CSDN论坛 > Delphi > VCL组件开发及应用

表达式a[x]:=a[x]+b[c[y]]如何表达 [问题点数:20分,结帖人wwjlucky]

Bbs1
本版专家分:14
结帖率 98.21%
CSDN今日推荐
Bbs6
本版专家分:8448
Bbs5
本版专家分:2377
Bbs5
本版专家分:2564
匿名用户不能发表回复!
其他相关推荐
中缀表达式X=A+B*(C-(D+F))/E转后缀表达式之后是什么?
中缀表达式X=A+B*(C-(D+F))/E转后缀表达式之后是什么? ABCDF+-*E/+ ABDF+C-*E/+ ABDF+C*-E/+ ABDF+C*-E+/ 正确答案:A A+B*(C-(D+F))/E 1,读到A,直接输出A 2,读到+,放入栈中 3,读到B,直接输出,此时栈中有+ ,输出AB 4,读到*,因为
捕获异常。
自定义类Sanj,其中有成员 x,y,z,作为三边长,构造方法Sanj(a,b,c)分别给x,y,z赋值,方法求面积getArea和显示三角形信息(三个边长)showInfo,这2个方法中当三条边不能构成一个三角形时要抛出自定义异常NotSanjiaoException,否则显示正确信息。在另外一个类中的主方法中构造一个Sanj对象(三边为命令行输入的三个整数),显示三角形信息和面积,要求捕获异常。
hdu1695 GCD(反演)
Problem Description Given 5 integers: a, b, c, d, k, you’re to find x in a…b, y in c…d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be ver
A^X mod P 山东省赛,打表求解
给一个链接:http://acm.upc.edu.cn/problem.php?id=2219 就是给一个公式,求冪取余。 拿到则这个题的时候,感觉挺简单的,n的范围是10^6,而qmod的复杂度为log2 N=30左右,所以,应该不会TLE吧,可惜还是TLE了。看来1s只能处理10^6的数量级的复杂度了,10^7就会TLE了。 反正我是想不到这种方法了。因为我以为, 时间复杂度已经到达极限
题目:两个乒乓球队进行比赛,各出三人。甲队为a,b,c三人,乙队为x,y,z三人。已抽签决定比赛名单。有人向队员打听比赛的名单。a说他不和x比,c说他不和x,z比,请编程序找出三队赛手的名单。
此类题目放在博客上,便于自己回顾,或者别人借鉴、学习。 **题目:两个乒乓球队进行比赛,各出三人。甲队为a,b,c三人,乙队为x,y,z三人。已抽签决定比赛名单。有人向队员打听比赛的名单。a说他不和x比,c说他不和x,z比,请编程序找出三队赛手的名单。**for(char i ='x';i<='z';i++){ for(char j ='x';j<='z';j++){ if(
动态规划法(三)——最长公共子序列
问题描述 给定两个序列,求出它们的最长公共子序列。 如:序列X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a},则X和Y的最长公共子序列为{b,c,b,a}子序列:子序列为原序列的一个子集,并不要求连续,但要求子序列中元素的顺序和原序列元素的顺序一致。 定理 设两个序列分别是X={x1,x2……,xm},Y={y1,y2……,yn},它们的最长公共子序列为Z={z1,z
C语言scanf()函数:格式化输入函数
头文件:#include scanf() 函数用来格式化输入数据,即按用户指定的格式从键盘上把数据读入到指定的变量中。其原型为: int scanf ( char * format [ ,argument, ... ]); 其调用格式为:      scanf("",); scanf()函数返回成功赋值的数据项数,出错时则返回EOF 【参数】format为格式化控制字符串,可以
C语言程序设计测试2 (附参考答案)
C语言程序设计测试2 (附参考答案)范围:     1~6章试题 一、单项选择题(1~30题,每题1分;31~40题,每题2分;共50分)1. 若有以下定义: char s=/072; 则该语句: (A) 使s的值包含1个字符  (B) 定义不合法,s的值不确定 (C) 使s的值包含4个字符  (D)  使s的值包含3个字符 2.以下的选项中,非法的C语言转义字符是: (A)/t
一个多项式a+b*x+c*x^2+d*x^3+...,输入该多项式的系数和x的值后打印出这个多项式的值。
实现一个多项式a+b*x+c*x^2+d*x^3+...,要求输入该多项式的系数和x的值后打印出这个多项式的值。(实际上就是递归)。 n=0时: num[0] n=1时: num[0]+num[1]*x; n=2时: num[0]+(num[1]+num[2]*x)*x; #include using namespace std; int temp,n,x; int num[1
matlab求解非线性方程组
利用MATLAB求解求非线性方程组 solve('a*x^2 + b*x + c','x') solve('a*x^2 + b*x + c','b') S=solve('x^3 + y^3 = 1','sin(x) - 11*y = 5','x','y')
关闭
关闭