社区
下载资源悬赏专区
帖子详情
算法-第二章下载
weixin_39821746
2019-08-13 09:30:19
合工大算法设计与分析课件,取自算法之道,感兴趣的孩纸可以下来看看哦!
相关下载链接:
//download.csdn.net/download/gee_1412/4863745?utm_source=bbsseo
...全文
29
回复
打赏
收藏
算法-第二章下载
合工大算法设计与分析课件,取自算法之道,感兴趣的孩纸可以下来看看哦! 相关下载链接://download.csdn.net/download/gee_1412/4863745?utm_source=bbsseo
复制链接
扫一扫
分享
转发到动态
举报
AI
作业
写回复
配置赞助广告
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
打赏红包
Introduction to Algorithms, 3rd edtion
中文名:
算法
导论 原名: Introduction to Algorithms 作者: Thomas H.Cormen, 达特茅斯学院计算机科学系副教授 Charles E.Leiserson, 麻省理工学院计算机科学与电气工程系教授 Ronald L.Rivest, 麻省理工学院计算机科学系Andrew与Erna Viterbi具名教授 Clifford Stein, 哥伦比亚大学工业工程与运筹学副教授 资源格式: PDF(完整书签目录) 出版社: The MIT Press ISBN 978-0-262-03384-8 (hardcover : alk. paper)—ISBN 978-0-262-53305-8 (pbk. : alk. paper) 发行时间: 2009年09月30日 地区: 美国 语言: 英文 1 The Role of Algorithms in Computing 5 1.1 Algorithms 5 1.2 Algorithms as a technology 11 2 Getting Started 16 2.1 Insertion sort 16 2.2 Analyzing algorithms 23 2.3 Designing algorithms 29 3 Growth of Functions 43 3.1 Asymptotic notation 43 3.2 Standard notations and common functions 53 4 Divide-and-Conquer 65 4.1 The maximum-subarray problem 68 4.2 Strassen's algorithm for matrix multiplication 75 4.3 The substitution method for solving recurrences 83 4.4 The recursion-tree method for solving recurrences 88 4.5 The master method for solving recurrences 93 4.6 Proof of the master theorem 97 5 Probabilistic Analysis and Randomized Algorithms 114 5.1 The hiring problem 114 5.2 Indicator random variables 118 5.3 Randomized algorithms 122 5.4 Probabilistic analysis and further uses of indicator random variables 130 II Sorting and Order Statistics Introduction 147 6 Heapsort 151 6.1 Heaps 151 6.2 Maintaining the heap property 154 6.3 Building a heap 156 6.4 The heapsort algorithm 159 6.5 Priority queues 162 7 Quicksort 170 7.1 Description of quicksort 170 7.2 Performance of quicksort 174 7.3 A randomized version of quicksort 179 7.4 Analysis of quicksort 180 8 Sorting in Linear Time 191 8.1 Lower bounds for sorting 191 8.2 Counting sort 194 8.3 Radix sort 197 8.4 Bucket sort 200 9 Medians and Order Statistics 213 9.1 Minimum and maximum 214 9.2 Selection in expected linear time 215 9.3 Selection in worst-case linear time 220 III Data Structures Introduction 229 10 Elementary Data Structures 232 10.1 Stacks and queues 232 10.2 Linked lists 236 10.3 Implementing pointers and objects 241 10.4 Representing rooted trees 246 11 Hash Tables 253 11.1 Direct-address tables 254 11.2 Hash tables 256 11.3 Hash functions 262 11.4 Open addressing 269 11.5 Perfect hashing 277 12 Binary Search Trees 286 12.1 What is a binary search tree? 286 12.2 Querying a binary search tree 289 12.3 Insertion and deletion 294 12.4 Randomly built binary search trees 299 13 Red-Black Trees 308 13.1 Properties of red-black trees 308 13.2 Rotations 312 13.3 Insertion 315 13.4 Deletion 323 14 Augmenting Data Structures 339 14.1 Dynamic order statistics 339 14.2 How to augment a data structure 345 14.3 Interval trees 348 IV Advanced Design and Analysis Techniques Introduction 357 15 Dynamic Programming 359 15.1 Rod cutting 360 15.2 Matrix-chain multiplication 370 15.3 Elements of dynamic programming 378 15.4 Longest common subsequence 390 15.5 Optimal binary search trees 397 16 Greedy Algorithms 414 16.1 An activity-selection problem 415 16.2 Elements of the greedy strategy 423 16.3 Huffman codes 428 16.4 Matroids and greedy methods 437 16.5 A task-scheduling problem as a matroid 443 17 Amortized Analysis 451 17.1 Aggregate analysis 452 17.2 The accounting method 456 17.3 The potential method 459 17.4 Dynamic tables 463 V Advanced Data Structures Introduction 481 18 B-Trees 484 18.1 Definition of B-trees 488 18.2 Basic operations on B-trees 491 18.3 Deleting a key from a B-tree 499 19 Fibonacci Heaps 505 19.1 Structure of Fibonacci heaps 507 19.2 Mergeable-heap operations 510 19.3 Decreasing a key and deleting a node 518 19.4 Bounding the maximum degree 523 20 van Emde Boas Trees 531 20.1 Preliminary approaches 532 20.2 A recursive structure 536 20.3 The van Emde Boas tree 545 21 Data Structures for Disjoint Sets 561 21.1 Disjoint-set operations 561 21.2 Linked-list representation of disjoint sets 564 21.3 Disjoint-set forests 568 21.4 Analysis of union by rank with path compression 573 VI Graph Algorithms Introduction 587 22 Elementary Graph Algorithms 589 22.1 Representations of graphs 589 22.2 Breadth-first search 594 22.3 Depth-first search 603 22.4 Topological sort 612 22.5 Strongly connected components 615 23 Minimum Spanning Trees 624 23.1 Growing a minimum spanning tree 625 23.2 The algorithms of Kruskal and Prim 631 24 Single-Source Shortest Paths 643 24.1 The Bellman-Ford algorithm 651 24.2 Single-source shortest paths in directed acyclic graphs 655 24.3 Dijkstra's algorithm 658 24.4 Difference constraints and shortest paths 664 24.5 Proofs of shortest-paths properties 671 25 All-Pairs Shortest Paths 684 25.1 Shortest paths and matrix multiplication 686 25.2 The Floyd-Warshall algorithm 693 25.3 Johnson's algorithm for sparse graphs 700 26 Maximum Flow 708 26.1 Flow networks 709 26.2 The Ford-Fulkerson method 714 26.3 Maximum bipartite matching 732 26.4 Push-relabel algorithms 736 26.5 The relabel-to-front algorithm 748 VII Selected Topics Introduction 769 27 Multithreaded Algorithms Sample Chapter - Download PDF (317 KB) 772 27.1 The basics of dynamic multithreading 774 27.2 Multithreaded matrix multiplication 792 27.3 Multithreaded merge sort 797 28 Matrix Operations 813 28.1 Solving systems of linear equations 813 28.2 Inverting matrices 827 28.3 Symmetric positive-definite matrices and least-squares approximation 832 29 Linear Programming 843 29.1 Standard and slack forms 850 29.2 Formulating problems as linear programs 859 29.3 The simplex algorithm 864 29.4 Duality 879 29.5 The initial basic feasible solution 886 30 Polynomials and the FFT 898 30.1 Representing polynomials 900 30.2 The DFT and FFT 906 30.3 Efficient FFT implementations 915 31 Number-Theoretic Algorithms 926 31.1 Elementary number-theoretic notions 927 31.2 Greatest common divisor 933 31.3 Modular arithmetic 939 31.4 Solving modular linear equations 946 31.5 The Chinese remainder theorem 950 31.6 Powers of an element 954 31.7 The RSA public-key cryptosystem 958 31.8 Primality testing 965 31.9 Integer factorization 975 32 String Matching 985 32.1 The naive string-matching algorithm 988 32.2 The Rabin-Karp algorithm 990 32.3 String matching with finite automata 995 32.4 The Knuth-Morris-Pratt algorithm 1002 33 Computational Geometry 1014 33.1 Line-segment properties 1015 33.2 Determining whether any pair of segments intersects 1021 33.3 Finding the convex hull 1029 33.4 Finding the closest pair of points 1039 34 NP-Completeness 1048 34.1 Polynomial time 1053 34.2 Polynomial-time verification 1061 34.3 NP-completeness and reducibility 1067 34.4 NP-completeness proofs 1078 34.5 NP-complete problems 1086 35 Approximation Algorithms 1106 35.1 The vertex-cover problem 1108 35.2 The traveling-salesman problem 1111 35.3 The set-covering problem 1117 35.4 Randomization and linear programming 1123 35.5 The subset-sum problem 1128 VIII Appendix: Mathematical Background Introduction 1143 A Summations 1145 A.1 Summation formulas and properties 1145 A.2 Bounding summations 1149 B Sets, Etc. 1158 B.1 Sets 1158 B.2 Relations 1163 B.3 Functions 1166 B.4 Graphs 1168 B.5 Trees 1173 C Counting and Probability 1183 C.1 Counting 1183 C.2 Probability 1189 C.3 Discrete random variables 1196 C.4 The geometric and binomial distributions 1201 C.5 The tails of the binomial distribution 1208 D Matrices 1217 D.1 Matrices and matrix operations 1217 D.2 Basic matrix properties 122
算法
引论:一种创造性方法.pdf
《
算法
引论:一种创造性方法》是国际
算法
大师乌迪.曼博(Udi Manber)博士撰写的一本享有盛誉的著作。全书共分12章,是按照领域进行分类的:第1章到第4章为介绍性内容,涉及数学归纳法、
算法
分析、数据结构等内容;第5章提出了与归纳证明进行类比的
算法
设计思想;第6章到第9章分别给出了几个领域的
算法
,如序列和集合的
算法
(排序、序列比较、匹配等)、几何
算法
(凸包和交集问题等)、代数和数值
算法
(矩阵乘法、快速傅里叶变换等);第10章涉及归约或约简,也是第11章的序幕,而后者涉及NP完全问题;第12章则介绍了并行
算法
;最后是部分习题的答案及参考文献。《
算法
引论:一种创造性方法》的特色有二,旨在提高读者的问题求解能力,使读者能够理解
算法
设计的过程和思想:一是强调
算法
设计的创造性过程,注重
算法
设计背后的创造性思想,而不拘泥于某个具体
算法
的详细讨论;二是将
算法
设计类比于定理归纳证明,揭示了
算法
设计的基本思想和本质。
数据结构-第四章(2)-串的模式匹配
算法
数据结构 ⚡️数据结构-第一章 ⚡️抽象数据类型案例 ⚡️数据结构-
第二章
(1)-线性结构 ⚡️数据结构-
第二章
(2)-线性表的顺序表示和实现 ⚡️数据结构-
第二章
(3)-顺序表(含代码) ⚡️数据结构-
第二章
(4)-顺序表案例(含代码) ⚡️数据结构-
第二章
(5)-链式存储结构 ⚡️数据结构-
第二章
(6)-单链表基本操作的实现 ⚡️数据结构-
第二章
(7)-双向链表和循环链表 数据结构-第四章(2)-BP
算法
数据结构BF
算法
KMP
算法
总结 BF
算法
Brute-Force简称BF
算法
(简单匹配
算法
)
PTA数据结构与
算法
-
第二章
——线性表
文章目录第一章——褚论
第二章
——线性表第三章——栈与队列 第一章——褚论
第二章
——线性表 第三章——栈与队列 对于顺序存储的长度为N的线性表,访问结点和增加结点的时间复杂度分别对应为O(1)和O(N)。 T 题目字眼 “ 顺序存储 ” ,说明内存单元中分配的存储空间是连续的,所 以该线性表为数组形式存储,所以数组访问时,通过下标可随机访问,时间复杂度为O(1),而增加插入时,需要涉及大量元素的移动,所以时间复杂度为O(N)。 线性表采用链式存储表示时,所有结点之间的存储单元地址可以连续也可以
下载资源悬赏专区
13,655
社区成员
12,654,265
社区内容
发帖
与我相关
我的任务
下载资源悬赏专区
CSDN 下载资源悬赏专区
复制链接
扫一扫
分享
社区描述
CSDN 下载资源悬赏专区
其他
技术论坛(原bbs)
社区管理员
加入社区
获取链接或二维码
近7日
近30日
至今
加载中
查看更多榜单
社区公告
暂无公告
试试用AI创作助手写篇文章吧
+ 用AI写文章