求签发数字证书的源代码

topbit 2003-08-26 09:54:48
求签发数字证书的源代码。
...全文
81 4 打赏 收藏 转发到动态 举报
写回复
用AI写文章
4 条回复
切换为时间正序
请发表友善的回复…
发表回复
匪六哥 2004-03-19
  • 打赏
  • 举报
回复
我到是有,自己开发的,在单机上运行!
liad 2003-08-26
  • 打赏
  • 举报
回复
可以参考一下oreilly的《Java Examples in a Nutshell 2nd》的第六章
cql0007 2003-08-26
  • 打赏
  • 举报
回复
代码出自:javahui兄
我用过这段代码,去掉原先的签名,自己给它重新设签名,一切正常.有问题可以再一起探讨

不过我的是APPLET的签名的,你要作些改动的

用JDK1.4开发数字签名的Swing Applet
1) 写代码
我们准备开发一个既是APPLET又是APPLICATION的程序,使得程序既能在浏览器中运行,直接双击JAR文件也可以运行。
程序界面采用了SWING控件,使用JInternalFrame来展示通过文件选择框指定的GIF或JPG图片。
程序文件:Jtest.java, ExampleFileFilter.java。
程序编译完成后,假定所有的class文件位于d:\myapplet下面。

2)生成jar文件
创建一个manifest.mf文件位于d:\myapplet下面,文件内容:
Manifest-Version: 1.0
Main-Class: Jtest
Created-By: 1.4.0-beta2 (Sun Microsystems Inc.)
执行命令:jar cvfm manifest.mf Jtest.jar *.class
则生成Jtest.jar文件,此时双击该文件即能以application的形式运行。

3)准备HTML文件
创建一个HTML文件Jtest.htm, 位于d:\myapplet下面,文件内容:
<HTML>
<HEAD>
</HEAD>
<BODY >
<CENTER>
<APPLET code= "Jtest.class" codebase= "." archive ="Jtest.jar" width= 0 height="0">
</APPLET>
</CENTER>
</BODY>
</HTML>
然后需要使用JDK1.4附带的HtmlConverter.exe转换Jtest.htm,使得浏览器能自动下载SUN的JRE1.4。
执行命令:htmlconverter Jtest.htm,生成的Jtest.htm自动包含了下载插件的代码。

4) 数字签名
首先是生成公/私密钥对:
keytool –genkey –alias yourname –keypass yourpassword
其中的yourname为密钥的别名,yourpassword为密码,按照提示输入签名信息。然后执行:

如果需要导出证书,则执行命令:
keytool –export –alias yourname –file yourname.cer
生成的yourname.cer即为证书文件。不过签名APPLET可以不需要这一步。

然后就是对JAR文件进行签名:
jarsigner Jtest.jar yourname
需要输入你在上面步骤中提供的密码。

至此签名已经成功。无论是直接打开Jtest.htm文件还是通过服务器下载Jtest.htm和Jtest.jar执行applet,首先会弹出一个提示框,如果用户点接受,则APPLET可以访问本地文件系统以及做其它事情,如果点拒绝则不能访问本地文件系统。当然,如果点总是接受,则以后运行同一个APPLET的时候不会出现提示,自动 拥有权限。
lfb1978 2003-08-26
  • 打赏
  • 举报
回复
兄弟,有了这个你自己差不多就可以自建一个小CA了,我们可是几个人干了好几个月才做出来的,自己好好研究一下x.509,asn1吧,很难向你提供这种帮助。
象你这样做开发太容易了,自己多动动脑子吧。
# 本书共分9章,主要内容如下: # 第一章 # 解决的主要问题 # 运行本书的程序需要哪些软件? # 主要内容 # 介绍本书所使用的主要软件及其安装和配置 # 第二章 # 解决的主要问题——内容的安全性 # 数据在网上传递怎么样防止被黑客窃取听到? # 硬盘上的文件中有敏感数据,如何防止被黑客看到? # 主要内容 # 本章解决的是数据内容的安全性,介绍Java的加密和解密技术。学完该章可以通过Java编程对各种数据进行各种形式的加密。密码学也是安全机制的基础。 # 第三章 # 解决的主要问题——和源代码相关的安全性 # 编写好的程序给用户后,用户如果能反编译出源代码怎么办? # 定义类、成员变量、方法时如何防止恶意或无意的攻击? # 主要内容 # 本章解决的是和源代码相关的保护。包括源代码、类、成员变量、方法的保护。通过常用的反编译工具加强对源代码保护的认识,使用混淆器和加密等方式对源代码作了初步保护。同时演示了编写程序时如何考虑攻击者对类、成员变量、方法等方面的攻击。 # 第四章 # 解决的主要问题——确定数据的完整性和所有者 # 网上下载了一个程序,如何确定它确实是某某公司开发的? # 如何确定黑客没有将程序修改过? # 某公司或人发来一个文件,后来他不承认发过这个文件怎么办? # 主要内容 # 第四章起开始介绍和身份认证相关的技术。包括身份确定性、不可篡改性、不可否认性等,该章介绍的消息摘要和签名技术可解决这些问题。 # 第五章、第六章 # 解决的主要问题——数字化身份的凭证 # 实际应用中如何方便地使用摘要和签名技术? # 如何确定某个签名确实是某个人或机构的? # 主要内容 # 第五章和第六章介绍基于摘要和签名技术的数字证书。这是Java安全中确定身份的主要技术。其中第五章介绍了数字证书的创建、签发、验证和维护等,第六章介绍了多个证书组成的证书链(CertPath)的创建和验证。 # 第七章 # 解决的主要问题——数据安全传输,服务器和用户身份的确定 # 客户机和服务器之间的通信如何自动进行加密传输? # 客户机和服务器之间的通信如何相互确定身份? # 浏览器访问一个站点,如何确定这个站点不是黑客的服务器? # 主要内容 # 本章介绍介绍使用加密技术和证书机制的一个实际应用,基于SSL和HTTPS的编程。学完本章可以编写自己的SSL和HTTPS客户及服务器程序。 # 第八章 # 解决的主要问题——基于代码来源的程序的安全运行 # 网上下载了一个程序,运行时会不会删除我的文件,或将某些文件泄漏给黑客? # 编写了一个Java Applet,如何让其能访问硬盘上的文件? # 主要内容 # 本章介绍基于代码来源的程序的安全运行,可以基于运行时代码在哪个URL、或代码是谁签名的限制其可以访问哪些用户资源。还介绍了定义自己的权限以及签名Java Applet。 # 第九章 # 解决的主要问题——身份验证和基于执行者身份的程序的安全运行 # 程序需要用户输入账号和口令到数据库登录,但以后可能需要改为智能卡验证。 # 程序需要访问某个用户资源,但只有用户以某些特殊身份登录时才需要该权限。 # 主要内容 # 本章介绍Java验证和授权服务(JAAS),可以方便地更换验证模块,并实现基于身份的授权。
openssl-1.0.0a源代码  SSL是Secure Socket Layer(安全套接层协议)的缩写,可以在Internet上提供秘密性传输。Netscape公司在推出第一个Web浏览器的同时,提出了SSL协议标准,目前已有3.0版本。SSL采用公开密钥技术。其目标是保证两个应用间通信的保密性和可靠性,可在服务器端和用户端同时实现支持。目前,利用公开密钥技术的SSL协议,已成为Internet上保密通讯的工业标准。安全套接层协议能使用户/服务器应用之间的通信不被攻击者窃听,并且始终对服务器进行认证,还可选择对用户进行认证。SSL协议要建立在可靠的传输层协议(TCP)之上。SSL协议的优势在于它是与应用层协议独立无关的,高层的应用层协议(例如:HTTP,FTP,TELNET等)能透明地建立于SSL协议之上。SSL协议在应用层协议通信之前就已经完成加密算法、通信密钥的协商及服务器认证工作。在此之后应用层协议所传送的数据都会被加密,从而保证通信的私密性。通过以上叙述,SSL协议提供的安全信道有以下三个特性: 1.数据的保密性 信息加密就是把明码的输入文件用加密算法转换成加密的文件以实现数据的保密。加密的过程需要用到密钥来加密数据然后再解密。没有了密钥,就无法解开加密的数据。数据加密之后,只有密钥要用一个安全的方法传送。加密过的数据可以公开地传送。 2.数据的一致性 加密也能保证数据的一致性。例如:消息验证码(MAC),能够校验用户提供的加密信息,接收者可以用MAC来校验加密数据,保证数据在传输过程中没有被篡改过。 3.安全验证 加密的另外一个用途是用来作为个人的标识,用户的密钥可以作为他的安全验证的标识。SSL是利用公开密钥的加密技术(RSA)来作为用户端与服务器端在传送机密资料时的加密通讯协定。   什么是OpenSSL    众多的密码算法、公钥基础设施标准以及SSL协议,或许这些有趣的功能会让你产生实现所有这些算法和标准的想法。果真如此,在对你表示敬佩的同时,还是忍不住提醒你:这是一个令人望而生畏的过程。这个工作不再是简单的读懂几本密码学专著和协议文档那么简单,而是要理解所有这些算法、标准和协议文档的每一个细节,并用你可能很熟悉的C语言字符一个一个去实现这些定义和过程。我们不知道你将需要多少时间来完成这项有趣而可怕的工作,但肯定不是一年两年的问题。   首先,应该感谢Eric A. Young和Tim J. Hudson,他们自1995年开始编写后来具有巨大影响的OpenSSL软件包,更令我们高兴的是,这是一个没有太多限制的开放源代码的软件包,这使得我们可以利用这个软件包做很多事情。Eric A. Young 和Tim J. Hudson是加拿大人,后来由于写OpenSSL功成名就之后就到大公司里赚大钱去了。1998年,OpenSSL项目组接管了OpenSSL的开发工作,并推出了OpenSSL的0.9.1版,到目前为止,OpenSSL的算法已经非常完善,对SSL2.0、SSL3.0以及TLS1.0都支持。   OpenSSL采用C语言作为开发语言,这使得OpenSSL具有优秀的跨平台性能,这对于广大技术人员来说是一件非常美妙的事情,可以在不同的平台使用同样熟悉的东西。OpenSSL支持Linux、Windows、BSD、Mac、VMS等平台,这使得OpenSSL具有广泛的适用性。不过,对于目前新成长起来的C++程序员,可能对于C语言的代码不是很习惯,但习惯C语言总比使用C++重新写一个跟OpenSSL相同功能的软件包轻松不少。   OpenSSL整个软件包大概可以分成三个主要的功能部分:密码算法库、SSL协议库以及应用程序。OpenSSL的目录结构自然也是围绕这三个功能部分进行规划的。   作为一个基于密码学的安全开发包,OpenSSL提供的功能相当强大和全面,囊括了主要的密码算法、常用的密钥和证书封装管理功能以及SSL协议,并提供了丰富的应用程序供测试或其它目的使用。 [编辑本段]对称加密算法   OpenSSL一共提供了8种对称加密算法,其中7种是分组加密算法,仅有的一种流加密算法是RC4。这7种分组加密算法分别是AES、DES、Blowfish、CAST、IDEA、RC2、RC5,都支持电子密码本模式(ECB)、加密分组链接模式(CBC)、加密反馈模式(CFB)和输出反馈模式(OFB)四种常用的分组密码加密模式。其中,AES使用的加密反馈模式(CFB)和输出反馈模式(OFB)分组长度是128位,其它算法使用的则是64位。事实上,DES算法里面不仅仅是常用的DES算法,还支持三个密钥和两个密钥3DES算法。 [编辑本段]非对称加密算法   OpenSSL一共实现了4种非对称加密算法,包括DH算法、RSA算法、DSA算法和椭圆曲线算法(EC)。DH算法一般用户密钥交换。RSA算法既可以用于密钥交换,也可以用于数字签名,当然,如果你能够忍受其缓慢的速度,那么也可以用于数据加密。DSA算法则一般只用于数字签名。 [编辑本段]信息摘要算法   OpenSSL实现了5种信息摘要算法,分别是MD2、MD5、MDC2、SHA(SHA1)和RIPEMD。SHA算法事实上包括了SHA和SHA1两种信息摘要算法,此外,OpenSSL还实现了DSS标准中规定的两种信息摘要算法DSS和DSS1。 [编辑本段]密钥和证书管理   密钥和证书管理是PKI的一个重要组成部分,OpenSSL为之提供了丰富的功能,支持多种标准。   首先,OpenSSL实现了ASN.1的证书和密钥相关标准,提供了对证书、公钥、私钥、证书请以及CRL等数据对象的DER、PEM和BASE64的编解码功能。OpenSSL提供了产生各种公开密钥对和对称密钥的方法、函数和应用程序,同时提供了对公钥和私钥的DER编解码功能。并实现了私钥的PKCS#12和PKCS#8的编解码功能。OpenSSL在标准中提供了对私钥的加密保护功能,使得密钥可以安全地进行存储和分发。   在此基础上,OpenSSL实现了对证书的X.509标准编解码、PKCS#12格式的编解码以及PKCS#7的编解码功能。并提供了一种文本数据库,支持证书的管理功能,包括证书密钥产生、请产生、证书签发、吊销和验证等功能。   事实上,OpenSSL提供的CA应用程序就是一个小型的证书管理中心(CA),实现了证书签发的整个流程和证书管理的大部分机制。   5.SSL和TLS协议   OpenSSL实现了SSL协议的SSLv2和SSLv3,支持了其中绝大部分算法协议。OpenSSL也实现了TLSv1.0,TLS是SSLv3的标准化版,虽然区别不大,但毕竟有很多细节不尽相同。   虽然已经有众多的软件实现了OpenSSL的功能,但是OpenSSL里面实现的SSL协议能够让我们对SSL协议有一个更加清楚的认识,因为至少存在两点:一是OpenSSL实现的SSL协议是开放源代码的,我们可以追究SSL协议实现的每一个细节;二是OpenSSL实现的SSL协议是纯粹的SSL协议,没有跟其它协议(如HTTP)协议结合在一起,澄清了SSL协议的本来面目。 [编辑本段]应用程序   OpenSSL的应用程序已经成为了OpenSSL重要的一个组成部分,其重要性恐怕是OpenSSL的开发者开始没有想到的。现在OpenSSL的应用中,很多都是基于OpenSSL的应用程序而不是其API的,如OpenCA,就是完全使用OpenSSL的应用程序实现的。OpenSSL的应用程序是基于OpenSSL的密码算法库和SSL协议库写成的,所以也是一些非常好的OpenSSL的API使用范例,读懂所有这些范例,你对OpenSSL的API使用了解就比较全面了,当然,这也是一项锻炼你的意志力的工作。   OpenSSL的应用程序提供了相对全面的功能,在相当多的人看来,OpenSSL已经为自己做好了一切,不需要再做更多的开发工作了,所以,他们也把这些应用程序成为OpenSSL的指令。OpenSSL的应用程序主要包括密钥生成、证书管理、格式转换、数据加密和签名、SSL测试以及其它辅助配置功能。   7.Engine机制 Engine机制的出现是在OpenSSL的0.9.6版的事情,开始的时候是将普通版本跟支持Engine的版本分开的,到了OpenSSL的0.9.7版,Engine机制集成到了OpenSSL的内核中,成为了OpenSSL不可缺少的一部分。 Engine机制目的是为了使OpenSSL能够透明地使用第三方提供的软件加密库或者硬件加密设备进行加密。OpenSSL的Engine机制成功地达到了这个目的,这使得OpenSSL已经不仅仅使一个加密库,而是提供了一个通用地加密接口,能够与绝大部分加密库或者加密设备协调工作。当然,要使特定加密库或加密设备更OpenSSL协调工作,需要写少量的接口代码,但是这样的工作量并不大,虽然还是需要一点密码学的知识。Engine机制的功能跟Windows提供的CSP功能目标是基本相同的。目前,OpenSSL的0.9.7版本支持的内嵌第三方加密设备有8种,包括:CryptoSwift、nCipher、Atalla、Nuron、UBSEC、Aep、SureWare以及IBM 4758 CCA的硬件加密设备。现在还出现了支持PKCS#11接口的Engine接口,支持微软CryptoAPI的接口也有人进行开发。当然,所有上述Engine接口支持不一定很全面,比如,可能支持其中一两种公开密钥算法。 [编辑本段]辅助功能   BIO机制是OpenSSL提供的一种高层IO接口,该接口封装了几乎所有类型的IO接口,如内存访问、文件访问以及Socket等。这使得代码的重用性大幅度提高,OpenSSL提供API的复杂性也降低了很多。   OpenSSL对于随机数的生成和管理也提供了一整套的解决方法和支持API函数。随机数的好坏是决定一个密钥是否安全的重要前提。   OpenSSL还提供了其它的一些辅助功能,如从口令生成密钥的API,证书签发和管理中的配置文件机制等等。如果你有足够的耐心,将会在深入使用OpenSSL的过程慢慢发现很多这样的小功能,让你不断有新的惊喜。
Kubernetes是Google开源的一个容器编排引擎,它支持自动化部署、大规模可伸缩、应用容器化管理。在生产环境中部署一个应用程序时,通常要部署该应用的多个实例以便对应用请进行负载均衡。在Kubernetes中,我们可以创建多个容器,每个容器里面运行一个应用实例,然后通过内置的负载均衡策略,实现对这一组应用实例的管理、发现、访问,而这些细节都不需要运维人员去进行复杂的手工配置和处理。虽说我们可以使用比如Kubeadm工具可以简化k8s集群的部署,但这却对我们k8s的各个组件如何协同工作,及排错造成困扰。本套课程主要是以二进制的方式来一步步的安装k8s的集群,来加深我们对K8s集群进一步的理解。同时也可以作为我们生产部署的一种方式。知识讲解:   1.   概述了K8s的集群的一个整体架构。 2. 为了实现各个组件的通信,讲解了如何为各组件签发证书、配置kubeconfig、和产生加密的key及密钥。 3. Etcd键值存储集群的部署。 4. K8s的主节点的三大组件一步步的部署。 5. K8s的worker节点的三大组件及flannel网络插件部署。 6. 部署kube coredns作为k8s内部的域名解析。注意:本课程学习需要具有一定的Linux基础,**是学习过K8s集群或者在使用K8S使用有一段时间的。这样可以更好的理解本套课程内容。
  什么是OpenSSL   众多的密码算法、公钥基础设施标准以及SSL协议,或许这些有趣的功能会让你产生实现所有这些算法和标准的想法。果真如此,在对你表示敬佩的同时,还是忍不住提醒你:这是一个令人望而生畏的过程。这个工作不再是简单的读懂几本密码学专著和协议文档那么简单,而是要理解所有这些算法、标准和协议文档的每一个细节,并用你可能很熟悉的C语言字符一个一个去实现这些定义和过程。我们不知道你将需要多少时间来完成这项有趣而可怕的工作,但肯定不是一年两年的问题。   首先,应该感谢Eric A. Young和Tim J. Hudson,他们自1995年开始编写后来具有巨大影响的OpenSSL软件包,更令我们高兴的是,这是一个没有太多限制的开放源代码的软件包,这使得我们可以利用这个软件包做很多事情。Eric A. Young 和Tim J. Hudson是加拿大人,后来由于写OpenSSL功成名就之后就到大公司里赚大钱去了。1998年,OpenSSL项目组接管了OpenSSL的开发工作,并推出了OpenSSL的0.9.1版,到目前为止,OpenSSL的算法已经非常完善,对SSL2.0、SSL3.0以及TLS1.0都支持。   OpenSSL采用C语言作为开发语言,这使得OpenSSL具有优秀的跨平台性能,这对于广大技术人员来说是一件非常美妙的事情,可以在不同的平台使用同样熟悉的东西。OpenSSL支持Linux、Windows、BSD、Mac、VMS等平台,这使得OpenSSL具有广泛的适用性。不过,对于目前新成长起来的C++程序员,可能对于C语言的代码不是很习惯,但习惯C语言总比使用C++重新写一个跟OpenSSL相同功能的软件包轻松不少。   OpenSSL的基本功能   OpenSSL整个软件包大概可以分成三个主要的功能部分:密码算法库、SSL协议库以及应用程序。OpenSSL的目录结构自然也是围绕这三个功能部分进行规划的。   作为一个基于密码学的安全开发包,OpenSSL提供的功能相当强大和全面,囊括了主要的密码算法、常用的密钥和证书封装管理功能以及SSL协议,并提供了丰富的应用程序供测试或其它目的使用。   1.对称加密算法 OpenSSL一共提供了8种对称加密算法,其中7种是分组加密算法,仅有的一种流加密算法是RC4。这7种分组加密算法分别是AES、DES、Blowfish、CAST、IDEA、RC2、RC5,都支持电子密码本模式(ECB)、加密分组链接模式(CBC)、加密反馈模式(CFB)和输出反馈模式(OFB)四种常用的分组密码加密模式。其中,AES使用的加密反馈模式(CFB)和输出反馈模式(OFB)分组长度是128位,其它算法使用的则是64位。事实上,DES算法里面不仅仅是常用的DES算法,还支持三个密钥和两个密钥3DES算法。   2.非对称加密算法 OpenSSL一共实现了4种非对称加密算法,包括DH算法、RSA算法、DSA算法和椭圆曲线算法(EC)。DH算法一般用户密钥交换。RSA算法既可以用于密钥交换,也可以用于数字签名,当然,如果你能够忍受其缓慢的速度,那么也可以用于数据加密。DSA算法则一般只用于数字签名。   3.信息摘要算法 OpenSSL实现了5种信息摘要算法,分别是MD2、MD5、MDC2、SHA(SHA1)和RIPEMD。SHA算法事实上包括了SHA和SHA1两种信息摘要算法,此外,OpenSSL还实现了DSS标准中规定的两种信息摘要算法DSS和DSS1。   4.密钥和证书管理 密钥和证书管理是PKI的一个重要组成部分,OpenSSL为之提供了丰富的功能,支持多种标准。 首先,OpenSSL实现了ASN.1的证书和密钥相关标准,提供了对证书、公钥、私钥、证书请以及CRL等数据对象的DER、PEM和BASE64的编解码功能。OpenSSL提供了产生各种公开密钥对和对称密钥的方法、函数和应用程序,同时提供了对公钥和私钥的DER编解码功能。并实现了私钥的PKCS#12和PKCS#8的编解码功能。OpenSSL在标准中提供了对私钥的加密保护功能,使得密钥可以安全地进行存储和分发。 在此基础上,OpenSSL实现了对证书的X.509标准编解码、PKCS#12格式的编解码以及PKCS#7的编解码功能。并提供了一种文本数据库,支持证书的管理功能,包括证书密钥产生、请产生、证书签发、吊销和验证等功能。 事实上,OpenSSL提供的CA应用程序就是一个小型的证书管理中心(CA),实现了证书签发的整个流程和证书管理的大部分机制。   5.SSL和TLS协议 OpenSSL实现了SSL协议的SSLv2和SSLv3,支持了其中绝大部分算法协议。OpenSSL也实现了TLSv1.0,TLS是SSLv3的标准化版,虽然区别不大,但毕竟有很多细节不尽相同。 虽然已经有众多的软件实现了OpenSSL的功能,但是OpenSSL里面实现的SSL协议能够让我们对SSL协议有一个更加清楚的认识,因为至少存在两点:一是OpenSSL实现的SSL协议是开放源代码的,我们可以追究SSL协议实现的每一个细节;二是OpenSSL实现的SSL协议是纯粹的SSL协议,没有跟其它协议(如HTTP)协议结合在一起,澄清了SSL协议的本来面目。   6.应用程序 OpenSSL的应用程序已经成为了OpenSSL重要的一个组成部分,其重要性恐怕是OpenSSL的开发者开始没有想到的。现在OpenSSL的应用中,很多都是基于OpenSSL的应用程序而不是其API的,如OpenCA,就是完全使用OpenSSL的应用程序实现的。OpenSSL的应用程序是基于OpenSSL的密码算法库和SSL协议库写成的,所以也是一些非常好的OpenSSL的API使用范例,读懂所有这些范例,你对OpenSSL的API使用了解就比较全面了,当然,这也是一项锻炼你的意志力的工作。 OpenSSL的应用程序提供了相对全面的功能,在相当多的人看来,OpenSSL已经为自己做好了一切,不需要再做更多的开发工作了,所以,他们也把这些应用程序成为OpenSSL的指令。OpenSSL的应用程序主要包括密钥生成、证书管理、格式转换、数据加密和签名、SSL测试以及其它辅助配置功能。 7.Engine机制 Engine机制的出现是在OpenSSL的0.9.6版的事情,开始的时候是将普通版本跟支持Engine的版本分开的,到了OpenSSL的0.9.7版,Engine机制集成到了OpenSSL的内核中,成为了OpenSSL不可缺少的一部分。 Engine机制目的是为了使OpenSSL能够透明地使用第三方提供的软件加密库或者硬件加密设备进行加密。OpenSSL的Engine机制成功地达到了这个目的,这使得OpenSSL已经不仅仅使一个加密库,而是提供了一个通用地加密接口,能够与绝大部分加密库或者加密设备协调工作。当然,要使特定加密库或加密设备更OpenSSL协调工作,需要写少量的接口代码,但是这样的工作量并不大,虽然还是需要一点密码学的知识。Engine机制的功能跟Windows提供的CSP功能目标是基本相同的。目前,OpenSSL的0.9.7版本支持的内嵌第三方加密设备有8种,包括:CryptoSwift、nCipher、Atalla、Nuron、UBSEC、Aep、SureWare以及IBM 4758 CCA的硬件加密设备。现在还出现了支持PKCS#11接口的Engine接口,支持微软CryptoAPI的接口也有人进行开发。当然,所有上述Engine接口支持不一定很全面,比如,可能支持其中一两种公开密钥算法。 8.辅助功能 BIO机制是OpenSSL提供的一种高层IO接口,该接口封装了几乎所有类型的IO接口,如内存访问、文件访问以及Socket等。这使得代码的重用性大幅度提高,OpenSSL提供API的复杂性也降低了很多。 OpenSSL对于随机数的生成和管理也提供了一整套的解决方法和支持API函数。随机数的好坏是决定一个密钥是否安全的重要前提。 OpenSSL还提供了其它的一些辅助功能,如从口令生成密钥的API,证书签发和管理中的配置文件机制等等。如果你有足够的耐心,将会在深入使用OpenSSL的过程慢慢发现很多这样的小功能,让你不断有新的惊喜。

62,614

社区成员

发帖
与我相关
我的任务
社区描述
Java 2 Standard Edition
社区管理员
  • Java SE
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧