关于傅立叶算法的一个细节问题(快速,蝶形)。在线等待。
以下是傅立叶算法:(用在图象变换中)
在// 采用蝶形算法进行快速付立叶变换 这部分我看不懂:
向高手请教:
我把这部分代码COPY上来,如下:
// 采用蝶形算法进行快速付立叶变换
for(k = 0; k < r; k++)
{
for(j = 0; j < 1 << k; j++)
{
bfsize = 1 << (r-k);
for(i = 0; i < bfsize / 2; i++)
{
p = j * bfsize;
X2[i + p] = X1[i + p] + X1[i + p + bfsize / 2];
X2[i + p + bfsize / 2] = (X1[i + p] - X1[i + p + bfsize / 2]) * W[i * (1<<k)];
}
}
X = X1;
X1 = X2;
X2 = X;
}
在蝶形算法中,我看过算法的大致原理:主要是:一个求N点的DFT可以被转换成两个
求N/2点的DFT。一直这样分解(都是蝶形形式);我们这里N=8;
最后一步是(因为是逆推,所以相当于算法中的第一步):
A[0]=X[0]+W[0]*X[4];
A[5]=X[0]-W[0]*X[4];
A[1]=X[1]+W[1]*X[5];
A[6]=X[1]-W[1]*X[5];
。。。。
而在上述算法程序中,到最内层的循环可以看出(设r=3,此时bfsize=4;p=0...)
所以可以得到最初的表达式为:
X2[0]=X1[0]+X1[4];
X2[4]=(X1[0]-X1[4])*W[0]
X2[1]=X1[1]+X1[5];
X2[5]=(X1[1]-X1[5])*W[1];
。。。
跟上面的分析并不一样!!!!
为什么?
各位大哥给我分析一下原因,谢谢。
(是我理解错了?)
还是使用了什么技巧?
以下是完整的程序:
///////////////////////////////////////////////////////////////////////
VOID WINAPI FFT(complex<double> * TD, complex<double> * FD, int r)
{
// 付立叶变换点数
LONG count;
// 循环变量
int i,j,k;
// 中间变量
int bfsize,p;
// 角度
double angle;
complex<double> *W,*X1,*X2,*X;
// 计算付立叶变换点数
count = 1 << r;
// 分配运算所需存储器
W = new complex<double>[count / 2];
X1 = new complex<double>[count];
X2 = new complex<double>[count];
// 计算加权系数
for(i = 0; i < count / 2; i++)
{
angle = -i * PI * 2 / count;
W[i] = complex<double> (cos(angle), sin(angle));
}
// 将时域点写入X1
memcpy(X1, TD, sizeof(complex<double>) * count);
// 采用蝶形算法进行快速付立叶变换
for(k = 0; k < r; k++)
{
for(j = 0; j < 1 << k; j++)
{
bfsize = 1 << (r-k);
for(i = 0; i < bfsize / 2; i++)
{
p = j * bfsize;
X2[i + p] = X1[i + p] + X1[i + p + bfsize / 2];
X2[i + p + bfsize / 2] = (X1[i + p] - X1[i + p + bfsize / 2]) * W[i * (1<<k)];
}
}
X = X1;
X1 = X2;
X2 = X;
}
// 重新排序
for(j = 0; j < count; j++)
{
p = 0;
for(i = 0; i < r; i++)
{
if (j&(1<<i))
{
p+=1<<(r-i-1);
}
}
FD[j]=X1[p];
}
// 释放内存
delete W;
delete X1;
delete X2;
}
BOOL WINAPI Fourier(LPSTR lpDIBBits, LONG lWidth, LONG lHeight)
{
// 指向源图像的指针
unsigned char* lpSrc;
// 中间变量
double dTemp;
// 循环变量
LONG i;
LONG j;
// 进行付立叶变换的宽度和高度(2的整数次方)
LONG w;
LONG h;
int wp;
int hp;
// 图像每行的字节数
LONG lLineBytes;
// 计算图像每行的字节数
lLineBytes = WIDTHBYTES(lWidth * 8);
// 赋初值
w = 1;
h = 1;
wp = 0;
hp = 0;
// 计算进行付立叶变换的宽度和高度(2的整数次方)
while(w * 2 <= lWidth)
{
w *= 2;
wp++;
}
while(h * 2 <= lHeight)
{
h *= 2;
hp++;
}
// 分配内存
complex<double> *TD = new complex<double>[w * h];
complex<double> *FD = new complex<double>[w * h];
// 行
for(i = 0; i < h; i++)
{
// 列
for(j = 0; j < w; j++)
{
// 指向DIB第i行,第j个象素的指针
lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j;
// 给时域赋值
TD[j + w * i] = complex<double>(*(lpSrc), 0);
}
}
for(i = 0; i < h; i++)
{
// 对y方向进行快速付立叶变换
FFT(&TD[w * i], &FD[w * i], wp);
}
// 保存变换结果
for(i = 0; i < h; i++)
{
for(j = 0; j < w; j++)
{
TD[i + h * j] = FD[j + w * i];
}
}
for(i = 0; i < w; i++)
{
// 对x方向进行快速付立叶变换
FFT(&TD[i * h], &FD[i * h], hp);
}
// 行
for(i = 0; i < h; i++)
{
// 列
for(j = 0; j < w; j++)
{
// 计算频谱
dTemp = sqrt(FD[j * h + i].real() * FD[j * h + i].real() +
FD[j * h + i].imag() * FD[j * h + i].imag()) / 100;
// 判断是否超过255
if (dTemp > 255)
{
// 对于超过的,直接设置为255
dTemp = 255;
}
// 指向DIB第(i<h/2 ? i+h/2 : i-h/2)行,第(j<w/2 ? j+w/2 : j-w/2)个象素的指针
// 此处不直接取i和j,是为了将变换后的原点移到中心
//lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j;
lpSrc = (unsigned char*)lpDIBBits + lLineBytes *
(lHeight - 1 - (i<h/2 ? i+h/2 : i-h/2)) + (j<w/2 ? j+w/2 : j-w/2);
// 更新源图像
* (lpSrc) = (BYTE)(dTemp);
}
}
// 删除临时变量
delete TD;
delete FD;
// 返回
return TRUE;
}