在程控仪器中遇到的TCHAR的问题

cky77 2020-09-06 04:53:05
我最近在用MFC调VISA库发SCPI程控标准仪表设备。字符集用的UNICODE。


TCHAR sztestitem_scpi[200];
int nLength = lstrlen(sztestitem_scpi);
status = viWrite(instr, (ViBuf)(sztestitem_scpi), (ViUInt32)lstrlen(ztestitem_scpi), &writeCount);


此时发送正常,但是继续发送

strcpy_s(stringinput, ":SYST:ERR?\n");
status = viWrite(instr, (ViBuf)stringinput, (ViUInt32)strlen(stringinput), &writeCount);

设备显示指令错误。



char sztestitem_scpi[200];
int nLength1 = strlen(sztestitem_scpi);
status = viWrite(instr, (ViBuf)sztestitem_scpi, (ViUInt32)strlen(sztestitem_scpi), &writeCount);
if (status < VI_SUCCESS)
{
printf("Error writing to the device %d.\n", /*i +*/ 1);
status = viClose(instr);
}

strcpy_s(stringinput, ":SYST:ERR?\n");
status = viWrite(instr, (ViBuf)stringinput, (ViUInt32)strlen(stringinput), &writeCount);

就没有问题.

我想问下这是为什么呢?nLength1和nLength长度都一样。wchar_t会影响指令正确性吗?还有SCPI指令最后要求以换行符作为结尾。我在发的时候也没在指令尾部加“\n”怎么也是正确的。。我有点搞不懂,求教

...全文
238 5 打赏 收藏 转发到动态 举报
AI 作业
写回复
用AI写文章
5 条回复
切换为时间正序
请发表友善的回复…
发表回复
cky77 2020-10-27
  • 打赏
  • 举报
回复
因为部分仪器不支持:SYST:ERR?\n这个错误查询功能
zgl7903 2020-09-07
  • 打赏
  • 举报
回复
SCPI命令 须以 \r, \n, \r\n 三者之一结束 NI IO Trace 可以监视调用的函数、传递的参数和 返回值
cky77 2020-09-06
  • 打赏
  • 举报
回复
引用 1 楼 zgl7903 的回复:
char sztestitem_scpi[200];
int nLength1 = strlen(sztestitem_scpi);
字符串都没有初始化, DEBUG版本下和RELEASE版本下会表现出不一样的结果吧
设置断点看看,估计是空字符串,就没有发送出去

UNICODE 下使用 char, char* CStringA

正确执行和不正确执行的仪器反应都是对的,就是已经操作成功。所以我怀疑是别的啥问题,比如\n这些...搞不懂
cky77 2020-09-06
  • 打赏
  • 举报
回复
引用 1 楼 zgl7903 的回复:
char sztestitem_scpi[200];
int nLength1 = strlen(sztestitem_scpi);
字符串都没有初始化, DEBUG版本下和RELEASE版本下会表现出不一样的结果吧
设置断点看看,估计是空字符串,就没有发送出去

UNICODE 下使用 char, char* CStringA


不是这个哦,我没写全..两种发送的长度都是一样的。不是低级错误的
zgl7903 2020-09-06
  • 打赏
  • 举报
回复
char sztestitem_scpi[200];
int nLength1 = strlen(sztestitem_scpi);
字符串都没有初始化, DEBUG版本下和RELEASE版本下会表现出不一样的结果吧
设置断点看看,估计是空字符串,就没有发送出去

UNICODE 下使用 char, char* CStringA

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在计算机视觉领域,实时目标跟踪是许多应用的核心任务,例如监控系统、自动驾驶汽车和无人机导航等。本文将重点介绍一种在2017年备受关注的高效目标跟踪算法——BACF(Boosted Adaptive Clustering Filter)。该算法因其卓越的实时性和高精度而脱颖而出,其核心代码是用MATLAB编写的。 BACF算法全称为Boosted Adaptive Clustering Filter,是基于卡尔曼滤波器改进的一种算法。传统卡尔曼滤波在处理复杂背景和目标形变时存在局限性,而BACF通过引入自适应聚类和Boosting策略,显著提升了对目标特征的捕获和跟踪能力。 自适应聚类是BACF算法的关键技术之一。它通过动态更新特征空间的聚类心,更准确地捕捉目标的外观变化,从而在光照变化、遮挡和目标形变等复杂情况下保持跟踪的稳定性。此外,BACF还采用了Boosting策略。Boosting是一种集成学习方法,通过组合多个弱分类器形成强分类器。在BACF,Boosting用于优化目标检测性能,动态调整特征权重,强化对目标识别贡献大的特征,从而提高跟踪精度。BACF算法在设计时充分考虑了计算效率,能够在保持高精度的同时实现快速实时的目标跟踪,这对于需要快速响应的应用场景(如视频监控和自动驾驶)至关重要。 MATLAB作为一种强大的数学计算和数据分析工具,非常适合用于算法的原型开发和测试。BACF算法的MATLAB实现提供了清晰的代码结构,方便研究人员理解其工作原理并进行优化和扩展。通常,BACF的MATLAB源码包含以下部分:主函数(实现整个跟踪算法的核心代码)、特征提取模块(从视频帧提取目标特征的子程序)、聚类算法(实现自适应聚类过程)、Boosting算法(包含特征权重更新的代
内容概要:本书《Deep Reinforcement Learning with Guaranteed Performance》探讨了基于李雅普诺夫方法的深度强化学习及其在非线性系统最优控制的应用。书提出了一种近似最优自适应控制方法,结合泰勒展开、神经网络、估计器设计及滑模控制思想,解决了不同场景下的跟踪控制问题。该方法不仅保证了性能指标的渐近收敛,还确保了跟踪误差的渐近收敛至零。此外,书还涉及了执行器饱和、冗余解析等问题,并提出了新的冗余解析方法,验证了所提方法的有效性和优越性。 适合人群:研究生及以上学历的研究人员,特别是从事自适应/最优控制、机器人学和动态神经网络领域的学术界和工业界研究人员。 使用场景及目标:①研究非线性系统的最优控制问题,特别是在存在输入约束和系统动力学的情况下;②解决带有参数不确定性的线性和非线性系统的跟踪控制问题;③探索基于李雅普诺夫方法的深度强化学习在非线性系统控制的应用;④设计和验证针对冗余机械臂的新型冗余解析方法。 其他说明:本书分为七章,每章内容相对独立,便于读者理解。书不仅提供了理论分析,还通过实际应用(如欠驱动船舶、冗余机械臂)验证了所提方法的有效性。此外,作者鼓励读者通过仿真和实验进一步验证书提出的理论和技术。

16,548

社区成员

发帖
与我相关
我的任务
社区描述
VC/MFC相关问题讨论
社区管理员
  • 基础类社区
  • AIGC Browser
  • encoderlee
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告

        VC/MFC社区版块或许是CSDN最“古老”的版块了,记忆之中,与CSDN的年龄几乎差不多。随着时间的推移,MFC技术渐渐的偏离了开发主流,若干年之后的今天,当我们面对着微软的这个经典之笔,内心充满着敬意,那些曾经的记忆,可以说代表着二十年前曾经的辉煌……
        向经典致敬,或许是老一代程序员内心里面难以释怀的感受。互联网大行其道的今天,我们期待着MFC技术能够恢复其曾经的辉煌,或许这个期待会永远成为一种“梦想”,或许一切皆有可能……
        我们希望这个版块可以很好的适配Web时代,期待更好的互联网技术能够使得MFC技术框架得以重现活力,……

试试用AI创作助手写篇文章吧