社区
下载资源悬赏专区
帖子详情
Least-squares variance component estimation - Theory and GPS applications下载
weixin_39821746
2019-05-19 07:30:16
Least-squares variance component estimation - Theory and GPS applications
相关下载链接:
//download.csdn.net/download/pengwenzhi/2269175?utm_source=bbsseo
...全文
55
回复
打赏
收藏
Least-squares variance component estimation - Theory and GPS applications下载
Least-squares variance component estimation - Theory and GPS applications 相关下载链接://download.csdn.net/download/pengwenzhi/2269175?utm_source=bbsseo
复制链接
扫一扫
分享
转发到动态
举报
写回复
配置赞助广告
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
打赏红包
Least-
squa
res
variance
component
esti
mat
ion
-
Theory
and
GPS
applicat
ion
s
Least-
squa
res
variance
component
esti
mat
ion
-
Theory
and
GPS
applicat
ion
s
矩阵学习资源
Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Part One —
Mat
rices 1 Basic properties of vectors and
mat
rices 3 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3
Mat
rices: addit
ion
and multiplicat
ion
. . . . . . . . . . . . . . . 4 4 The transpose of a
mat
rix . . . . . . . . . . . . . . . . . . . . . 6 5
Squa
re
mat
rices . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 Linear forms and quadratic forms . . . . . . . . . . . . . . . . . 7 7 The rank of a
mat
rix . . . . . . . . . . . . . . . . . . . . . . . . 8 8 The inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 The determinant . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 The trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 Partit
ion
ed
mat
rices . . . . . . . . . . . . . . . . . . . . . . . . 11 12 Complex
mat
rices . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . 14 14 Schur’s decomposit
ion
theorem . . . . . . . . . . . . . . . . . . 17 15 The Jordan decomposit
ion
. . . . . . . . . . . . . . . . . . . . . 18 16 The singular-value decomposit
ion
. . . . . . . . . . . . . . . . . 19 17 Further results concerning eigenvalues . . . . . . . . . . . . . . 20 18 Positive (semi)de�nite
mat
rices . . . . . . . . . . . . . . . . . . 23 19 Three further results for positive de�nite
mat
rices . . . . . . . 25 20 A useful result . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Kronecker products, the vec operator and the Moore-Penrose inverse 31 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 The Kronecker product . . . . . . . . . . . . . . . . . . . . . . 31 3 Eigenvalues of a Kronecker product . . . . . . . . . . . . . . . . 33 4 The vec operator . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 The Moore-Penrose (MP) inverse . . . . . . . . . . . . . . . . . 36 6 Existence and uniqueness of the MP inverse . . . . . . . . . . . 37 v vi Contents 7 Some properties of the MP inverse . . . . . . . . . . . . . . . . 38 8 Further properties . . . . . . . . . . . . . . . . . . . . . . . . . 39 9 The solut
ion
of linear equat
ion
systems . . . . . . . . . . . . . 41 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Miscellaneous
mat
rix results 47 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 The adjoint
mat
rix . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Bordered determinants . . . . . . . . . . . . . . . . . . . . . . . 51 5 The
mat
rix equat
ion
AX = 0 . . . . . . . . . . . . . . . . . . . 51 6 The Hadamard product . . . . . . . . . . . . . . . . . . . . . . 53 7 The commutat
ion
mat
rix K mn . . . . . . . . . . . . . . . . . . 54 8 The duplicat
ion
mat
rix D n . . . . . . . . . . . . . . . . . . . . 56 9 Relat
ion
ship between D n+1 and D n , I . . . . . . . . . . . . . . 58 10 Relat
ion
ship between D n+1 and D n , II . . . . . . . . . . . . . . 60 11 Condit
ion
s for a quadratic form to be positive (negative) sub- ject to linear constraints . . . . . . . . . . . . . . . . . . . . . . 61 12 Necessary and su�cient condit
ion
s for r(A : B) = r(A) + r(B) 64 13 The bordered Gramian
mat
rix . . . . . . . . . . . . . . . . . . 66 14 The equat
ion
s X 1 A + X 2 B ′ = G 1 ,X 1 B = G 2 . . . . . . . . . . 68 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Part Two — Di�erentials: the
theory
4
Mat
he
mat
ical preliminaries 75 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2 Interior points and accumulat
ion
points . . . . . . . . . . . . . 75 3 Open and closed sets . . . . . . . . . . . . . . . . . . . . . . . . 76 4 The Bolzano-Weierstrass theorem . . . . . . . . . . . . . . . . . 79 5 Funct
ion
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 The limit of a funct
ion
. . . . . . . . . . . . . . . . . . . . . . . 81 7 Continuous funct
ion
s and compactness . . . . . . . . . . . . . . 82 8 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9 Convex and concave funct
ion
s . . . . . . . . . . . . . . . . . . . 85 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Di�erentials and di�erentiability 89 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3 Di�erentiability and linear approxi
mat
ion
. . . . . . . . . . . . 91 4 The di�erential of a vector funct
ion
. . . . . . . . . . . . . . . . 93 5 Uniqueness of the di�erential . . . . . . . . . . . . . . . . . . . 95 6 Continuity of di�erentiable funct
ion
s . . . . . . . . . . . . . . . 96 7 Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 97 Contents vii 8 The �rst identi�cat
ion
theorem . . . . . . . . . . . . . . . . . . 98 9 Existence of the di�erential, I . . . . . . . . . . . . . . . . . . . 99 10 Existence of the di�erential, II . . . . . . . . . . . . . . . . . . 101 11 Continuous di�erentiability . . . . . . . . . . . . . . . . . . . . 103 12 The chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 13 Cauchy in
variance
. . . . . . . . . . . . . . . . . . . . . . . . . 105 14 The mean-value theorem for real-valued funct
ion
s . . . . . . . . 106 15
Mat
rix funct
ion
s . . . . . . . . . . . . . . . . . . . . . . . . . . 107 16 Some remarks on notat
ion
. . . . . . . . . . . . . . . . . . . . . 109 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 The second di�erential 113 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 2 Second-order partial derivatives . . . . . . . . . . . . . . . . . . 113 3 The Hessian
mat
rix . . . . . . . . . . . . . . . . . . . . . . . . . 114 4 Twice di�erentiability and second-order approxi
mat
ion
, I . . . 115 5 De�nit
ion
of twice di�erentiability . . . . . . . . . . . . . . . . 116 6 The second di�erential . . . . . . . . . . . . . . . . . . . . . . . 118 7 (Column) symmetry of the Hessian
mat
rix . . . . . . . . . . . . 120 8 The second identi�cat
ion
theorem . . . . . . . . . . . . . . . . 122 9 Twice di�erentiability and second-order approxi
mat
ion
, II . . . 123 10 Chain rule for Hessian
mat
rices . . . . . . . . . . . . . . . . . . 125 11 The analogue for second di�erentials . . . . . . . . . . . . . . . 126 12 Taylor’s theorem for real-valued funct
ion
s . . . . . . . . . . . . 128 13 Higher-order di�erentials . . . . . . . . . . . . . . . . . . . . . . 129 14
Mat
rix funct
ion
s . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7 Static optimizat
ion
133 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 2 Unconstrained optimizat
ion
. . . . . . . . . . . . . . . . . . . . 134 3 The existence of absolute extrema . . . . . . . . . . . . . . . . 135 4 Necessary condit
ion
s for a local minimum . . . . . . . . . . . . 137 5 Su�cient condit
ion
s for a local minimum: �rst-derivative test . 138 6 Su�cient condit
ion
s for a local minimum: second-derivative test 140 7 Characterizat
ion
of di�erentiable convex funct
ion
s . . . . . . . 142 8 Characterizat
ion
of twice di�erentiable convex funct
ion
s . . . . 145 9 Su�cient condit
ion
s for an absolute minimum . . . . . . . . . . 147 10 Monotonic transfor
mat
ion
s . . . . . . . . . . . . . . . . . . . . 147 11 Optimizat
ion
subject to constraints . . . . . . . . . . . . . . . . 148 12 Necessary condit
ion
s for a local minimum under constraints . . 149 13 Su�cient condit
ion
s for a local minimum under constraints . . 154 14 Su�cient condit
ion
s for an absolute minimum under constraints158 15 A note on constraints in
mat
rix form . . . . . . . . . . . . . . . 159 16 Economic interpretat
ion
of Lagrange multipliers . . . . . . . . . 160 Appendix: the implicit funct
ion
theorem . . . . . . . . . . . . . . . . 162 viii Contents Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Part Three — Di�erentials: the practice 8 Some important di�erentials 167 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 2 Fundamental rules of di�erential calculus . . . . . . . . . . . . 167 3 The di�erential of a determinant . . . . . . . . . . . . . . . . . 169 4 The di�erential of an inverse . . . . . . . . . . . . . . . . . . . 171 5 Di�erential of the Moore-Penrose inverse . . . . . . . . . . . . . 172 6 The di�erential of the adjoint
mat
rix . . . . . . . . . . . . . . . 175 7 On di�erentiating eigenvalues and eigenvectors . . . . . . . . . 177 8 The di�erential of eigenvalues and eigenvectors: symmetric case 179 9 The di�erential of eigenvalues and eigenvectors: complex case . 182 10 Two alternative express
ion
s for dλ . . . . . . . . . . . . . . . . 185 11 Second di�erential of the eigenvalue funct
ion
. . . . . . . . . . 188 12 Multiple eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 189 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 9 First-order di�erentials and Jacobian
mat
rices 193 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 2 Classi�cat
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 3 Bad notat
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4 Good notat
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5 Identi�cat
ion
of Jacobian
mat
rices . . . . . . . . . . . . . . . . 198 6 The �rst identi�cat
ion
table . . . . . . . . . . . . . . . . . . . . 198 7 Partit
ion
ing of the derivative . . . . . . . . . . . . . . . . . . . 199 8 Scalar funct
ion
s of a vector . . . . . . . . . . . . . . . . . . . . 200 9 Scalar funct
ion
s of a
mat
rix, I: trace . . . . . . . . . . . . . . . 200 10 Scalar funct
ion
s of a
mat
rix, II: determinant . . . . . . . . . . . 202 11 Scalar funct
ion
s of a
mat
rix, III: eigenvalue . . . . . . . . . . . 204 12 Two examples of vector funct
ion
s . . . . . . . . . . . . . . . . . 204 13
Mat
rix funct
ion
s . . . . . . . . . . . . . . . . . . . . . . . . . . 205 14 Kronecker products . . . . . . . . . . . . . . . . . . . . . . . . . 208 15 Some other problems . . . . . . . . . . . . . . . . . . . . . . . . 210 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 10 Second-order di�erentials and Hessian
mat
rices 213 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 2 The Hessian
mat
rix of a
mat
rix funct
ion
. . . . . . . . . . . . . 213 3 Identi�cat
ion
of Hessian
mat
rices . . . . . . . . . . . . . . . . . 214 4 The second identi�cat
ion
table . . . . . . . . . . . . . . . . . . 215 5 An explicit formula for the Hessian
mat
rix . . . . . . . . . . . . 217 6 Scalar funct
ion
s . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 7 Vector funct
ion
s . . . . . . . . . . . . . . . . . . . . . . . . . . 219 8
Mat
rix funct
ion
s, I . . . . . . . . . . . . . . . . . . . . . . . . . 220 Contents ix 9
Mat
rix funct
ion
s, II . . . . . . . . . . . . . . . . . . . . . . . . 221 Part Four — Inequalities 11 Inequalities 225 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2 The Cauchy-Schwarz inequality . . . . . . . . . . . . . . . . . . 225 3
Mat
rix analogues of the Cauchy-Schwarz inequality . . . . . . . 227 4 The theorem of the arithmetic and geometric means . . . . . . 228 5 The Rayleigh quotient . . . . . . . . . . . . . . . . . . . . . . . 230 6 Concavity of λ 1 , convexity of λ n . . . . . . . . . . . . . . . . . 231 7 Variat
ion
al descript
ion
of eigenvalues . . . . . . . . . . . . . . . 232 8 Fischer’s min-max theorem . . . . . . . . . . . . . . . . . . . . 233 9 Monotonicity of the eigenvalues . . . . . . . . . . . . . . . . . . 235 10 The Poincar´ e separat
ion
theorem . . . . . . . . . . . . . . . . . 236 11 Two corollaries of Poincar´ e’s theorem . . . . . . . . . . . . . . 237 12 Further consequences of the Poincar´ e theorem . . . . . . . . . . 238 13 Multiplicative vers
ion
. . . . . . . . . . . . . . . . . . . . . . . 239 14 The maximum of a bilinear form . . . . . . . . . . . . . . . . . 241 15 Hadamard’s inequality . . . . . . . . . . . . . . . . . . . . . . . 242 16 An interlude: Kara
mat
a’s inequality . . . . . . . . . . . . . . . 243 17 Kara
mat
a’s inequality applied to eigenvalues . . . . . . . . . . 245 18 An inequality concerning positive semide�nite
mat
rices . . . . . 245 19 A representat
ion
theorem for ( � a p i ) 1/p . . . . . . . . . . . . . 246 20 A representat
ion
theorem for (trA p ) 1/p . . . . . . . . . . . . . . 248 21 Hölder’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . 249 22 Concavity of log|A| . . . . . . . . . . . . . . . . . . . . . . . . . 250 23 Minkowski’s inequality . . . . . . . . . . . . . . . . . . . . . . . 252 24 Quasilinear representat
ion
of |A| 1/n . . . . . . . . . . . . . . . . 254 25 Minkowski’s determinant theorem . . . . . . . . . . . . . . . . . 256 26 Weighted means of order p . . . . . . . . . . . . . . . . . . . . . 256 27 Schlömilch’s inequality . . . . . . . . . . . . . . . . . . . . . . . 259 28 Curvature properties of M p (x,a) . . . . . . . . . . . . . . . . . 260 29 Least
squa
res . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 30 Generalized least
squa
res . . . . . . . . . . . . . . . . . . . . . 263 31 Restricted least
squa
res . . . . . . . . . . . . . . . . . . . . . . 263 32 Restricted least
squa
res:
mat
rix vers
ion
. . . . . . . . . . . . . 265 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Part Five — The linear model 12 Statistical preliminaries 275 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 2 The cumulative distribut
ion
funct
ion
. . . . . . . . . . . . . . . 275 3 The joint density funct
ion
. . . . . . . . . . . . . . . . . . . . . 276 4 Expectat
ion
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 x Contents 5
Variance
and co
variance
. . . . . . . . . . . . . . . . . . . . . . 277 6 Independence of two random variables . . . . . . . . . . . . . . 279 7 Independence of n random variables . . . . . . . . . . . . . . . 281 8 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 9 The one-dimens
ion
al normal distribut
ion
. . . . . . . . . . . . . 281 10 The multivariate normal distribut
ion
. . . . . . . . . . . . . . . 282 11
Esti
mat
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 13 The linear regress
ion
model 287 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 2 A�ne minimum-trace unbiased
esti
mat
ion
. . . . . . . . . . . . 288 3 The Gauss-Markov theorem . . . . . . . . . . . . . . . . . . . . 289 4 The method of least
squa
res . . . . . . . . . . . . . . . . . . . . 292 5 Aitken’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 293 6 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 295 7
Esti
mable funct
ion
s . . . . . . . . . . . . . . . . . . . . . . . . 297 8 Linear constraints: the case M(R ′ ) ⊂ M(X ′ ) . . . . . . . . . . 299 9 Linear constraints: the general case . . . . . . . . . . . . . . . . 302 10 Linear constraints: the case M(R ′ ) ∩ M(X ′ ) = {0} . . . . . . . 305 11 A singular
variance
mat
rix: the case M(X) ⊂ M(V ) . . . . . . 306 12 A singular
variance
mat
rix: the case r(X ′ V + X) = r(X) . . . . 308 13 A singular
variance
mat
rix: the general case, I . . . . . . . . . . 309 14 Explicit and implicit linear constraints . . . . . . . . . . . . . . 310 15 The general linear model, I . . . . . . . . . . . . . . . . . . . . 313 16 A singular
variance
mat
rix: the general case, II . . . . . . . . . 314 17 The general linear model, II . . . . . . . . . . . . . . . . . . . . 317 18 Generalized least
squa
res . . . . . . . . . . . . . . . . . . . . . 318 19 Restricted least
squa
res . . . . . . . . . . . . . . . . . . . . . . 319 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 321 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 14 Further topics in the linear model 323 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 2 Best quadratic unbiased
esti
mat
ion
of σ 2 . . . . . . . . . . . . 323 3 The best quadratic and positive unbiased
esti
mat
or of σ 2 . . . 324 4 The best quadratic unbiased
esti
mat
or of σ 2 . . . . . . . . . . . 326 5 Best quadratic invariant
esti
mat
ion
of σ 2 . . . . . . . . . . . . 329 6 The best quadratic and positive invariant
esti
mat
or of σ 2 . . . 330 7 The best quadratic invariant
esti
mat
or of σ 2 . . . . . . . . . . . 331 8 Best quadratic unbiased
esti
mat
ion
: multivariate normal case . 332 9 Bounds for the bias of the least
squa
res
esti
mat
or of σ 2 , I . . . 335 10 Bounds for the bias of the least
squa
res
esti
mat
or of σ 2 , II . . . 336 11 The predict
ion
of disturbances . . . . . . . . . . . . . . . . . . 338 12 Best linear unbiased predictors with scalar
variance
mat
rix . . 339 13 Best linear unbiased predictors with �xed
variance
mat
rix, I . . 341 Contents xi 14 Best linear unbiased predictors with �xed
variance
mat
rix, II . 344 15 Local sensitivity of the posterior mean . . . . . . . . . . . . . . 345 16 Local sensitivity of the posterior precis
ion
. . . . . . . . . . . . 347 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Part Six —
Applicat
ion
s to maximum likelihood
esti
mat
ion
15 Maximum likelihood
esti
mat
ion
351 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 2 The method of maximum likelihood (ML) . . . . . . . . . . . . 351 3 ML
esti
mat
ion
of the multivariate normal distribut
ion
. . . . . 352 4 Symmetry: implicit versus explicit treatment . . . . . . . . . . 354 5 The treatment of positive de�niteness . . . . . . . . . . . . . . 355 6 The infor
mat
ion
mat
rix . . . . . . . . . . . . . . . . . . . . . . 356 7 ML
esti
mat
ion
of the multivariate normal distribut
ion
: distinct means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 8 The multivariate linear regress
ion
model . . . . . . . . . . . . . 358 9 The errors-in-variables model . . . . . . . . . . . . . . . . . . . 361 10 The non-linear regress
ion
model with normal errors . . . . . . . 364 11 Special case: funct
ion
al independence of mean- and
variance
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 12 Generalizat
ion
of Theorem 6 . . . . . . . . . . . . . . . . . . . 366 Miscellaneous exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 368 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 16 Simultaneous equat
ion
s 371 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 2 The simultaneous equat
ion
s model . . . . . . . . . . . . . . . . 371 3 The identi�cat
ion
problem . . . . . . . . . . . . . . . . . . . . . 373 4 Identi�cat
ion
with linear constraints on B and Γ only . . . . . 375 5 Identi�cat
ion
with linear constraints on B,Γ and Σ . . . . . . . 375 6 Non-linear constraints . . . . . . . . . . . . . . . . . . . . . . . 377 7 Full-infor
mat
ion
maximum likelihood (FIML): the infor
mat
ion
mat
rix (general case) . . . . . . . . . . . . . . . . . . . . . . . . 378 8 Full-infor
mat
ion
maximum likelihood (FIML): the asymptotic
variance
mat
rix (special case) . . . . . . . . . . . . . . . . . . . 380 9 Limited-infor
mat
ion
maximum likelihood (LIML): the �rst-order condit
ion
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 10 Limited-infor
mat
ion
maximum likelihood (LIML): the informa- t
ion
mat
rix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 11 Limited-infor
mat
ion
maximum likelihood (LIML): the asymp- totic
variance
mat
rix . . . . . . . . . . . . . . . . . . . . . . . . 388 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 xii Contents 17 Topics in psychometrics 395 1 Introduct
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 2 Populat
ion
principal
component
s . . . . . . . . . . . . . . . . . 396 3 Optimality of principal
component
s . . . . . . . . . . . . . . . . 397 4 A related result . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 5 Sample principal
component
s . . . . . . . . . . . . . . . . . . . 399 6 Optimality of sample principal
component
s . . . . . . . . . . . 401 7 Sample analogue of Theorem 3 . . . . . . . . . . . . . . . . . . 401 8 One-mode
component
analysis . . . . . . . . . . . . . . . . . . 401 9 One-mode
component
analysis and sample principal compo- nents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 10 Two-mode
component
analysis . . . . . . . . . . . . . . . . . . 405 11 Multimode
component
analysis . . . . . . . . . . . . . . . . . . 406 12 Factor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 13 A zigzag routine . . . . . . . . . . . . . . . . . . . . . . . . . . 413 14 A Newton-Raphson routine . . . . . . . . . . . . . . . . . . . . 415 15 Kaiser’s varimax method . . . . . . . . . . . . . . . . . . . . . . 418 16 Canonical correlat
ion
s and variates in the populat
ion
. . . . . . 421 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 Index of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 Subject index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
深度学习神经网络(英文版PDF教程)
书的目录 Contents Website viii Acknowledgments ix Notat
ion
xiii 1 Introduct
ion
1 1.1 Who Should Read This Book? . . . . . . . . . . . . . . . . . . . . 8 1.2 Historical Trends in Deep Learning . . . . . . . . . . . . . . . . . 12 I Applied
Mat
h and Machine Learning Basics 27 2 Linear Algebra 29 2.1 Scalars, Vectors,
Mat
rices and Tensors . . . . . . . . . . . . . . . 29 2.2 Multiplying
Mat
rices and Vectors . . . . . . . . . . . . . . . . . . 32 2.3 Identity and Inverse
Mat
rices . . . . . . . . . . . . . . . . . . . . 34 2.4 Linear Dependence and Span . . . . . . . . . . . . . . . . . . . . 35 2.5 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 Special Kinds of
Mat
rices and Vectors . . . . . . . . . . . . . . . 38 2.7 Eigendecomposit
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.8 Singular Value Decomposit
ion
. . . . . . . . . . . . . . . . . . . . 42 2.9 The Moore-Penrose Pseudoinverse . . . . . . . . . . . . . . . . . . 43 2.10 The Trace Operator . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.11 The Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.12 Example: Principal
Component
s Analysis . . . . . . . . . . . . . 45 3 Probability and Infor
mat
ion
Theory
51 3.1 Why Probability? . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 i CONTENTS 3.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Probability Distribut
ion
s . . . . . . . . . . . . . . . . . . . . . . . 54 3.4 Marginal Probability . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5 Condit
ion
al Probability . . . . . . . . . . . . . . . . . . . . . . . 57 3.6 The Chain Rule of Condit
ion
al Probabilities . . . . . . . . . . . . 57 3.7 Independence and Condit
ion
al Independence . . . . . . . . . . . . 58 3.8 Expectat
ion
,
Variance
and Co
variance
. . . . . . . . . . . . . . . 58 3.9 Common Probability Distribut
ion
s . . . . . . . . . . . . . . . . . 60 3.10 Useful Properties of Common Funct
ion
s . . . . . . . . . . . . . . 65 3.11 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.12 Technical Details of Continuous Variables . . . . . . . . . . . . . 69 3.13 Infor
mat
ion
Theory
. . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.14 Structured Probabilistic Models . . . . . . . . . . . . . . . . . . . 73 4 Numerical Computat
ion
78 4.1 Overflow and Underflow . . . . . . . . . . . . . . . . . . . . . . . 78 4.2 Poor Condit
ion
ing . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 Gradient-Based Optimizat
ion
. . . . . . . . . . . . . . . . . . . . 80 4.4 Constrained Optimizat
ion
. . . . . . . . . . . . . . . . . . . . . . 91 4.5 Example: Linear Least
Squa
res . . . . . . . . . . . . . . . . . . . 94 5 Machine Learning Basics 96 5.1 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Capacity, Overfitting and Underfitting . . . . . . . . . . . . . . . 108 5.3 Hyperparameters and Validat
ion
Sets . . . . . . . . . . . . . . . . 118 5.4
Esti
mat
ors, Bias and
Variance
. . . . . . . . . . . . . . . . . . . . 120 5.5 Maximum Likelihood
Esti
mat
ion
. . . . . . . . . . . . . . . . . . 129 5.6 Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.7 Supervised Learning Algorithms . . . . . . . . . . . . . . . . . . . 137 5.8 Unsupervised Learning Algorithms . . . . . . . . . . . . . . . . . 142 5.9 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . 149 5.10 Building a Machine Learning Algorithm . . . . . . . . . . . . . . 151 5.11 Challenges Motivating Deep Learning . . . . . . . . . . . . . . . . 152 II Deep Networks: Modern Practices 162 6 Deep Feedforward Networks 164 6.1 Example: Learning XOR . . . . . . . . . . . . . . . . . . . . . . . 167 6.2 Gradient-Based Learning . . . . . . . . . . . . . . . . . . . . . . . 172 ii CONTENTS 6.3 Hidden Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.4 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.5 Back-Propagat
ion
and Other Differentiat
ion
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.6 Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 7 Regularizat
ion
for Deep Learning 224 7.1 Parameter Norm Penalties . . . . . . . . . . . . . . . . . . . . . . 226 7.2 Norm Penalties as Constrained Optimizat
ion
. . . . . . . . . . . . 233 7.3 Regularizat
ion
and Under-Constrained Problems . . . . . . . . . 235 7.4 Dataset Augmentat
ion
. . . . . . . . . . . . . . . . . . . . . . . . 236 7.5 Noise Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 7.6 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . 240 7.7 Multitask Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 241 7.8 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 7.9 Parameter Tying and Parameter Sharing . . . . . . . . . . . . . . 249 7.10 Sparse Representat
ion
s . . . . . . . . . . . . . . . . . . . . . . . . 251 7.11 Bagging and Other Ensemble Methods . . . . . . . . . . . . . . . 253 7.12 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 7.13 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . 265 7.14 Tangent Distance, Tangent Prop and Manifold Tangent Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 8 Optimizat
ion
for Training Deep Models 271 8.1 How Learning Differs from Pure Optimizat
ion
. . . . . . . . . . . 272 8.2 Challenges in Neural Network Optimizat
ion
. . . . . . . . . . . . 279 8.3 Basic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.4 Parameter Initializat
ion
Strategies . . . . . . . . . . . . . . . . . 296 8.5 Algorithms with Adaptive Learning Rates . . . . . . . . . . . . . 302 8.6 Approxi
mat
e Second-Order Methods . . . . . . . . . . . . . . . . 307 8.7 Optimizat
ion
Strategies and Meta-Algorithms . . . . . . . . . . . 313 9 Convolut
ion
al Networks 326 9.1 The Convolut
ion
Operat
ion
. . . . . . . . . . . . . . . . . . . . . 327 9.2 Motivat
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 9.3 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 9.4 Convolut
ion
and Pooling as an Infinitely Strong Prior . . . . . . . 339 9.5 Variants of the Basic Convolut
ion
Funct
ion
. . . . . . . . . . . . 342 9.6 Structured Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 352 9.7 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 iii CONTENTS 9.8 Efficient Convolut
ion
Algorithms . . . . . . . . . . . . . . . . . . 356 9.9 Random or Unsupervised Features . . . . . . . . . . . . . . . . . 356 9.10 The Neuroscientific Basis for Convolut
ion
al Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 9.11 Convolut
ion
al Networks and the History of Deep Learning . . . . 365 10 Sequence Modeling: Recurrent and Recursive Nets 367 10.1 Unfolding Computat
ion
al Graphs . . . . . . . . . . . . . . . . . . 369 10.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . 372 10.3 Bidirect
ion
al RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . 388 10.4 Encoder-Decoder Sequence-to-Sequence Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 10.5 Deep Recurrent Networks . . . . . . . . . . . . . . . . . . . . . . 392 10.6 Recursive Neural Networks . . . . . . . . . . . . . . . . . . . . . . 394 10.7 The Challenge of Long-Term Dependencies . . . . . . . . . . . . . 396 10.8 Echo State Networks . . . . . . . . . . . . . . . . . . . . . . . . . 399 10.9 Leaky Units and Other Strategies for Multiple Time Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 10.10 The Long Short-Term Memory and Other Gated RNNs . . . . . . 404 10.11 Optimizat
ion
for Long-Term Dependencies . . . . . . . . . . . . . 408 10.12 Explicit Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 11 Practical Methodology 416 11.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 417 11.2 Default Baseline Models . . . . . . . . . . . . . . . . . . . . . . . 420 11.3 Determining Whether to Gather More Data . . . . . . . . . . . . 421 11.4 Selecting Hyperparameters . . . . . . . . . . . . . . . . . . . . . . 422 11.5 Debugging Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 431 11.6 Example: Multi-Digit Number Recognit
ion
. . . . . . . . . . . . . 435 12
Applicat
ion
s 438 12.1 Large-Scale Deep Learning . . . . . . . . . . . . . . . . . . . . . . 438 12.2 Computer Vis
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . 447 12.3 Speech Recognit
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . 453 12.4 Natural Language Processing . . . . . . . . . . . . . . . . . . . . 456 12.5 Other
Applicat
ion
s . . . . . . . . . . . . . . . . . . . . . . . . . . 473 iv CONTENTS III Deep Learning Research 482 13 Linear Factor Models 485 13.1 Probabilistic PCA and Factor Analysis . . . . . . . . . . . . . . . 486 13.2 Independent
Component
Analysis (ICA) . . . . . . . . . . . . . . 487 13.3 Slow Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . 489 13.4 Sparse Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 13.5 Manifold Interpretat
ion
of PCA . . . . . . . . . . . . . . . . . . . 496 14 Autoencoders 499 14.1 Undercomplete Autoencoders . . . . . . . . . . . . . . . . . . . . 500 14.2 Regularized Autoencoders . . . . . . . . . . . . . . . . . . . . . . 501 14.3 Representat
ion
al Power, Layer Size and Depth . . . . . . . . . . . 505 14.4 Stochastic Encoders and Decoders . . . . . . . . . . . . . . . . . . 506 14.5 Denoising Autoencoders . . . . . . . . . . . . . . . . . . . . . . . 507 14.6 Learning Manifolds with Autoencoders . . . . . . . . . . . . . . . 513 14.7 Contractive Autoencoders . . . . . . . . . . . . . . . . . . . . . . 518 14.8 Predictive Sparse Decomposit
ion
. . . . . . . . . . . . . . . . . . 521 14.9
Applicat
ion
s of Autoencoders . . . . . . . . . . . . . . . . . . . . 522 15 Representat
ion
Learning 524 15.1 Greedy Layer-Wise Unsupervised Pretraining . . . . . . . . . . . 526 15.2 Transfer Learning and Domain Adaptat
ion
. . . . . . . . . . . . . 534 15.3 Semi-Supervised Disentangling of Causal Factors . . . . . . . . . 539 15.4 Distributed Representat
ion
. . . . . . . . . . . . . . . . . . . . . . 544 15.5 Exponential Gains from Depth . . . . . . . . . . . . . . . . . . . 550 15.6 Providing Clues to Discover Underlying Causes . . . . . . . . . . 552 16 Structured Probabilistic Models for Deep Learning 555 16.1 The Challenge of Unstructured Modeling . . . . . . . . . . . . . . 556 16.2 Using Graphs to Describe Model Structure . . . . . . . . . . . . . 560 16.3 Sampling from Graphical Models . . . . . . . . . . . . . . . . . . 577 16.4 Advantages of Structured Modeling . . . . . . . . . . . . . . . . . 579 16.5 Learning about Dependencies . . . . . . . . . . . . . . . . . . . . 579 16.6 Inference and Approxi
mat
e Inference . . . . . . . . . . . . . . . . 580 16.7 The Deep Learning Approach to Structured Probabilistic Models . . . . . . . . . . . . . . . . . . . . . . . . . 581 17 Monte Carlo Methods 587 17.1 Sampling and Monte Carlo Methods . . . . . . . . . . . . . . . . 587 v CONTENTS 17.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 589 17.3 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . . . 592 17.4 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 17.5 The Challenge of Mixing between Separated Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 18 Confronting the Partit
ion
Funct
ion
603 18.1 The Log-Likelihood Gradient . . . . . . . . . . . . . . . . . . . . 604 18.2 Stochastic Maximum Likelihood and Contrastive Divergence . . . 605 18.3 Pseudolikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 18.4 Score
Mat
ching and Ratio
Mat
ching . . . . . . . . . . . . . . . . 615 18.5 Denoising Score
Mat
ching . . . . . . . . . . . . . . . . . . . . . . 617 18.6 Noise-Contrastive
Esti
mat
ion
. . . . . . . . . . . . . . . . . . . . 618 18.7
Esti
mat
ing the Partit
ion
Funct
ion
. . . . . . . . . . . . . . . . . . 621 19 Approxi
mat
e Inference 629 19.1 Inference as Optimizat
ion
. . . . . . . . . . . . . . . . . . . . . . 631 19.2 Expectat
ion
Maximizat
ion
. . . . . . . . . . . . . . . . . . . . . . 632 19.3 MAP Inference and Sparse Coding . . . . . . . . . . . . . . . . . 633 19.4 Variat
ion
al Inference and Learning . . . . . . . . . . . . . . . . . 636 19.5 Learned Approxi
mat
e Inference . . . . . . . . . . . . . . . . . . . 648 20 Deep Generative Models 651 20.1 Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . . . . 651 20.2 Restricted Boltzmann Machines . . . . . . . . . . . . . . . . . . . 653 20.3 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . . . . . 657 20.4 Deep Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . 660 20.5 Boltzmann Machines for Real-Valued Data . . . . . . . . . . . . . 673 20.6 Convolut
ion
al Boltzmann Machines . . . . . . . . . . . . . . . . . 679 20.7 Boltzmann Machines for Structured or Sequential Outputs . . . . 681 20.8 Other Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . 683 20.9 Back-Propagat
ion
through Random Operat
ion
s . . . . . . . . . . 684 20.10 Directed Generative Nets . . . . . . . . . . . . . . . . . . . . . . . 688 20.11 Drawing Samples from Autoencoders . . . . . . . . . . . . . . . . 707 20.12 Generative Stochastic Networks . . . . . . . . . . . . . . . . . . . 710 20.13 Other Generat
ion
Schemes . . . . . . . . . . . . . . . . . . . . . . 712 20.14 Evaluating Generative Models . . . . . . . . . . . . . . . . . . . . 713 20.15 Conclus
ion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716 Bibliography 717 vi CONTENTS Index 774
目录:
Mat
rix Differential Calculus with
Applicat
ion
s in Statistics and Econometrics,3rd_[Magnus2019]...
目录:
Mat
rix Differential Calculus with
Applicat
ion
s in Statistics and Econometrics,3rd_[Magnus2019] Title -16 Contents -14 Preface -6 Part One —
Mat
rices 1 1 Basic properties of vectors and
mat
rice...
CS【压缩感知】Resources
Compressive Sensing ResourcesReferences and SoftwareResearch at RiceThe dogma of signal processing maintains that a signal must be sampled at a rate at least twice its highest frequency in order to be...
下载资源悬赏专区
13,655
社区成员
12,578,821
社区内容
发帖
与我相关
我的任务
下载资源悬赏专区
CSDN 下载资源悬赏专区
复制链接
扫一扫
分享
社区描述
CSDN 下载资源悬赏专区
其他
技术论坛(原bbs)
社区管理员
加入社区
获取链接或二维码
近7日
近30日
至今
加载中
查看更多榜单
社区公告
暂无公告
试试用AI创作助手写篇文章吧
+ 用AI写文章