Mastering+Java+Machine+Learning-Packt+Publishing(2017).epub下载

weixin_39822095 2020-06-19 01:30:19
Chapter 1, Machine Learning Review, is a refresher of basic concepts and techniques that the reader would have learned from Packt's Learning Machine Learning in Java or a similar text. This chapter is a review of concepts such as data, data transformation, sampling and bias, features and their impor
相关下载链接://download.csdn.net/download/windstand/10325649?utm_source=bbsseo
...全文
43 回复 打赏 收藏 转发到动态 举报
写回复
用AI写文章
回复
切换为时间正序
请发表友善的回复…
发表回复
Chapter 1, Machine Learning Review, is a refresher of basic concepts and techniques that the reader would have learned from Packt's Learning Machine Learning in Java or a similar text. This chapter is a review of concepts such as data, data transformation, sampling and bias, features and their importance, supervised learning, unsupervised learning, big data learning, stream and real-time learning, probabilistic graphic models, and semi-supervised learning. Chapter 2, Practical Approach to Real-World Supervised Learning, cobwebs dusted, dives straight into the vast field of supervised learning and the full spectrum of associated techniques. We cover the topics of feature selection and reduction, linear modeling, logistic models, non-linear models, SVM and kernels, ensemble learning techniques such as bagging and boosting, validation techniques and evaluation metrics, and model selection. Using WEKA and RapidMiner, we carry out a detailed case study, going through all the steps from data analysis to analysis of model performance. As in each of the other chapters, the case study is presented as an example to help the reader understand how the techniques introduced in the chapter are applied in real life. The dataset used in the case study is UCI HorseColic. Chapter 3, Unsupervised Machine Learning Techniques, presents many advanced methods in clustering and outlier techniques, with applications. Topics covered are feature selection and reduction in unsupervised data, clustering algorithms, evaluation methods in clustering, and anomaly detection using statistical, distance, and distribution techniques. At the end of the chapter, we perform a case study for both clustering and outlier detection using a real-world image dataset, MNIST. We use the Smile API to do feature reduction and ELKI for learning. Chapter 4, Semi-supervised Learning and Active Learning, gives details of algorithms and techniques for learning when only a small amount labeled data is present. Topics

13,654

社区成员

发帖
与我相关
我的任务
社区描述
CSDN 下载资源悬赏专区
其他 技术论坛(原bbs)
社区管理员
  • 下载资源悬赏专区社区
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧