lightgbm提高召回率

等级
本版专家分:0
勋章
Blank
签到王者 累计签到获取,不积跬步,无以至千里,继续坚持!
结帖率 0%
Blank
签到王者 累计签到获取,不积跬步,无以至千里,继续坚持!
基于lightgbm的kaggle比赛实践:Give me some credit

0 背景介绍 ...并以此为依据来决定是否给予借贷人信用授权。目标是建立帮助银行做出最佳财务借贷决策的模型。今天这 数据类型如下: 其中:SeriousDlqin2yrs代表过去两年内的情况,也是test集要预测的字段。...

三招提升数据不平衡模型的性能(附python代码)

摘要:本文的主要目标是处理数据不平衡问题。文中描述了用来克服数据不平衡问题的三种技术,分别是集成交叉验证、类别权重以及过大预测 。 对于深度学习而言,数据集非常重要,但在实际项目中,或多或少会碰见数据不...

lightgbm 数据不平衡_机器学习不平衡数据处理参考

关于不平衡数据的处理,相关文献数不胜数,几乎大同小异,其中本人比较推荐 @机器之心 与 @刘芷宁的两篇文章。机器之心:机器学习中如何处理不平衡数据?...1. 重采样与代价敏感学习作用在数据集上的...

lightgbm 数据不平衡_机器学习:处理不平衡数据的5个重要技术

所谓不平衡的数据集,意思就是两个类中一个类的实例比另一个要高,换句话说,在一个分类数据集之中,所有类的观察值的数量是不一样的。这个问题不仅存在于二进制类数据中,也存在于多类数据中。...

LightGBM调参方法研究记录——持续更新

https://lightgbm.apachecn.org/#/docs/6 https://blog.csdn.net/qq_41940950/article/details/100061562?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth...

【机器学习】5折交叉验证的评分-模型逻辑回归,决策树,SVM,随机森林,GBDT,Xgboost,lightGBM

导入的包 import pandas as pd import warnings from sklearn.preprocessing import scale from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression ...

调整超参数:决定模型是“金子”还是“垃圾”!

数据清洗以后,你也许会困惑应该从哪里开始建模。一般情况下它的下一步应该是特征选择,但特征工程和模型训练是相互影响的。好的特征选择可以使模型得到好的效果,而不同的模型又对数据有不同的要求。...

【机器学习】三招提升数据不平衡模型的性能(附python代码)

对于深度学习而言,数据集非常重要,但在实际项目中,或多或少会碰见数据不平衡问题。什么是数据不平衡呢?举例来说,现在有一个任务是判断西瓜是否成熟,这是一个二分类问题——西瓜是生的还是熟的,该任务的数据集...

深度召回模型在QQ看点推荐中的应用实践

本文由云+社区发表 作者:腾讯技术工程 ...本文主要介绍了一种用于推荐系统召回模块的深度学习方法,其出处是Google在2016年发表于RecSys的一篇用于YouTube视频推荐的论文。我们在该论文的基础上做了一些修...

天池-安泰杯跨境电商智能算法大赛(冠军)方案分享

竞赛分享天池-安泰杯跨境电商智能算法大赛--冠军团队:法国南部团队成员:Rain/Fish/楠枰在19年9月下旬结束的"安泰杯"跨境电商智能算法大赛中,来自京东零售的法国...

芝麻信用分有哪些计算维度?关于大数据风控的87个问题

导读:本文源自风控技术专家、AI技术专家和算法专家梅子行老师知乎专栏的大数据风控答疑文档,有关大数据风控的问题都在这里了。作者:梅子行https://zhuanlan.zhihu.com...

评分卡模型构建

不同算法解决不同的问题,但是首先需要确定的是问题本身(分类还是回归)

【计算机视觉算法岗面经】“吐血”整理:2019秋招资料

//2018/09/27 兵荒马乱、浩浩荡荡的秋招终于差不多要结束了。 秋招这段时间真是感慨很多,一时得意一时失意,还要平衡一不小心就来的心理落差。 先写点废话吧,毕竟最近感受挺多的,在自己的博客里也不用顾忌措辞...

利用类权重来改善类别不平衡

作者|PROCRASTINATOR 编译|VK 来源|Analytics Vidhya 概述 了解类权重优化是如何工作的,以及如何在logistic回归或任何其他算法中使用sklearn实现相同的方法 了解如何在不使用任何采样方法的情况下,通过修改类...

项目实战——工业离散器件符合的预测

数据来源于DataFuntain中的离散制造过程中典形工件的质量符合预测, 以某典型工件生产过程为例,我们将提供给参赛者一系列工艺参数,以及在相应工艺参数下所生产工件的质量数据。 数据下载地址:[数据下载地址...

高级算法梳理之xgbBoost

本文将重点解释竞赛圈里的“大杀器”,xgboost算法。本文主要结构包括xgboost内容讲解,以及案例分析。 1、XGB算法原理 XGB算法有陈天奇博士提出,是GBDT算法的升级版,在效率和方法上都做了改良。...

smoteenn算法_类别不平衡问题全面总结

类别不平衡问题(class-imbalance)是什么指分类任务中不同类别的训练样例数目差别很大的情况若不同类别的训练样例数目稍有差别,通常影响不大,但若差别很大,则会对学习过程造成困扰。例如有998个反例,但是正例只有...

做过这个 NLP 项目的面试通过高达 90%!!

想成为NLP工程师,但是否因为没有实际项目经历而发愁?是否希望丰富简历中的项目经验,从而提高面试的通过?是否想尝试有技术含量的项目,以后为进大厂而准备?这就是我们实战训练营的初衷。京...

WSDM Cup 2020检索排序评测任务第一名经验总结

1.背景 第13届“国际网络搜索与数据挖掘会议”...本届会议论文录用仅约15%,并且WSDM历来注重前沿技术的落地应用,每届大会设有的WSDM Cup环节提供工业界真实场景中的数据和任务用以研究和评测。 今年的WSDM Cu...

【数据分析实践】Task 1.2 模型构建之集成模型

构建随机森林、GBDT、XGBoost和LightGBM这四个模型,并对每一个模型进行评分,评分方式任意,例如准确度和auc值。 本篇代码运行均建立在上一篇(【数据分析实践】 Task1.1 模型构建)代码的运行基础上 集成模型构建 ...

机器学习在马蜂窝酒店聚合中的应用初探

出门旅行,订酒店是必不可少的一个环节。住得干净、舒心对于每个出门在外的人来说都非常重要。在线预订酒店让这件事更加方便。当用户在马蜂窝打开一家选中的酒店时,不同供应商提供的预订信息会形成一...

用户复购行为预测--数据挖掘分析案例(天池/python)

–阿里天池新人赛中的一个,记录分享。 Repeat Buyers Prediction-Challenge the Baseline-天池大赛-阿里云天池 第一次提交:8简单特征,随机森林模型,...第三次提交:13特征,lightgbm模型,score:0.648646,排名...

敏捷开发V1.0.pptx

敏捷开发PPT 敏捷开发以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发。在敏捷开发中,软件项目在构建初期被切分成多个子项目,各个子项目的成果都经过测试,具备可视、可集成和可运行使用的特征。换言之,就是把一个大项目分为多个相互联系,但也可独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态。

javaweb mooc在线系统案例实战

讲解在线mooc系统的开发,从需求分析到类图设计,数据库设计,架构设计,代码编写等等。 掌握java web开发实战

Java之优雅编程之道

《Java之优雅编程之道》主要是针对有一定基础的Java学员。本课程主要是围绕着如何编写整洁的Java代码,如何实现Java代码重构,以及如何提高Java代码性能而展开的一系列课程。本课程结合自身的真实工作经验,从常用的注释,名字,集合,数组,方法等等开始讲起,由浅到深,层层深入。通过本课程的学习,可以帮助Java学员编写出整洁,规范,高效的代码。 《Java之优雅编程之道》通过本人在银行3年的工作经验总结,帮助Java开发工程师编写出规范,整洁,以及高性能的Java代码,让学员把这些工作经验运用到真实项目当中,提高学员的编程水平。

Notepad++ 7.9.1

notepad++是一个免费的、开放源码的文本和源代码编辑器。notepad++是用c++编程语言编写的,它以减少不必要的功能和简化过程而自豪,从而创建了一个轻便高效的文本记事本程序。实际上,这意味着高速和易访问的、用户友好的界面。 notepad++已经存在了将近20年,没有任何迹象表明它的受欢迎程度会下降。记事本绝对证明了你不需要投资在昂贵的软件来编写代码从舒适的自己的家。自己尝试一下,你就会明白为什么Notepad能坚持这么久。

微信dat文件解析工具.zip

使用java编写的,可以将电脑端微信的dat加密文件转换为png、jpg等图片资源,方便直接查看微信聊天记录文件。

简历模板大全

个人简历大全,满足各行业需求,可以根据自己实际情况任意进行修改。

个人简历模板

优质简历模板,目前最前全的模板收藏,需要换工作的小伙伴们可以试试

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

相关热词 c# 设置窗体为激活 c# 同步发送 c# 多进程 锁 c# 读取类的属性和值 c# out 使用限制 c#获取url的id c# update 集合 c# 公众号 菜单 c#for迭代 c#指针应用