請教:用SQL指令將金額類型字段改為數值型為什麼不行!!!

MS-SQL Server > 应用实例 [问题点数:0分]
等级
本版专家分:0
结帖率 100%
等级
本版专家分:885144
勋章
Blank
名人 年度总版至少三次排名前十即授予名人勋章
Blank
状元 2005年 总版技术专家分年内排行榜第一
2004年 总版技术专家分年内排行榜第一
Blank
进士 2006年 总版技术专家分年内排行榜第六
2003年 总版技术专家分年内排行榜第八
Blank
金牌 2005年6月 总版技术专家分月排行榜第一
2005年5月 总版技术专家分月排行榜第一
2005年4月 总版技术专家分月排行榜第一
2005年3月 总版技术专家分月排行榜第一
2005年2月 总版技术专家分月排行榜第一
2005年1月 总版技术专家分月排行榜第一
2004年12月 总版技术专家分月排行榜第一
2004年11月 总版技术专家分月排行榜第一
2004年10月 总版技术专家分月排行榜第一
2004年9月 总版技术专家分月排行榜第一
2004年8月 总版技术专家分月排行榜第一
2004年7月 总版技术专家分月排行榜第一
2004年6月 总版技术专家分月排行榜第一
2004年5月 总版技术专家分月排行榜第一
2004年4月 总版技术专家分月排行榜第一
2004年3月 总版技术专家分月排行榜第一
2004年1月 总版技术专家分月排行榜第一
2003年12月 总版技术专家分月排行榜第一
等级
本版专家分:0
等级
本版专家分:885144
勋章
Blank
名人 年度总版至少三次排名前十即授予名人勋章
Blank
状元 2005年 总版技术专家分年内排行榜第一
2004年 总版技术专家分年内排行榜第一
Blank
进士 2006年 总版技术专家分年内排行榜第六
2003年 总版技术专家分年内排行榜第八
Blank
金牌 2005年6月 总版技术专家分月排行榜第一
2005年5月 总版技术专家分月排行榜第一
2005年4月 总版技术专家分月排行榜第一
2005年3月 总版技术专家分月排行榜第一
2005年2月 总版技术专家分月排行榜第一
2005年1月 总版技术专家分月排行榜第一
2004年12月 总版技术专家分月排行榜第一
2004年11月 总版技术专家分月排行榜第一
2004年10月 总版技术专家分月排行榜第一
2004年9月 总版技术专家分月排行榜第一
2004年8月 总版技术专家分月排行榜第一
2004年7月 总版技术专家分月排行榜第一
2004年6月 总版技术专家分月排行榜第一
2004年5月 总版技术专家分月排行榜第一
2004年4月 总版技术专家分月排行榜第一
2004年3月 总版技术专家分月排行榜第一
2004年1月 总版技术专家分月排行榜第一
2003年12月 总版技术专家分月排行榜第一
等级
本版专家分:0
等级
本版专家分:885144
勋章
Blank
名人 年度总版至少三次排名前十即授予名人勋章
Blank
状元 2005年 总版技术专家分年内排行榜第一
2004年 总版技术专家分年内排行榜第一
Blank
进士 2006年 总版技术专家分年内排行榜第六
2003年 总版技术专家分年内排行榜第八
Blank
金牌 2005年6月 总版技术专家分月排行榜第一
2005年5月 总版技术专家分月排行榜第一
2005年4月 总版技术专家分月排行榜第一
2005年3月 总版技术专家分月排行榜第一
2005年2月 总版技术专家分月排行榜第一
2005年1月 总版技术专家分月排行榜第一
2004年12月 总版技术专家分月排行榜第一
2004年11月 总版技术专家分月排行榜第一
2004年10月 总版技术专家分月排行榜第一
2004年9月 总版技术专家分月排行榜第一
2004年8月 总版技术专家分月排行榜第一
2004年7月 总版技术专家分月排行榜第一
2004年6月 总版技术专家分月排行榜第一
2004年5月 总版技术专家分月排行榜第一
2004年4月 总版技术专家分月排行榜第一
2004年3月 总版技术专家分月排行榜第一
2004年1月 总版技术专家分月排行榜第一
2003年12月 总版技术专家分月排行榜第一
等级
本版专家分:0
等级
本版专家分:0
scott21cn

等级:

一些重要的面试题!

1.单例模式可能是代码最少的模式了,但是少不一定意味着简单,想要好、对单例模式,还真得费一番脑筋。本文对Java中常见的单例模式写法做了一个总结,如有错漏之处,恳请读者指正。饿汉法顾名思义,饿汉法就是在...

MS-SQL Server 基础类 - SQL语句

一个计算机专业学生几年的编程经验汇总 (该系列一共 11 篇,看完之后,java 基础绝对有不小的提升!...

说得伟大一点是希望大家软件 学院争气,其实主要的还是大家自身的进步提升。 1. 关于动态加载机制  学习 Java 比 C++更容易理解 OOP 的思想,毕竟 C++还混合了不少面向过程的成分。 很多人都能背出来 J

JAVA是解释语言还是编译语言

JAVA是解释语言还是编译语言 Under J2SE | 三月 10th, 2010 1 comment   JAVA是解释语言还是编译语言 概念: 编译语言:把做好的源程序全部编译成二进制代码的可运行程序。然后...

微信支付一面(C++后台)

前言 实录 ...4.你使用过 map 吧,你知道 map 的实现原理是什么吗? 5.既然 map 是使用红黑树实现的,你知道红黑树的是如何自平衡的吗? 6.对 HTTP 协议了解,问几个 HTTP 的问题。你知道 HTTP 中 GET

java面试宝典:留着慢慢看

- 抽象:抽象是一类对象的共同特征总结出来构造类的过程,包括数据抽象和行为抽象两方面。抽象只关注对象有哪些属性和行为,并不关注这些行为的细节是什么。  - 继承:继承是从已有类得到继承信息创建新类的过程...

java面试170道精讲:留着慢慢看

 答:面向对象的特征主要有以下几个方面: - 抽象:抽象是一类对象的共同特征总结出来构造类的过程,包括数据抽象和行为抽象两方面。抽象只关注对象有哪些属性和行为,并不关注这些行为的细节是什么。 - 继承:...

数据分析侠A的成长故事

数据分析侠A的成长故事面包君 ...那年他实习,选择了一家国内一线梯队的电商公司,HR问道想选择什么岗位,而他本人自己也比较困惑,说对数据感兴趣。而恰好那年公司打算成立一个数据部门,就把同学A分配到了市场部的数

DAF

在本文中我们讨论记录和集合的类型、怎样定义和使用记录和集合以及使用正确的循环控制。[zt][Ref: http://www.yesky.com/20020819/1625866.shtml ]PL/SQL 记录 记录是PL/SQL的一种复合数据结构,scalar数据

vim 高级应用 原文地址 http://www.2maomao.com/blog/wp-content/uploads/vim_tips.txt

最佳vim技巧 ---------------------------------------- # 信息来源 ---------------------------------------- www.vim.org : 官方站点 comp.editors : 新闻组 ...

java基础知识整理

基础篇 一、JDK常用的包  java.lang: 这个是系统的基础类,比如String、Math、Integer、System和Thread,提供常用功能。  java.io: 这里面是所有输入输出有关的类,比如文件操作等 ... java.net: 这里面是与...

sizeof的使用方法(转载)

前向声明: sizeof,一个其貌不扬的家伙,引无数菜鸟竟折腰,小虾我当初也没少犯迷糊,秉着“辛苦我一个,幸福千万人”的伟大思想,我决定其尽可能详细的总结一下。 但当我总结的时候才发现

HGFFJ

在本文中我们讨论记录和集合的类型、怎样定义和使用记录和集合以及使用正确的循环控制。[zt][Ref: http://www.yesky.com/20020819/1625866.shtml ]PL/SQL 记录 记录是PL/SQL的一种复合数据结构,scalar数据

面试话术

部署activemq 1.上传 2.解压 tar vxzf apache-activemq 3.放到一个新的文件夹下 :mv apache-activemq(要放得文件) activemq(文件夹名称) 4.启动mq需要在bin下,所以先进到bin下 5.启动:./activemq ...

c++笔试题

微软亚 微软亚洲技术中心的面试题!!! 1.进程和线程的差别。...线程是指进程内的一个执行单元,也是进程内的可调度实体. ...(1)调度:线程作为调度和分配的基本单位,进程作为拥有资源的基本单位 ...

c/c++笔试题

微软亚洲技术中心的面试题!!! 1.进程和线程的差别。 ...线程是指进程内的一个执行单元,也是进程内的可调度实体. ...(1)调度:线程作为调度和分配的基本单位,进程作为拥有资源的基本单位 ...(2)并发性:不仅进程之间...

最强vim使用技巧(转)

最佳vim技巧 ---------------------------------------- # 信息来源 ---------------------------------------- www.vim.org : 官方站点 comp.editors : 新闻组 ...

某Java大佬在地表最强Java企业(阿里)面试总结

面试题真的是博大精深,也通过这个面试题学到了很多东西,很多笔者也不是很懂,如有描述错误的地方还望大佬赐教 HashMap和Hashtable的区别 Hashtable继承自Dictionary类,而HashMap继承自AbstractMap类。...

一个小时学会MySQL数据库

下载网站:www.SyncNavigator.CN客服QQ1793040---------------------------------------------------------- 关于HKROnline SyncNavigator 注册机价格的问题 HKROnline SyncNavigator 8.4.1 非破解版 注册机 ...

Java 私塾面试系列

第一部分 Java基础方面1、作用域public,private,protected,以及不写时的区别答:区别如下:作用域当前类 同一package 子孙类其他 ...× ×不写时默认friendly2、Anonymous Inner Class (匿名内部类) 是否可以...

Java学习之路

第一部分是我在参加2018春招时所写,主要记录了我在研究生期间学习Java后端的心路历程。 第二部分内容是我参加2019秋季招聘过程中所作,记录了秋招路上所经历的一切。 第三部分内容则是我在秋招尘埃落定之后,对之前...

Java面试整理 -码之狼

_面试概念整理以及项目逻辑分享 注意:( 所有的概念都是结合所学知识去记忆,死记硬背并不会有太好的记忆并且难以结合到自己的项目中去) 一、JDK常用的包 二、 Get和Post的区别 三、 Java多态的具体体现 ...

WinInet开发Internet客户端应用指南

实现步骤大家知道,每个Internet客户端程序都伴随有一定的目的行为,如读文件、写文件、删除文件等等。...其中列出了一般的Internet URL (FTP、或者 HTTP)客户端行为要实现某个目标所必须使用的方法。这张表格的内容...

Lua语言从入门到精通

深入浅出Lua学习 深入浅出Lua学习

Visio_2016

visio_2016下载安装,亲测可用,不需要破解,而且无秘钥。简单方便实用

2020美赛O奖论文.zip

包含2020美赛所有题目的所有O奖论文,A题8篇,B题5篇,C题6篇,D题7篇,E题5篇,F题6篇。

2020年美赛C题O奖论文(含6篇)

2020年美赛C题O奖论文(含6篇)

奥特曼大全及关系明细.pdf

此文档有详细奥特曼大全及关系明细

matlab神经网络30个案例分析

【目录】- MATLAB神经网络30个案例分析(开发实例系列图书) 第1章 BP神经网络的数据分类——语音特征信号分类1 本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。 第2章 BP神经网络的非线性系统建模——非线性函数拟合11 本章拟合的非线性函数为y=x21+x22。 第3章 遗传算法优化BP神经网络——非线性函数拟合21 根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36 对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45 BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。 第6章 PID神经元网络解耦控制算法——多变量系统控制54 根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。 第7章 RBF网络的回归——非线性函数回归的实现65 本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73 根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。 第9章 离散Hopfield神经网络的联想记忆——数字识别81 根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。 第10章 离散Hopfield神经网络的分类——高校科研能力评价90 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100 现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。 第12章 SVM的数据分类预测——意大利葡萄酒种类识别112 将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。 第13章 SVM的参数优化——如何更好的提升分类器的性能122 本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。 第14章 SVM的回归预测分析——上证指数开盘指数预测133 对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。 第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141 在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。 若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。 第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153 本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。 第17章SOM神经网络的数据分类——柴油机故障诊断159 本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。 第18章Elman神经网络的数据预测——电力负荷预测模型研究170 根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。 第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176 本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。 第20章 神经网络变量筛选——基于BP的神经网络变量筛选183 本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。 第21章 LVQ神经网络的分类——乳腺肿瘤诊断188 威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。 第22章 LVQ神经网络的预测——人脸朝向识别198 现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。 第23章 小波神经网络的时间序列预测——短时交通流量预测208 根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。 第24章 模糊神经网络的预测算法——嘉陵江水质评价218 根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。 第25章 广义神经网络的聚类算法——网络入侵聚类229 模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。 第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236 根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。 第27章 遗传算法优化计算——建模自变量降维243 在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。 第28章 基于灰色神经网络的预测算法研究——订单需求预测258 根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。 第29章 基于Kohonen网络的聚类算法——网络入侵聚类268 根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。 第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277 为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

抢茅台脚本以及使用方法

抢茅台的方法,里面有脚本文件和python的安装包,小白可以学习使用,大佬绕行吧,哈哈

相关热词 c#无法设置断点 c# cv emgu c# 服务启动调试 c# 实现屏幕录制 c# word 读取 c#类的无参构造方法 c#remove的用法 c# 自定义控件属性 c#正则生成工具 c#操作其他应用程序