社区
硬件/系统
帖子详情
有关CRC校验的问题,急!
ms_wqs
2004-03-31 10:05:58
请问谁有使用CRC-16或CRC-ITU计算和验证CRC的VC程序,有关于它的算法的原理介绍更好,谢谢!
...全文
293
6
打赏
收藏
有关CRC校验的问题,急!
请问谁有使用CRC-16或CRC-ITU计算和验证CRC的VC程序,有关于它的算法的原理介绍更好,谢谢!
复制链接
扫一扫
分享
转发到动态
举报
AI
作业
写回复
配置赞助广告
用AI写文章
6 条
回复
切换为时间正序
请发表友善的回复…
发表回复
打赏红包
roselu
2004-04-09
打赏
举报
回复
哇,好厉害呀!
Hawk_lp
2004-04-04
打赏
举报
回复
字节型算法的原理
其实是比比特处理快了很多,以上都是查表法!是现今最快的!除非你用__ASM()
如果你一步一步用手推算过,你可以比较两种方法,查表法其实是把中间结果直接存在数组中
用的时候直接寻址调用即可,比在进行意或用算要省时间!这只是一次的分析!
若每次都这样那速度不知就快了多少了,叠加的!
ms_wqs
2004-03-31
打赏
举报
回复
字节型算法的原理和它的实际实现好像有一点不同,能具体解释一下吗,我的论文中需要做解释不能关知道这样做,而不知道原理。
itmaster
2004-03-31
打赏
举报
回复
// 初始化CRC寄存器组:移位寄存器置为全"1"
void crcInitRegisters()
{
regs.val = 0xffff;
}
// CRC输入一个bit
void crcInputBit(bit in)
{
bit a;
a = regs.bits.bit0 ^ in;
regs.bits.bit0 = regs.bits.bit1;
regs.bits.bit1 = regs.bits.bit2;
regs.bits.bit2 = regs.bits.bit3;
regs.bits.bit3 = regs.bits.bit4 ^ a;
regs.bits.bit4 = regs.bits.bit5;
regs.bits.bit5 = regs.bits.bit6;
regs.bits.bit6 = regs.bits.bit7;
regs.bits.bit7 = regs.bits.bit8;
regs.bits.bit8 = regs.bits.bit9;
regs.bits.bit9 = regs.bits.bit10;
regs.bits.bit10 = regs.bits.bit11 ^ a;
regs.bits.bit11 = regs.bits.bit12;
regs.bits.bit12 = regs.bits.bit13;
regs.bits.bit13 = regs.bits.bit14;
regs.bits.bit14 = regs.bits.bit15;
regs.bits.bit15 = a;
}
// 输出CRC码(寄存器组的值)
u16 crcGetRegisters()
{
return regs.val;
}
crcInputBit中一步一步的移位/异或操作,可以进行简化:
void crcInputBit(bit in)
{
bit a;
a = regs.bits.bit0 ^ in;
regs.val >>= 1;
if(a) regs.val ^= 0x8408;
}
细心的话,可以发现0x8408和0x1021(CRC-ITU的简记式)之间的关系。由于我们是从低到高输出比特流的,将0x1021左右反转就得到0x8408。将生成多项式写成 G(x)=1+x5+x12+x16,是不是更好看一点?
下面是一个典型的PPP帧。最后两个字节称为FCS(Frame Check Sequence),是前面11个字节的CRC。
FF 03 C0 21 04 03 00 07 0D 03 06 D0 3A
我们来计算这个PPP帧的CRC,并验证它。
byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};
int i,j;
u16 result;
/////////// 以下计算FCS
// 初始化
crcInitRegisters();
// 逐位输入,每个字节低位在先,不包括两个FCS字节
for(i = 0; i < 11; i++)
{
for(j = 0; j < 8; j++)
{
crcInputBit((ppp[i] >> j) & 1);
}
}
// 得到CRC:将寄存器组的值求反
result = ~crcGetRegisters();
// 填写FCS,先低后高
ppp[11] = result & 0xff;
ppp[12] = (result >> 8) & 0xff;
/////////// 以下验证FCS
// 初始化
crcInitRegisters();
// 逐位输入,每个字节低位在先,包括两个FCS字节
for(i = 0; i < 13; i++)
{
for(j = 0; j < 8; j++)
{
crcInputBit((ppp[i] >> j) & 1);
}
}
// 得到验证结果
result = crcGetRegisters();
可以看到,计算出的CRC等于0x3AD0,与原来的FCS相同。验证结果等于0。初始化为全"1",以及将寄存器组的值求反得到CRC,都是CRC-ITU的要求。事实上,不管初始化为全"1"还是全"0",计算CRC取反还是不取反,得到的验证结果都是0。
4 字节型算法
比特型算法逐位进行运算,效率比较低,不适用于高速通信的场合。数字通信系统(各种通信标准)一般是对一帧数据进行CRC校验,而字节是帧的基本单位。最常用的是一种按字节查表的快速算法。该算法基于这样一个事实:计算本字节后的CRC码,等于上一字节余式CRC码的低8位左移8位,加上上一字节CRC右移8位和本字节之和后所求得的CRC码。如果我们把8位二进制序列数的CRC(共256个)全部计算出来,放在一个表里 ,编码时只要从表中查找对应的值进行处理即可。
CRC-ITU的计算算法如下:
a.寄存器组初始化为全"1"(0xFFFF)。
b.寄存器组向右移动一个字节。
c.刚移出的那个字节与数据字节进行异或运算,得出一个指向值表的索引。
d.索引所指的表值与寄存器组做异或运算。
f.数据指针加1,如果数据没有全部处理完,则重复步骤b。
g.寄存器组取反,得到CRC,附加在数据之后。
CRC-ITU的验证算法如下:
a.寄存器组初始化为全"1"(0xFFFF)。
b.寄存器组向右移动一个字节。
c.刚移出的那个字节与数据字节进行异或运算,得出一个指向值表的索引。
d.索引所指的表值与寄存器组做异或运算。
e.数据指针加1,如果数据没有全部处理完,则重复步骤b (数据包括CRC的两个字节)。
f.寄存器组的值是否等于“Magic Value”(0xF0B8),若相等则通过,否则失败。
下面是通用的CRC-ITU查找表以及计算和验证CRC的C语言程序:
// CRC-ITU查找表
const u16 crctab16[] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78,
};
// 计算给定长度数据的16位CRC。
u16 GetCrc16(const byte* pData, int nLength)
{
u16 fcs = 0xffff; // 初始化
while(nLength>0)
{
fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];
nLength--;
pData++;
}
return ~fcs; // 取反
}
// 检查给定长度数据的16位CRC是否正确。
bool IsCrc16Good(const byte* pData, int nLength)
{
u16 fcs = 0xffff; // 初始化
while(nLength>0)
{
fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];
nLength--;
pData++;
}
return (fcs == 0xf0b8); // 0xf0b8是CRC-ITU的"Magic Value"
}
使用字节型算法,前面出现的PPP帧FCS计算和验证过程,可用下面的程序片断实现:
byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};
u16 result;
// 计算CRC
result = GetCrc16(ppp, 11);
// 填写FCS,先低后高
ppp[11] = result & 0xff;
ppp[12] = (result >> 8) & 0xff;
// 验证FCS
if(IsCrc16Good(ppp, 13))
{
... ...
}
该例中数据长度为11,说明CRC计算并不要求数据2字节或4字节对齐。
至于查找表的生成算法,以及CRC-32等其它CRC的算法,可参考RFC 1661, RFC 3309等文档。需要注意的是,虽然CRC算法的本质是一样的,但不同的协议、标准所规定的初始化、移位次序、验证方法等可能有所差别
itmaster
2004-03-31
打赏
举报
回复
CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。
差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。
利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。
1 代数学的一般性算法
在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。
设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。
发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以G(x),所得余式即为R(x)。用公式表示为
T(x)=xrP(x)+R(x)
接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。
举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为
xrP(x) x3(x3+x2) x6+x5 x
-------- = ---------- = -------- = (x3+x2+x) + --------
G(x) x3+x+1 x3+x+1 x3+x+1
即 R(x)=x。注意到G(x)最高幂次r=3,得出CRC为010。
如果用竖式除法,计算过程为
1110
-------
1011 /1100000 (1100左移3位)
1011
----
1110
1011
-----
1010
1011
-----
0010
0000
----
010
因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010
如果传输无误,
T(x) x6+x5+x
------ = --------- = x3+x2+x,
G(x) x3+x+1
无余式。回头看一下上面的竖式除法,如果被除数是1100010,显然在商第三个1时,就能除尽。
上述推算过程,有助于我们理解CRC的概念。但直接编程来实现上面的算法,不仅繁琐,效率也不高。实际上在工程中不会直接这样去计算和验证CRC。
下表中列出了一些见于标准的CRC资料:
名称 生成多项式 简记式* 应用举例
CRC-4 x4+x+1 ITU G.704
CRC-12 x12+x11+x3+x+1
CRC-16 x16+x12+x2+1 1005 IBM SDLC
CRC-ITU** x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS
CRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS
CRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP
* 生成多项式的最高幂次项系数是固定的1,故在简记式中,将最高的1统一去掉了,如04C11DB7实际上是104C11DB7。
** 前称CRC-CCITT。ITU的前身是CCITT。
2 硬件电路的实现方法
多项式除法,可用除法电路来实现。除法电路的主体由一组移位寄存器和模2加法器(异或单元)组成。以CRC-ITU为例,它由16级移位寄存器和3个加法器组成,见下图(编码/解码共用)。编码、解码前将各寄存器初始化为"1",信息位随着时钟移入。当信息位全部输入后,从寄存器组输出CRC结果。
3 比特型算法
上面的CRC-ITU除法电路,完全可以用软件来模拟。定义一个寄存器组,初始化为全"1"。依照电路图,每输入一个信息位,相当于一个时钟脉冲到来,从高到低依次移位。移位前信息位与bit0相加产生临时位,其中bit15移入临时位,bit10、bit3还要加上临时位。当全部信息位输入完成后,从寄存器组取出它们的值,这就是CRC码。
typedef unsigned char bit;
typedef unsigned char byte;
typedef unsigned short u16;
typedef union {
u16 val;
struct {
u16 bit0 : 1;
u16 bit1 : 1;
u16 bit2 : 1;
u16 bit3 : 1;
u16 bit4 : 1;
u16 bit5 : 1;
u16 bit6 : 1;
u16 bit7 : 1;
u16 bit8 : 1;
u16 bit9 : 1;
u16 bit10 : 1;
u16 bit11 : 1;
u16 bit12 : 1;
u16 bit13 : 1;
u16 bit14 : 1;
u16 bit15 : 1;
} bits;
} CRCREGS;
// 寄存器组
CRCREGS regs;
zhangnanonnet
2004-03-31
打赏
举报
回复
void ZComm::crc_16(BYTE *data, int length, BYTE *reply)
{
static WORD CRCTABLE[256]={ 0xF078,0xE1F1,0xD36A,0xC2E3,0xB65C,0xA7D5,0x954E,0x84C7,
0x7C30,0x6DB9,0x5F22,0x4EAB,0x3A14,0x2B9D,0x1906,0x088F,
0xE0F9,0xF170,0xC3EB,0xD262,0xA6DD,0xB754,0x85CF,0x9446,
0x6CB1,0x7D38,0x4FA3,0x5E2A,0x2A95,0x3B1C,0x0987,0x180E,
0xD17A,0xC0F3,0xF268,0xE3E1,0x975E,0x86D7,0xB44C,0xA5C5,
0x5D32,0x4CBB,0x7E20,0x6FA9,0x1B16,0x0A9F,0x3804,0x298D,
0xC1FB,0xD072,0xE2E9,0xF360,0x87DF,0x9656,0xA4CD,0xB544,
0x4DB3,0x5C3A,0x6EA1,0x7F28,0x0B97,0x1A1E,0x2885,0x390C,
0xB27C,0xA3F5,0x916E,0x80E7,0xF458,0xE5D1,0xD74A,0xC6C3,
0x3E34,0x2FBD,0x1D26,0x0CAF,0x7810,0x6999,0x5B02,0x4A8B,
0xA2FD,0xB374,0x81EF,0x9066,0xE4D9,0xF550,0xC7CB,0xD642,
0x2EB5,0x3F3C,0x0DA7,0x1C2E,0x6891,0x7918,0x4B83,0x5A0A,
0x937E,0x82F7,0xB06C,0xA1E5,0xD55A,0xC4D3,0xF648,0xE7C1,
0x1F36,0x0EBF,0x3C24,0x2DAD,0x5912,0x489B,0x7A00,0x6B89,
0x83FF,0x9276,0xA0ED,0xB164,0xC5DB,0xD452,0xE6C9,0xF740,
0x0FB7,0x1E3E,0x2CA5,0x3D2C,0x4993,0x581A,0x6A81,0x7B08,
0x7470,0x65F9,0x5762,0x46EB,0x3254,0x23DD,0x1146,0x00CF,
0xF838,0xE9B1,0xDB2A,0xCAA3,0xBE1C,0xAF95,0x9D0E,0x8C87,
0x64F1,0x7578,0x47E3,0x566A,0x22D5,0x335C,0x01C7,0x104E,
0xE8B9,0xF930,0xCBAB,0xDA22,0xAE9D,0xBF14,0x8D8F,0x9C06,
0x5572,0x44FB,0x7660,0x67E9,0x1356,0x02DF,0x3044,0x21CD,
0xD93A,0xC8B3,0xFA28,0xEBA1,0x9F1E,0x8E97,0xBC0C,0xAD85,
0x45F3,0x547A,0x66E1,0x7768,0x03D7,0x125E,0x20C5,0x314C,
0xC9BB,0xD832,0xEAA9,0xFB20,0x8F9F,0x9E16,0xAC8D,0xBD04,
0x3674,0x27FD,0x1566,0x04EF,0x7050,0x61D9,0x5342,0x42CB,
0xBA3C,0xABB5,0x992E,0x88A7,0xFC18,0xED91,0xDF0A,0xCE83,
0x26F5,0x377C,0x05E7,0x146E,0x60D1,0x7158,0x43C3,0x524A,
0xAABD,0xBB34,0x89AF,0x9826,0xEC99,0xFD10,0xCF8B,0xDE02,
0x1776,0x06FF,0x3464,0x25ED,0x5152,0x40DB,0x7240,0x63C9,
0x9B3E,0x8AB7,0xB82C,0xA9A5,0xDD1A,0xCC93,0xFE08,0xEF81,
0x07F7,0x167E,0x24E5,0x356C,0x41D3,0x505A,0x62C1,0x7348,
0x8BBF,0x9A36,0xA8AD,0xB924,0xCD9B,0xDC12,0xEE89,0xFF00};
WORD CRCVal,i;
CRCVal=0;
for(i=0;i<length;i++) CRCVal=CRCTABLE[(CRCVal^=data[i]&0xFF)&0xFF]^(CRCVal>>8);
reply[0]=CRCVal%256;
reply[1]=CRCVal/256;
}
模拟汽车速度控制系统的设计.doc课程设计
《模拟汽车速度控制系统的设计》是一份详尽的课程设计,旨在教授学生如何构建一个简易的...通过这个项目,学生能够将课堂上学到的知识与实际
问题
相结合,提高解决
问题
的能力,为未来从事相关领域的工作打下坚实的基础。
行业资料-电子功用-具有电源开关与
急
停按键复用的工业遥控器及控制方法的说明分析.rar
同时,可能还会有错误检测和纠正机制,如奇偶校验或
CRC校验
,来减少由于通信错误导致的设备失控风险。 总结来说,"具有电源开关与
急
停按键复用的工业遥控器及控制方法"是一项创新设计,旨在提高工业环境中的操作...
ABB ACS510变频器的Modbus通讯案例.docx
每个步骤都需要正确的
CRC校验
字以确保通讯无误。 2. **停止命令** 停止运行中的变频器时,应发送停止命令,而不是简单地设定0速命令。这里有三种
急
停方式:
急
停1遵循减速时间1(参数2203)、
急
停2依赖设备惯性、
急
...
ABB变频器modbus通信.pdf
每个MODBUS报文的末尾都包含一个
CRC校验
字,由低字节和高字节组成,如16#D5和16#35。当PLC发送命令时,会计算CRC值并将其添加到消息中,变频器接收到消息后,也会重新计算CRC,如果两者一致则表明通信无误。 总的来...
西门子V90 Profinet伺服控制程序:新能源自动排列机真实项目 - 含FB284、触摸屏、RFID读写、SCL语言及轴状态、报警代码全解析
作者分享了许多实战经验和优化技巧,如轴参数配置、
急
停处理、CRC16校验算法、电气图设计中的注意事项等。此外,还讨论了如何将MES下发的数据转换为凸轮曲线,实现配方快速切换,并提供了详细的代码示例。 适合人群...
硬件/系统
2,644
社区成员
17,232
社区内容
发帖
与我相关
我的任务
硬件/系统
VC/MFC 硬件/系统
复制链接
扫一扫
分享
社区描述
VC/MFC 硬件/系统
社区管理员
加入社区
获取链接或二维码
近7日
近30日
至今
加载中
查看更多榜单
社区公告
暂无公告
试试用AI创作助手写篇文章吧
+ 用AI写文章