在UEeditor编辑器中 手动输入一个链接 ,比如:http://123.com 。键盘空格后,会自动添加上A 标签(自动识别为超链接)。如何去掉

SweetYoMi 2020-01-02 04:17:20

在UEeditor编辑器中 手动输入一个链接 ,比如:http://123.com 。键盘空格后,会自动添加上A 标签(自动识别为超链接)。如何去掉?不自动添加A标签,不要让他自动识别为超链接。
...全文
302 2 打赏 收藏 转发到动态 举报
写回复
用AI写文章
2 条回复
切换为时间正序
请发表友善的回复…
发表回复
测试狂人 2021-04-27
  • 打赏
  • 举报
回复
解决了吗?过了这么久没有结帖,别浪费啊!
weixin_45804046 2020-01-02
  • 打赏
  • 举报
回复
Ctrl Z试试看管用不
【CNN-GRU-Attention】基于卷积神经网络和门控循环单元网络结合注意力机制的多变量回归预测研究(Matlab代码实现)内容概要:本文介绍了基于卷积神经网络(CNN)、门控循环单元网络(GRU)与注意力机制(Attention)相结合的多变量回归预测模型研究,重点利用Matlab实现该深度学习模型的构建与仿真。该模型通过CNN提取输入数据的局部特征,利用GRU捕捉时间序列的长期依赖关系,并引入注意力机制增强关键时间步的权重,从而提升多变量时间序列回归预测的精度与鲁棒性。文涵盖了模型架构设计、训练流程、参数调优及实际案例验证,适用于复杂非线性系统的预测任务。; 适合人群:具备一定机器学习与深度学习基础,熟悉Matlab编程环境,从事科研或工程应用的研究生、科研人员及算法工程师,尤其适合关注时间序列预测、能源预测、智能优化等方向的技术人员。; 使用场景及目标:①应用于风电功率预测、负荷预测、交通流量预测等多变量时间序列回归任务;②帮助读者掌握CNN-GRU-Attention混合模型的设计思路与Matlab实现方法;③为学术研究、毕业论文或项目开发提供可复现的代码参考和技术支持。; 阅读建议:建议读者结合Matlab代码逐模块理解模型实现细节,重点关注数据预处理、网络结构搭建与注意力机制的嵌入方式,并通过调整超参数和更换数据集进行实验验证,以深化对模型性能影响因素的理解。

87,996

社区成员

发帖
与我相关
我的任务
社区描述
Web 开发 JavaScript
社区管理员
  • JavaScript
  • 无·法
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧