docker – Kubernetes OOM pod被杀死,因为内核内存增长很多

等级
本版专家分:0
结帖率 0%
等级
本版专家分:0
docker内存阀值_踩坑总结 - 使用 oom-guard 在用户态处理 cgroup OOM - 《Kubernetes 实践指南(Kubernetes...

使用 oom-guard 在用户态处理 cgroup OOM背景由于 linux 内核对 cgroup OOM 的处理,存在很多 bug,经常有由于频繁 cgroup OOM 导致节点故障(卡死, 重启, 进程异常但无法杀死),于是 TKE 团队开发了 oom-guard,在...

基于DockerKubernetes的企业级DevOps实践训练营

基于DockerKubernetes的企业级DevOps实践训练营 课程准备 离线镜像包 百度:https://pan.baidu.com/s/1N1AYGCYftYGn6L0QPMWIMw 提取码:ev2h 天翼云:https://cloud.189.cn/t/ENjUbmRR7FNz CentOS7.4版本以上...

KubernetesPod间共享内存方案

本文转载自公众号:EAWorld,点击查看原文。一些公共服务组件在追求性能过程中,与业务耦合太紧,造成在制作基础镜像时,都会把这些基础组件都打包进去,因此当业务镜像启动后...

docker 主进程 日志_记一场由docker容器OOM引发的环境“雪崩”

问题描述:2019.9.16下午2:40左右发现环境出现故障,功能无法正常运行。马上进行排查1、基础服务端口运行都是正常的2、查看环境上最近有新发版的三个微服务,发现都在不同频率的打印这句日志:2019-09-16 14:42:41,...

Kubernetes Pod 驱逐详解

原文链接:Kubernetes Pod 驱逐详解 ...可压缩资源不可能导致 Pod 驱逐,因为Pod 的 CPU 使用量很多时,系统可以通过重新分配权重来限制 Pod 的 CPU 使用。而对于不可压缩资源来说,如果资源不足,也就无法继...

Kubernetes权威指南:从DockerKubernetes实践全接触

第5章 Kubernetes运维指南

kubernetes1.4新特性:支持Docker新特性

(一)背景资料 在Kubernetes1.2中这个第三方组件就是go-dockerclient,这是一个GO语言写的docker客户端,支持Docker...在Kubernetes1.3中直接使用docker公司提供的client来实现,通过这个client可以实现同DockerD

[问题已处理]-kubernetes中2次不同的oom处理

1 pod里的java进程因为k8s主机内存不足kill了 通过journalctl -f 查看日志 发现如下 通过journalctl 查看所有日志 找到如下 这个是宿主机内存不足。显示的进程是宿主机的进程。包含了pod的信息 8月 27 14:50...

性能分析-Kubernetes-内存

资源限制 资源限制是通过每个容器containerSpec的resources字段进行设置的,它是v1版本的...大多数情况下,deployment、statefulset、daemonset的定义里都包含了podSpec和个containerSpec。这里有个完整的v1资源

深入理解Kubernetes资源限制:内存

你是没有办法给节点增加CPU或者内存的,那么你该怎么做才能将这个Pod从这个节点拿走?最简单的办法是添加另一个节点,我承认我总是这么干。最终这个策略无法发挥出Kubernetes最重要的一个能力:即它优化计算资源使用...

容器内存分析

那么如何准确计算容器或Pod内存使用率,k8s/docker又是如何计算,本文通过实验与源码阅读相结合来分析容器的内存实际使用量。 预备知识 不管docker还是k8s(通过cadvisor)最终都通过cgroup的memory group来得到内存...

挖财的 Kubernetes 容器化之路

挖财内部对容器化项目的代号为 K2 (乔戈里峰),乔戈里峰是世界第二高峰,但攀登极富挑战,寓意就是面对挑战,勇攀高峰;)。项目从 2016 年 11 月到现在已经有三年的时间了,如今挖财...

删除共享内存_在 K8S 中,Pod 间实现共享内存的解决方案

作者:王涛(腾讯云)编辑:小君君(才云)来源:EAWorld你是否经常会遇到这样的困难:处理不同进程的应用程序时,需求方会要求包含所有进程以实现更隔离。在这种情况下,一个常见的问题是:如何在同一 Node 中的 Pod ...

k8s+docker+prometheus+grafana部署搭建以及问题解决(v1.18.6)

k8s重要的一个特点就是能够自主管理容器来保证云平台中的容器按照用户的期望状态运行,一般用的容器化服务就是docker。简单说来,k8s就是一个管理容器的应用。 k8s的架构图 k8s的组件介绍 从整体来看,k8s分为...

Kubernetes】——pod资源深度解析

一、前言 接触k8s也有小一年了。跟着需求走容易囫囵吞枣式的学习k8s, 知其然而... PodKubernetes 项目中最小的 API 对象,而Pod也是由容器组组成的。Pod 里的所有容器,共享的是同一个 Network Namespace,并...

Kubernetes资源管理之--资源预留

1. 概述 1.1 问题 系统资源可分为两类:可抢占资源...但不可抢占资源如Memory在系统满负荷时,除了会导致系统变慢,还会进一步导致系统OOM,最终导致某些进程Linux系统的OOM killer机制掉。 在Kubernet...

带你玩转kubernetes-k8s(第61篇-Kubernetes之资源紧缺时的Pod驱逐机制)

资源紧缺时的Pod驱逐机制 如何在系统硬件资源紧缺的情况下保证Node的稳定性,是kubelet需要解决的一个重要问题。尤其对于内存和磁盘这种不可...一旦出现资源紧缺的迹象,kubelet就会主动终止一个或Pod的运行,...

Kubernetes1.3:QoS服务质量管理

kubernetes中,每个POD都有个QoS标记,通过这个Qos标记来对POD进行服务质量管理。QoS的英文全称为"Quality of Service",中文名为"服务质量",它取决于用户对服务质量的预期,也就是期望的服务质量。对于POD来说,...

k8s节点资源预留与 pod 驱逐

集群雪崩:如果节点上调度了大量pod,且pod没有合理的limit限制,节点资源将耗尽,sshd、kubelet等进程OOM,节点变成 not ready状态,pod重新继续调度到其他节点,新节点也打挂,引起集群雪崩。 系统进程异常:...

kubernetes之node资源紧缺时pod驱逐机制

kubelet持续监控主机的资源使用情况, 一旦出现资源紧缺的迹象, kubelet就会主动终止一个或pod的运行,以回收紧缺的资源 2.驱逐信号 kubelet根据信号作为决策依据来触发驱逐行为 - memory.available - nodefs....

docker容器化部署kubeadmin --1.18版

Kubernetes是一个开源的,用于管理云平台中个主机上的容器化的应用,Kubernetes的目标是让部署容器化的应用简单并且高效(powerful),Kubernetes提供了应用部署,规划,更新,维护的一种机制。 Kubernetes一个核心...

Windows Server 2016 部署服务

全网第一的 Windows 部署课程,体系化,全面化,场景化,自动化,结合企业实际的应用场景,从无到有,从有到优,为大家深入和详尽的介绍 Windows 10 平台之上,提供的各种不同部署工具的应用。结合讲师十年以上的项目经验,提取大量的企业应用场景和实际问题做为结合,详尽的分析和示例,让您一听就懂,一懂就会,学以致用。 学习和掌握 Windows 10 的企业部署,学会单机安装,系统升级,系统替换

基于Python的豆瓣电影推荐系统(带界面)

用flask做了一个简单的页面。然后运行一个推荐后台做实际的推荐分析。前端页面通过socket和一个简单的协议和推荐后台通信,得到推荐结果。具体请看压缩包里的ReadMe文件

垃圾分类数据集及代码

资源说明: 数据集主要包括6类图片:硬纸板、纸、塑料瓶、玻璃瓶、铜制品、不可回收垃圾 代码运行说明: 1、 安装运行项目所需的python模块,包括tensorflow | numpy | keras | cv2 2、 train.py用于训练垃圾分类模型,由于训练的数据量过于庞大,因此不一并上传 3、 predict.py用于预测垃圾的类别,首先运行predict.py,然后输入需要预测的文件路径,即可得到结果。

2021年前端面试题汇总 高清pdf完整版

《2021年前端面试题汇总》主要介绍了js基础到入门、css和常用的web框架的一些常用面试题目。学完这个题库,把此题库都理解透彻应对各家企业面试完全没有问题。

大唐杯资料+题库(移动通信)

大唐杯资料+题库(移动通信)

OpenGL-Shader

共六章 1.基础章节,从Shader1.0版本到新的4.5版本,介绍每一个版本中特性的用法; 2.Tesslattion Shader应用/基础案例分析 3.Gemotry Shader应用/基础案例分析 4.Compute Shader应用/基础案例分析 5.通过大量案例讲解分析/结合新特性,介绍用法 6.性能调优,如果借助shader加速应用,让你的程序支撑百万级别的场景对象轻松应对 全面解析OpenGL Shader语言,从1.0到4.5版本,全面掌握shader编成,并能够熟练的应用

Spring Boot 入门

Spring Boot 入门介绍,听完这些课程你可以了解到 Spring Boot 的优势,为什么需要使用 Spring Boot ,学会使用 Spring Boot 创建一个简单的 Hello World ,并写学会使用 Spring Boot 单元测试。 了解 Spring Boot 并掌握 Spring Boot 基础开发

计算机设计大赛作品开发文档

参加的是2020年的计算机设计大赛,软件应用与开发赛道。我们的开发文档仅供参考。(20页)

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

相关热词 c# 无法打开设计 c# 时间转换成int c#批量读取ini信息 c# 打包msi c# eval绑定 c#字母开头 uuid c#创建html文件 c# 逻辑练习 c#调用dll后释放 c# 扫描串口