再思考计算机视觉的Inception结构
Rethinking the inception architecture for computer vision (2016)
作者C. Szegedy et al.
摘要:对于多种任务来说,卷及网络处于最先进的计算机视觉解决方案的核心。自2014年以来,超深度卷积网络开始成为主流,在各种benchmark中产生了巨大的收获。虽然对大多数任务来说,增加的模型大小和计算成本往往转化为直接增益(只要提供足够的标记数据用于训练),计算效率和低参数计数仍然是各种用例的有利因素,例如移动视觉和大数据场景。在这里,我们将探讨通过适当的因式分解卷积和积极正则化的
相关下载链接:
//download.csdn.net/download/oscer2016/9761135?utm_source=bbsseo