C++印章提取功能使用python语言进行转换,请大佬指教!

qq_43198759 2019-10-24 10:17:27
/**
* 合同图片中公章提取
* 1) 输入与输出都为PNG高保真图像
* 2) compile: g++ -g -o sealcut sealcut.cpp `pkg-config --cflags --libs opencv`
* 3) usage: sealcut filename
*
* @yangxf
* @date 2018-03
*/

#include <opencv2/opencv.hpp>
#include <vector>

#include <iostream>
#include <stdio.h>

#include <unistd.h>
#include <dirent.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <string.h>

using namespace std;
using namespace cv;

const char* windowname = "sealcut Demo";
const char* sealimgpath = "./sample";
const char* benchmarkpath = "./benchmark";

// 红色阈值
int hsvredlovalue = 140;
int hsvredhivalue = 250;

// 公章半径
int sealredius=154;

// 图像预处理
Mat initimage(char* imgname);

// 采用轮廓中的五角星定位公章图像:该算法对于五角星不明显的印章效果不佳
vector<Rect> locsealbycontours(Mat hqimg);

// 采用霍夫圆拟近圆形定位公章图像:该算法普适性较高,可以定位到图像中的所有圆形
vector<Rect> locsealbyhough(Mat hqimg);

// 公章图像切割
void cutseal(Mat srcimg, vector<Rect> rects, char* imgname);

// 霍夫圆变换
void houghseal(Mat srcimg, int index, char* imgname);

// 采用阈值法剔除红色公章,获得自由文字和签字的合同页
Mat maskimage(char* imgname);


int main( int argc, char** argv ) {
if(argc != 2) {
cout << " usage: sealocr filename, please input image file name!" << endl;
return 0;
}

char imgpath[200], srcimgname[200];
memset(imgpath, 0, sizeof(imgpath));
memset(srcimgname, 0, sizeof(srcimgname));

sprintf(srcimgname, "%s", argv[1]);
sprintf(imgpath, "%s/%s", sealimgpath, srcimgname);

cout << imgpath << endl;

// 图像增强
Mat imageGamma=initimage(imgpath);

// 采用霍夫圆拟近圆形定位公章图像
vector<Rect> rects=locsealbyhough(imageGamma);
// 采用轮廓中的五角星定位公章图像, 该算法效果不佳,暂不用
// vector<Rect> rects= locseal(imageGamma);

// 根据grabcut实现公章图像提取
cutseal(imageGamma, rects, srcimgname);

// 如果需要调试,请打开如下语句
//waitKey();
return 1;
}

/**
* 图像预处理
* 1) 加载图像文件
* 2) 图像增强
*
*/
Mat initimage(char* imgname) {
Mat srcimg = imread(imgname);
namedWindow("srcimg",CV_WINDOW_NORMAL);
imshow("srcimg", srcimg);

// Gamma图像增强: 解决印章模糊不清的问题
Mat imageGamma(srcimg.size(), CV_32FC3);
for (int i = 0; i < srcimg.rows; i++) {
for (int j = 0; j < srcimg.cols; j++) {
imageGamma.at<Vec3f>(i, j)[0] = (srcimg.at<Vec3b>(i, j)[0])*(srcimg.at<Vec3b>(i, j)[0])*(srcimg.at<Vec3b>(i, j)[0]);
imageGamma.at<Vec3f>(i, j)[1] = (srcimg.at<Vec3b>(i, j)[1])*(srcimg.at<Vec3b>(i, j)[1])*(srcimg.at<Vec3b>(i, j)[1]);
imageGamma.at<Vec3f>(i, j)[2] = (srcimg.at<Vec3b>(i, j)[2])*(srcimg.at<Vec3b>(i, j)[2])*(srcimg.at<Vec3b>(i, j)[2]);
}
}
// 归一化到0~255
normalize(imageGamma, imageGamma, 0, 255, CV_MINMAX);

// 转换成8bit图像
convertScaleAbs(imageGamma, imageGamma);
//namedWindow("imageGamma",CV_WINDOW_NORMAL);
//imshow("imageGamma", imageGamma);

return imageGamma;
}

// 采用霍夫圆拟近圆形定位公章图像
vector<Rect> locsealbyhough(Mat hqimg) {
// RGB颜色转换为HSV
Mat hsvimage;
cvtColor(hqimg, hsvimage, COLOR_BGR2HSV);

// 阈值操作:查找指定范围内的颜色
Mat dstimage;
inRange(hsvimage, Scalar( hsvredlovalue, 40, 40), Scalar (hsvredhivalue, 255, 255), dstimage);

// 查找轮廓
vector<vector<Point> > contours;
findContours(dstimage, contours, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
namedWindow("findContours",CV_WINDOW_NORMAL);
imshow("findContours", dstimage);

// 将轮廓渲染为红色
vector<Rect> rects;
Mat drawimage = Mat::zeros(dstimage.size(), CV_8UC3);
for(int index = 0; index < contours.size(); index ++) {
vector<Point> dstcontour=contours[index];

drawContours(drawimage, contours, index, Scalar(0, 0, 255), 3, 8);
}
namedWindow("drawimage", CV_WINDOW_NORMAL);
imshow("drawimage", drawimage);

// 转为灰度图,进行图像平滑
Mat graymage;
cvtColor(drawimage, graymage, CV_BGR2GRAY);
GaussianBlur(graymage, graymage, Size(9, 9), 2, 2);

// 霍夫圆变换:去掉公章圆外部的噪声块
Mat houghimage=Mat::zeros(drawimage.size(), CV_8UC3);

vector<Vec3f> circles;
HoughCircles(graymage, circles, CV_HOUGH_GRADIENT, 2/*霍夫空间的分辨率*/, 300/*两个圆心之间最小距离*/, 100/*Canny阈值*/, 25, 100/*最小半径*/, 300/*最大半径*/);

Point center;
int radius=0;

cout << "hough circles " << circles.size() << endl;
for(size_t i = 0; i < circles.size(); i++) {
center=Point(cvRound(circles[i][0]), cvRound(circles[i][1]));
radius = cvRound(circles[i][2]);

if(radius < 130 || radius > 160)
continue;

cout << "locsealbyhough hough center " << center << endl;
cout << "locsealbyhough hough radius " << radius << endl;

//测试: 绘制圆心
circle(houghimage, center, 3, Scalar(0, 255, 0), -1, 8, 0);

//测试: 绘制圆轮廓
circle(houghimage, center, radius, Scalar(155, 50, 255), 3, 8, 0);

rects.push_back(Rect(center.x - sealredius, center.y - sealredius, sealredius*2, sealredius*2));
}

namedWindow("houghseal", CV_WINDOW_NORMAL);
imshow("houghseal", houghimage);

return rects;
}


/**
* 采用轮廓中的五角星定位公章图像
* 1) 采用HSV颜色阈值查找图像轮廓:公章图像是红色的
* 2) 根据轮廓形态定位五角星位置,并计算出公章的矩形
*
*/
vector<Rect> locsealbycontours(Mat hqimg) {
// RGB颜色转换为HSV
Mat hsvimage;
cvtColor(hqimg, hsvimage, COLOR_BGR2HSV);
//namedWindow("hsvimage", CV_WINDOW_NORMAL);
//imshow("hsvimage", hsvimage);

// 图像腐蚀和膨胀
/*
dilate(hsvimage, hsvimage, Mat(7,7,CV_8U), Point(-1,-1), 2);
erode(hsvimage, hsvimage, Mat(8,8,CV_8U), Point(-1,-1), 1);
namedWindow("hsvimage2",CV_WINDOW_NORMAL);
imshow("hsvimage2", HSVImage);
*/

// 阈值操作:查找指定范围内的颜色
Mat dstimage;
inRange(hsvimage, Scalar( hsvredlovalue, 40, 40), Scalar (hsvredhivalue, 255, 255), dstimage);

// 转换成二值图
/*
threshold(dstimage, dstimage, 1, 255, THRESH_BINARY);
namedWindow("dstimage",CV_WINDOW_NORMAL);
imshow(window_name, dstimage);
*/

// 查找轮廓
vector<vector<Point> > contours;
findContours(dstimage, contours, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
//namedWindow("findContours",CV_WINDOW_NORMAL);
//imshow("findContours", dstimage);

// 定位公章图像
vector<Rect> rects;
Mat drawimage = Mat::zeros(dstimage.size(), CV_8UC3);
for(int index = 0; index < contours.size(); index ++) {
vector<Point> dstcontour=contours[index];

// 测试:为了能看到公章图像效果
drawimage = Mat::zeros(dstimage.size(), CV_8UC3);
drawContours(drawimage, contours, index, Scalar(0, 0, 255), 3, 8);

// 轮廓面积
int area= int(fabs(contourArea( dstcontour )));

// 【重要】根据轮廓形态找到五角星(公章中间都有五角星):面积>1000, 40<外接圆半径<60
if(area < 1000) {
continue;
}

Point2f center; float radius;
minEnclosingCircle(dstcontour, center, radius);
if(radius < 40 || radius > 60)
continue;

cout << "area " << area << endl;
cout << "radius " << radius << endl;

// 测试:画轮廓的外接圆
//circle(drawimage, center, (int)radius, Scalar(255, 0, 0), 2, 8, 0);

// 根据五角星中心点找到印章半径:印章半径值=154
circle( drawimage, center, sealredius, Scalar(0, 255, 0), 2, 8, 0 );
// 测试:是否为印章的外接矩形
//rectangle(drawimage, Point(center.x - 154, center.y - 154), Point(center.x + 154, center.y + 154), Scalar( 255, 0, 0), -1, 8);

rects.push_back(Rect(center.x - sealredius, center.y - sealredius, sealredius*2, sealredius*2));
}

//namedWindow("sealocr", CV_WINDOW_NORMAL);
//imshow("sealocr", drawimage);

return rects;
}

/**
* 公章图像切割
* 1) 采用grabCut算法实现公章图像自动切割
*/
void cutseal(Mat srcimg, vector<Rect> rects, char* imgname) {
Mat bgModel;
Mat fgModel;

// 设置掩码图像
Mat result = cv::Mat::ones(srcimg.size(), CV_8U) * cv::GC_BGD;
for(int i = 0; i < rects.size(); i ++) {
Rect rect=rects[i];

// 设置前景掩码
rectangle(result, rect , cv::Scalar(cv::GC_PR_FGD), -1, 8, 0);
}
Rect rect;
grabCut(srcimg, result, rect, bgModel, fgModel, 1, GC_INIT_WITH_MASK);
// 得到前景mask
compare(result, GC_PR_FGD, result, CMP_EQ);
Mat foreground(srcimg.size(), CV_8UC3, Scalar::all(255));
srcimg.copyTo(foreground, result);
namedWindow("foreground", CV_WINDOW_NORMAL);
imshow("foreground", foreground);
for(int index = 0; index < rects.size(); index ++) {
Rect rect=rects[index];
cout << "index " << index << endl;
// 设置公章图像ROI
Mat fgroi(foreground, rect);
char winname[100];
sprintf(winname, "cutseal reslut %d", index);
namedWindow(winname, CV_WINDOW_NORMAL);
imshow(winname, fgroi);
houghseal(fgroi, index, imgname);
}
}

/**
* 霍夫圆变换
* 1) 根据Hough圆变换找到标准的圆
* 2) 剔除圆意外的其他噪声干扰
*
*/
void houghseal(Mat srcimg, int index, char* imgname) {
// 转为灰度图,进行图像平滑
Mat graymage;
cvtColor(srcimg, graymage, CV_BGR2GRAY);
GaussianBlur(graymage, graymage, Size(9, 9), 2, 2);
// 霍夫圆变换:去掉公章圆外部的噪声块
Mat houghimage=Mat::zeros(srcimg.size(), CV_8UC3);

vector<Vec3f> circles;
//HoughCircles(graymage, circles, CV_HOUGH_GRADIENT, 2/*霍夫空间的分辨率*/, sealredius/*两个圆心之间最小距离*/, 200/*Canny阈值*/, 100, 100/*最小半径*/, 200/*最大半径*/);

HoughCircles(graymage, circles, CV_HOUGH_GRADIENT, 2/*霍夫空间的分辨率*/, 300/*两个圆心之间最小距离*/, 100/*Canny阈值*/, 25, 100/*最小半径*/, 300/*最大半径*/);

Point center;
int radius=0;

cout << "hough circles " << circles.size() << endl;
for(size_t i = 0; i < circles.size(); i++) {
center=Point(cvRound(circles[i][0]), cvRound(circles[i][1]));
radius = cvRound(circles[i][2]);

cout << "hough center " << center << endl;
cout << "hough radius " << radius << endl;

// 圆心与图像中心点距离太远
if(abs(center.x - sealredius) > 20 || abs(center.y - sealredius) >20) {
// Hough检测到非完整的圆(超出图像边界),忽略
return;
}

//测试: 绘制圆心
circle(houghimage, center, 3, Scalar(0, 255, 0), -1, 8, 0);

//测试: 绘制圆轮廓
circle(houghimage, center, radius, Scalar(155, 50, 255), 3, 8, 0);
}

char winname[100];
sprintf(winname, "houghseal reslut %d", index);
namedWindow(winname, CV_WINDOW_NORMAL);
imshow(winname, houghimage);
// 建立圆形腌膜剔除其他噪声
Mat circleimg(srcimg.size(), CV_8UC1, Scalar(0));

// mask建立
Mat roi = Mat::zeros(srcimg.size(), CV_8UC3);
circle(roi, center, radius + 20, CV_RGB(255, 255, 255), -1);
srcimg.copyTo(circleimg, roi);

...全文
448 回复 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
DirectX修复工具(DirectX Repair)是一款系统级工具软件,简便易用。本程序为绿色版,无需安装,可直接运行。 本程序的主要功能是检测当前系统的DirectX状态,如果发现异常则进行修复。程序主要针对0xc000007b问题设计,可以完美修复该问题。本程序中包含了最新版的DirectX redist(Jun2010),并且全部DX文件都有Microsoft的数字签名,安全放心。 本程序为了应对一般电脑用户的使用,采用了傻瓜式一键设计,只要点击主界面上的“检测并修复”按钮,程序就会自动完成校验、检测、下载、修复以及注册的全部功能,无需用户的介入,大大降低了使用难度。 本程序适用于多个操作系统,如Windows XP(需先安装.NET 2.0,详情参阅“致Windows XP用户.txt”文件)、Windows Vista、Windows 7、Windows 8、Windows Blue(Windows 8.1),同时兼容32位操作系统和64位操作系统。本程序会根据系统的不同,自动调整任务模式,无需用户进行设置。 本程序的V3.0版分为标准版、增强版以及在线修复版。其中的标准版以及增强版都包含完整的DirectX组件,增强版中还额外包含了c++ Redistributable Package,因此增强版适合无法自行解决c++相关问题的用户使用;在线修复版的功能与标准版相同,只是其所需的文件将通过Internet下载,因此大大减小了程序的体积。本程序的各个版本之间,主程序完全相同,只是配套使用的数据包不同。因此,当您使用标准版数据包时,程序将进行标准修复;当您使用增强版的数据包时,程序将进行增强修复;当数据包不全或没有数据包(即只有DirectX Repair.exe程序)时,程序将进行在线修复。在线修复、离线修复可自由灵活组合,充分满足不同用户的需要。 本程序自V2.0版起采用全新的底层程序架构,使用了异步多线程编程技术,使得检测、下载、修复单独进行,互不干扰,快速如飞。新程序更改了自我校验方式,因此使用新版本的程序时不会再出现自我校验失败的错误;但并非取消自我校验,因此程序安全性与之前版本相同,并未降低。 程序有自动更新c++功能。由于绝大多数软件运行时需要c++的支持,并且c++的异常也会导致0xc000007b错误,因此程序在检测修复的同时,也会根据需要更新系统中的c++组件。V3.0版本使用了全新的c++扩展包,可以大幅提高工业软件修复成功的概率。此功能仅限于增强版。 程序有两种窗口样式。正常模式即默认样式,适合绝大多数用户使用。另有一种简约模式,此时窗口将只显示最基本的内容,修复会自动进行,修复完成10秒钟后会自动退出。该窗口样式可以使修复工作变得更加简单快速,同时方便其他软件、游戏将本程序内嵌,即可进行无需人工参与的快速修复。开启简约模式的方法是:打开程序所在目录下的“Settings.ini”文件(如果没有可以自己创建),将其中的“FormStyle”一项的值改为“Simple”并保存即可。 程序有高级筛选功能,开启该功能后用户可以自主选择要修复的文件,避免了其他不必要的修复工作。同时,也支持通过文件进行辅助筛选,只要在程序目录下建立“Filter.dat”文件,其中的每一行写一个需要修复文件的序号即可。该功能仅针对高级用户使用,并且必须在正常窗口模式下才有效(简约模式时无效)。 本程序有自动记录日志功能,可以记录每一次检测修复结果,方便在出现问题时,及时分析和查找原因,以便找到解决办法。 程序的“选项”对话框中包含了3项高级功能。点击其中的“注册系统文件夹中所有dll文件”按钮可以自动注册系统文件夹下的所有dll文件。该项功能不仅能修复DirectX的问题,还可以修复系统中很多其他由于dll未注册而产生的问题,颇为实用。点击该按钮旁边的小箭头,还可以注册任意指定文件夹下的dll文件,方便用户对绿色版、硬盘版的程序组件进行注册。点击第二个按钮可以为dll文件的右键菜单添加“注册”和“卸载”项,方便对单独的dll文件进行注册。注意,并不是所有的dll文件都可以通过这种方式注册。 新版程序集成了用户反馈程序,可以在用户允许的前提下发送检测修复结果。用户也可以在出现问题时通过反馈程序和软件作者进行交流,共同查找问题。反馈是完全自愿和匿名(如果不填写E-mail地址)的。 本程序的通用版基于Microsoft .NET Framework 2.0开发,对于Windows 2000、Windows XP、Windows 2003的用户需要首先安装.NET Framework 2.0或更高版本方可运行本程序。有关下载和安装的详细信息参阅“致Windows XP用户.txt”文件。对于Windows Vista、Windows 7用户,可以直接运行本程序。 同时鉴于Windows 8(Windows Blue、Windows 8.1)系统中默认未包含.NET Framework 2.0,因此新版的程序文件夹内将包含一个DirectX_Repair_win8的特别版程序,该程序功能与通用版相同,基于.NET Framework 4.0开发,可以在Windows8(Windows Blue、Windows 8.1)系统中直接运行(其他系统如果安装了.NET Framework 4.0也可以运行这个特别版的程序)。 本程序的官方博客地址为:http://blog.csdn.net/vbcom/article/details/6962388所有的更新以及技术支持都可以到该博客上找到。

926

社区成员

发帖
与我相关
我的任务
社区描述
华为云计算论坛,提供全面深入的云计算前景分析、丰富的技术干货、程序样例,分享华为云前沿资讯动态,方便开发者快速成长与发展,欢迎提问、互动,多方位了解云计算!
社区管理员
  • 华为云计算社区
  • 海洋 之心
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧