........................................................................................... 215 4.2 Statistical
Model
s for the Detected Optical Field ..................... 219 4.2.1 Quantum
Model
s of the Optical Field ....................................... 219 4.2.1.1 Quantization of the Electric Field............................. 220 4.2.1.2 The Coherent State Representation of a Single Field Mode...................................................... 222 4.2.1.3 Quantum Representation of Thermal Noise............. 223 4.2.1.4 Quantum Representation of Signal Plus Thermal Noise............................................................ 223 4.2.2 Statistical
Model
s for Direct
Detection
..................................... 224 4.2.2.1 The Poisson Channel
Model
for Ideal Photodetectors or Ideal PMTs................................... 225 4.2.2.2 The McIntyre–Conradi
Model
for APD Detectors..................................................................... 226 4.2.2.3 The Webb, McIntyre, and Conradi Approximation to the McIntyre–Conradi
Model
..... 228 4.2.2.4 The WMC Plus Gaussian Approximation................ 229 4.2.2.5 Additive White Gaussian Noise Approximation ..... 229 4.2.3 Summary of Statistical
Model
s .................................................. 231 4.3 Modulation Formats ........................................................................... 231 4.3.1 On–Off Keying (OOK)............................................................... 233 4.3.2 Pulse-Position Modulation (PPM) ............................................. 234 4.3.3 Differential PPM (DPPM).......................................................... 235 4.3.4 Overlapping PPM (OPPM) ........................................................ 236 Table of Contents ix 4.3.5 Wavelength Shift Keying (WSK) .............................................. 237 4.3.6 Combined PPM and WSK.......................................................... 237 4.4 Rate Limits Imposed by Constraints on Modulation............... 238 4.4.1 Shannon Capacity ....................................................................... 239 4.4.1.1 Characterizing Capacity: Fixed Duration Edges...... 240 4.4.1.2 Characterizing Capacity: Variable Duration Edges. 241 4.4.1.3 Characterizing Capacity: Probabilistic Characterization ......................................................... 241 4.4.1.4 Characterizing Capacity: Energy Efficiency............ 243 4.4.2 Constraints................................................................................... 243 4.4.2.1 Dead Time.................................................................. 244 4.4.2.2 Runlength ................................................................... 245 4.4.3 Modulation Codes....................................................................... 245 4.4.3.1 M-ary PPM with Deadtime ....................................... 246 4.4.3.2 M-ary DPPM with Deadtime .................................... 247 4.4.3.3 Synchronous Variable-Length Codes....................... 248 4.5 Performance of Uncoded Optical Modulations......................... 250 4.5.1 Direct
Detection
of OOK on the Poisson Channel ................... 251 4.5.2 Direct
Detection
of PPM............................................................ 252 4.5.2.1 Poisson Channel......................................................... 254 4.5.2.2 AWGN Channel......................................................... 258 4.5.3 Direct
Detection
of Combined PPM and WSK ....................... 260 4.5.4 Performance of Modulations Using Receivers
Based
on Quantum
Detection
Theory........................................................ 260 4.5.4.1 Receivers
Based
on Quantum
Detection
Theory ..... 260 4.5.4.2 Performance of Representative Modulations........... 264 4.6 Optical Channel Capacity................................................................. 268 4.6.1 Capacity of the PPM Channel: General Formulas.................... 269 4.6.2 Capacity of Soft-Decision PPM: Specific Channel
Model
s .... 270 4.6.2.1 Poisson Channel......................................................... 270 4.6.2.2 AWGN Channel......................................................... 271 4.6.3 Hard-Decision Versus Soft-Decision Capacity ........................ 272 4.6.4 Losses Due to Using PPM.......................................................... 273 4.6.5 Capacity of the Binary Channel with Quantum
Detection
....... 275 4.7 Channel Codes for Optical Modulations ..................................... 277 4.7.1 Reed–Solomon Codes ................................................................ 278 4.7.2 Turbo and Turbo-Like Codes for Optical Modulations ........... 279 4.7.2.1 Parallel Concatenated (Turbo) Codes....................... 279 4.7.2.2 Serially Concatenated Codes with Iterative Decoding .................................................................... 280 x 4.8 Performance of Coded Optical Modulations.............................. 281 4.8.1 Parameter Selection .................................................................... 281 4.8.2 Estimating Performance ............................................................. 284 4.8.2.1 Reed–Solomon Codes ............................................... 284 4.8.2.2 Iterative Codes ........................................................... 286 4.8.3 Achievable Data Rates Versus Average Signal Power ............ 286 References ....................................................................................................... 289 Chapter 5: Flight Transceiver.................................................................. 301 by Hamid Hemmati, Gerardo G. Ortiz, William T. Roberts, Malcolm W. Wright, and Shinhak Lee 5.1 Optomechanical Subsystem ........................................................... 301 by Hamid Hemmati 5.1.1 Introduction................................................................................. 301 5.1.2 Optical Beam Paths..................................................................... 302 5.1.3 Optical Design Requirements, Design Drivers, and Challenges ................................................................................... 304 5.1.4 Optical Design Drivers and Approaches ................................... 306 5.1.5 Transmit–Receive–Isolation ...................................................... 307 5.1.6 Stray-Light Control..................................................................... 309 5.1.6.1 Operation at Small Sun Angles................................. 309 5.1.6.2 Surface Cleanliness Requirements ........................... 310 5.1.7 Transmission, Alignment, and Wavefront Quality Budgets .... 310 5.1.8 Efficient Coupling of Lasers to Obscured Telescopes ............. 311 5.1.8.1 Axicon Optical Element ............................................ 311 5.1.8.2 Sub-Aperture Illumination ........................................ 311 5.1.8.3 Prism Beam Slicer ..................................................... 312 5.1.8.4 Beam Splitter/Combiner............................................ 313 5.1.9 Structure, Materials, and Structural Analysis ........................... 314 5.1.10 Use of Fiber Optics..................................................................... 316 5.1.11 Star-Tracker Optics for Acquisition and
Tracking
................... 316 5.1.12 Thermal Management................................................................. 317 5.1.13 Optical System Design Example ............................................... 317 5.1.13.1 Afocal Fore-Optics .................................................... 317 5.1.13.2 Receiver Channel ....................................................... 317 5.1.13.3 Stellar Reference Channel ......................................... 322 5.1.13.4 Align and Transmit Channels ................................... 324 5.1.13.5 Folded Layouts........................................................... 325 5.1.13.6 Tolerance Sensitivity Analysis ................................. 326 5.1.13.7 Thermal Soak Sensitivity Analysis........................... 328 5.1.13.8 Solid
Model
of System.............................................. 329 Table of Contents xi 5.2 Laser Transmitter ................................................................................ 331 by Hamid Hemmati 5.2.1 Introduction................................................................................. 331 5.2.2 Requirements and Challenges .................................................... 333 5.2.3 Candidate Laser Transmitter Sources........................................ 337 5.2.3.1 Pulsed Laser Transmitters ......................................... 338 5.2.3.2 Fiber-Waveguide Amplifiers .................................... 340 5.2.3.3 Bulk-Crystal Amplifiers ............................................ 342 5.2.3.4 Semiconductor Optical Amplifiers ........................... 345 5.2.4 Lasers for Coherent Communications ....................................... 346 5.2.5 Laser Modulators ........................................................................ 346 5.2.6 Efficiency .................................................................................... 347 5.2.7 Laser Timing Jitter Control ........................................................ 348 5.2.7.1 Jitter Control Options ................................................ 348 5.2.8 Redundancy................................................................................ 350 5.2.9 Thermal Management................................................................. 350 5.3 Deep-Space Acquisition,
Tracking
, and Pointing .................... 351 by Gerardo G. Ortiz and Shinhak Lee 5.3.1 Unique Challenges of Deep Space Optical Beam Pointing ..... 351 5.3.1.1 State-of-the-Art ATP Performance........................... 352 5.3.2 Link Overview and System Requirements................................ 353 5.3.2.1 Pointing Requirement ................................................ 353 5.3.2.2 Pointing-Error Budget Allocations ........................... 357 5.3.3 ATP System ................................................................................ 357 5.3.3.1 Pointing Knowledge Reference Sources .................. 357 5.3.3.2 Pointing System Architecture ................................... 360 5.3.3.3 Design Considerations............................................... 363 5.3.4 Cooperative Beacon (Ground Laser)
Tracking
......................... 373 5.3.5 Noncooperative Beacon
Tracking
............................................. 374 5.3.5.1 Earth Tracker–Visible Spectrum .............................. 375 5.3.5.2 Star Tracker ................................................................ 382 5.3.5.3 Earth Tracker—Long Wavelength Infrared Band ... 391 5.3.6 ATP Technology Demonstrations ............................................. 399 5.3.6.1 Reduced Complexity ATP Architecture................... 399 5.3.6.2 Centroiding Algorithms–Spot
Model
Method ......... 401 5.3.6.3 High Bandwidth, Windowing, CCD-
Based
Camera................................................... 407 5.3.6.4 Accelerometer-Assisted Beacon
Tracking
............... 412 5.4 Flight Qualification ............................................................................. 419 by Hamid Hemmati, William T. Roberts, and Malcolm W. Wright 5.4.1 Introduction................................................................................. 419 5.4.2 Approaches to Flight Qualification ........................................... 420 xii 5.4.3 Flight Qualification of Electronics and Opto-Electronic Subsystem.................................................................................... 422 5.4.3.1 MIL-PRF-19500 ........................................................ 422 5.4.3.2 MIL STD 750............................................................. 422 5.4.3.3 MIL STD 883............................................................. 422 5.4.3.4 Telcordia..................................................................... 423 5.4.3.5 NASA Electronics Parts and Packaging (NEPP)..... 423 5.4.4 Number of Test Units ................................................................. 423 5.4.5 Space Environments ................................................................... 425 5.4.5.1 Environmental Requirements.................................... 425 5.4.5.2 Ionizing Radiation...................................................... 426 5.4.5.3 Vibration Environment.............................................. 428 5.4.5.4 Mechanical, Thermal, and Pyro Shock Environment............................................................... 429 5.4.5.5 Thermal Gradients Environment .............................. 429 5.4.5.6 Depressurization Environment.................................. 430 5.4.5.7 Electric and Magnetic Field Environment ............... 430 5.4.5.8 Outgassing.................................................................. 431 5.4.6 Flight Qualification of Detectors ............................................... 431 5.4.6.1 Flight Qualification Procedures ................................ 432 5.4.6.2 Detector Radiation Testing........................................ 440 5.4.7 Flight Qualification of Laser Systems....................................... 443 5.4.7.1 Past Laser Systems Flown in Space.......................... 444 5.4.7.2 Design of Semiconductor Lasers for High Reliability Applications............................................. 447 5.4.7.3 Degradation Mechanisms.......................................... 448 5.4.7.4 Qualification Process for Lasers ............................... 449 5.4.8 Flight Qualification of Optics .................................................... 454 References ....................................................................................................... 454 Chapter 6: Earth Terminal Architectures by Keith E. Wilson, Abhijit Biswas, Andrew A. Gray, Victor A. Vilnrotter, Chi-Wung Lau, Mera Srinivasan, and William H. Farr.................................................................... 467 6.1 Introduction by Keith E. Wilson ................................................................................... 467 6.1.1 Single-Station Downlink Reception and Uplink Transmission ............................................................................... 469 by Keith E. Wilson 6.1.1.1 Introduction................................................................ 469 6.1.1.2 Deep-Space Optical Ground Receivers .................... 470 xiv 6.3.3.2 Slot and Symbol Synchronization and Decision Processing................................................................... 580 6.3.4 Discrete-Time Demodulator Variations .................................... 584 6.3.5 Discrete-Time Demodulator with Time-Varying Post-
Detection
Filter ................................................................... 585 6.3.6 Parallel Discrete-Time Demodulator Architectures ................. 589 6.3.7 Asynchronous Discrete-Time Processing ................................. 592 6.3.8 Parallel Discrete-Time Demodulator Architectures ................. 603 6.3.8.1 Simple Example Architecture ................................... 603 6.3.8.2 Performance with a Simple Optical Channel
Model
.......................................................................... 606 6.3.8.3 Evolved Parallel Architectures.................................. 608 6.3.9 Primary System
Model
s and Parameters................................... 616 6.3.10 Conclusion and Future Work ..................................................... 618 References ....................................................................................................... 626 Chapter 7: Future Prospects and Applications................................. 643 by Hamid Hemmati and Abhijit Biswas 7.1 Current and Upcoming Projects in the United States, Europe, and Japan.............................................................................. 643 7.1.1 LUCE (Laser Utilizing Communications Experiment)............ 643 7.1.2 Mars Laser-Communication Demonstrator (MLCD)............... 644 7.2 Airborne and Spaceborne Receivers ........................................... 646 7.2.1 Advantages of Airborne and Spaceborne Receivers ................ 646 7.2.2 Disadvantages of Airborne and Spaceborne Receivers............ 647 7.2.3 Airborne Terminals..................................................................... 648 7.2.3.1 Balloons...................................................................... 648 7.2.3.2 Airships. ..................................................................... 649 7.2.3.3 Airplanes. ................................................................... 649 7.2.4 Spaceborne Receiver Terminals ................................................ 650 7.2.5 Alternative Receiver Sites .......................................................... 650 7.3 Light Science ........................................................................................ 650 7.3.1 Light-Propagation Experiments ................................................. 651 7.3.2 Occultation Experiments to Probe Planetary Atmospheres, Rings, Ionospheres, Magnetic Fields, and the Interplanetary Medium........................................................................................ 651 7.3.2.1 Atmospheric Occultations ......................................... 652 7.3.2.2 Ring-Investigation Experiments ............................... 652 7.3.3 Enhanced Knowledge of Solar-System-Object Masses and Gravitational Fields, Sizes, Shapes, and Surface Features....... 652 xiv 6.3.3.2 Slot and Symbol Synchronization and Decision Processing................................................................... 580 6.3.4 Discrete-Time Demodulator Variations .................................... 584 6.3.5 Discrete-Time Demodulator with Time-Varying Post-
Detection
Filter................................................................... 585 6.3.6 Parallel Discrete-Time Demodulator Architectures ................. 589 6.3.7 Asynchronous Discrete-Time Processing ................................. 592 6.3.8 Parallel Discrete-Time Demodulator Architectures ................. 603 6.3.8.1 Simple Example Architecture ................................... 603 6.3.8.2 Performance with a Simple Optical Channel
Model
.......................................................................... 606 6.3.8.3 Evolved Parallel Architectures.................................. 608 6.3.9 Primary System
Model
s and Parameters................................... 616 6.3.10 Conclusion and Future Work ..................................................... 618 References ....................................................................................................... 626 Chapter 7: Future Prospects and Applications................................. 643 by Hamad Hemmati and Abhijit Biswas 7.1 Current and Upcoming Projects in the United States, Europe, and Japan.............................................................................. 643 7.1.1 LUCE (Laser Utilizing Communications Experiment)............ 643 7.1.2 Mars Laser-Communication Demonstrator (MLCD)............... 644 7.2 Airborne and Spaceborne Receivers ........................................... 646 7.2.1 Advantages of Airborne and Spaceborne Receivers ................ 646 7.2.2 Disadvantages of Airborne and Spaceborne Receivers............ 647 7.2.3 Airborne Terminals..................................................................... 648 7.2.3.1 Balloons...................................................................... 648 7.2.3.2 Airships. ..................................................................... 649 7.2.3.3 Airplanes. ................................................................... 649 7.2.4 Spaceborne Receiver Terminals ................................................ 650 7.2.5 Alternative Receiver Sites .......................................................... 650 7.3 Light Science ........................................................................................ 650 7.3.1 Light-Propagation Experiments ................................................. 651 7.3.2 Occultation Experiments to Probe Planetary Atmospheres, Rings, Ionospheres, Magnetic Fields, and the Interplanetary Medium........................................................................................ 651 7.3.2.1 Atmospheric Occultations ......................................... 652 7.3.2.2 Ring-Investigation Experiments ............................... 652 7.3.3 Enhanced Knowledge of Solar-System-Object Masses and Gravitational Fields, Sizes, Shapes, and Surface Features....... 652 Table of Contents xv 7.3.3.1 Improved Knowledge of Solar-System Body Properties.................................................................... 653 7.3.3.2 Optical Reference-Frame Ties. ................................. 653 7.3.4 Tests of the Fundamental Theories: General Relativity, Gravitational Waves, Unified Field Theories, Astrophysics, and Cosmology ........................................................................... 653 7.3.4.1 Tests of General Relativity and Unified Field Theories, Astrophysics, and Cosmology.................. 654 7.3.4.2 Effects of Charged Particles on Electromagnetic Wave Propagation, Including Test of l/f Hypothesis.................................................................. 654 7.3.5 Enhanced Solar-System Ephemerides ....................................... 654 7.3.5.1 Science Benefits of Remote Optical
Tracking
: Ephemeris Improvement ........................................... 655 7.3.6 Applications of Coherent Laser Communications Technology.................................................................................. 656 7.4 Conclusions .......................................................................................... 657 References .....................................
L-Shape Fitting-
Based
Vehicle
Pose Estimation and
Tracking
Using 3D-LiDAR论文翻译整理
基于车辆边角点的L形拟合:基本思想是我们先找到目标车辆最近的边角点,然后使用RANSAC拟合目标车辆的边缘。基于粒子滤波的L形跟踪:观测量是边角点到传感器的距离以及边角点到传感器的方位角,同时将状态向量分成两部分,线性部分和非线性部分。粒子滤波。基于车辆边角点的L形拟合,对视角和视点不敏感,较为稳定。
下载资源悬赏专区
13,655
社区成员
12,654,336
社区内容
发帖
与我相关
我的任务
下载资源悬赏专区
CSDN 下载资源悬赏专区
复制链接
扫一扫
分享
社区描述
CSDN 下载资源悬赏专区
其他
技术论坛(原bbs)
社区管理员
加入社区
获取链接或二维码
近7日
近30日
至今
加载中
查看更多榜单
社区公告
暂无公告
试试用AI创作助手写篇文章吧
+ 用AI写文章