[讨论]一个设计方面的问题——登陆这个动作(或叫方法)应该属于User类还是属于Application类(描述系统类)

smalldeer 2004-12-08 11:12:43
User类不说明了,就是能使用系统的用户的类

举例说明Application类
Application类:描述系统的类
属性可以是:系统开启时间,系统关闭时间,系统名,系统描述等
方法有: 系统初始化init(),一些get,set方法
[讨论]一个设计方面的问题——登陆这个动作(或叫方法)应该属于User类还是属于Application类(描述系统类)

今天想到个问题,比较疑惑

登陆login()方法应该是属于哪个类的呢?
以前都把login方法写在User类中,

现在的想法是:
按流程来看:觉得登陆的动作是User类发出的,但处理的过程是交给Application类来处理的

那我应该怎么样处理login方法的归属问题,请大家指教,
各位应该都碰到过问题,请说说,谢谢

http://community.csdn.net/Expert/TopicView.asp?id=3624587
是个昨天提的类似的问题,主动类发出动作,交给被动类实施
...全文
82 5 打赏 收藏 转发到动态 举报
写回复
用AI写文章
5 条回复
切换为时间正序
请发表友善的回复…
发表回复
louisbadbad 2004-12-09
  • 打赏
  • 举报
回复
其实你可以考虑一个最基本的问题就是WINDOWS登录,我给你的建议就是你在user上建立登录,同时由于你是多用户登录的,所以你在application中建立一个用户队列,这个用户队列用来保存登录的用户,这样你每个用户登录后通过这个队列进行最基本的初始化.由于各个用户的等级不一样,你在设计的时候还可以考虑用别的方法.
okitgo 2004-12-09
  • 打赏
  • 举报
回复
login方法应该写在User类中
但Application类中有User对象
smalldeer 2004-12-09
  • 打赏
  • 举报
回复
up
bluemeteor 2004-12-09
  • 打赏
  • 举报
回复
Application类提供getUser的方法

login写到BO的User类里面...
vvpang 2004-12-08
  • 打赏
  • 举报
回复
我认为还是放在user类中比较好。因为login() 这个方法只有user中才有用到,在其他的类中不会用。

Application类中的方法有些util的意思,感觉应该是系统公用的,不是和某个角色单独产生关系的方法。
文将对 Linux™ 程序员可以使用的内存管理技术进行概述,虽然关注的重点是 C 语言,但同样也适用于其他语言。文中将为您提供如何管理内存的细节,然后将进一步展示如何手工管理内存,如何使用引用计数或者内存池来半手工地管理内存,以及如何使用垃圾收集自动管理内存。 为什么必须管理内存 内存管理是计算机编程最为基本的领域之一。在很多脚本语言中,您不必担心内存是如何管理的,这并不能使得内存管理的重要性有一点点降低。对实际编程来说,理解您的内存管理器的能力与局限性至关重要。在大部分系统语言中,比如 C 和 C++,您必须进行内存管理。本文将介绍手工的、半手工的以及自动的内存管理实践的基本概念。 追溯到在 Apple II 上进行汇编语言编程的时代,那时内存管理还不是个大问题。您实际上在运行整个系统系统有多少内存,您就有多少内存。您甚至不必费心思去弄明白它有多少内存,因为每一台机器的内存数量都相同。所以,如果内存需要非常固定,那么您只需要选择一个内存范围并使用它即可。 不过,即使是在这样一个简单的计算机中,您也会有问题,尤其是当您不知道程序的每个部分将需要多少内存时。如果您的空间有限,而内存需求是变化的,那么您需要一些方法来满足这些需求: 确定您是否有足够的内存来处理数据。 从可用的内存中获取一部分内存。 向可用内存池(pool)中返回部分内存,以使其可以由程序的其他部分或者其他程序使用。 实现这些需求的程序库称为 分配程序(allocators),因为它们负责分配和回收内存。程序的动态性越强,内存管理就越重要,您的内存分配程序的选择也就更重要。让我们来了解可用于内存管理的不同方法,它们的好处与不足,以及它们最适用的情形。 回页首 C 风格的内存分配程序 C 编程语言提供了两个函数来满足我们的三个需求: malloc:该函数分配给定的字节数,并返回一个指向它们的指针。如果没有足够的可用内存,那么它返回一个空指针。 free:该函数获得指向由 malloc 分配的内存片段的指针,并将其释放,以便以后的程序或操作系统使用(实际上,一些 malloc 实现只能将内存归还给程序,而无法将内存归还给操作系统)。 物理内存和虚拟内存 要理解内存在程序中是如何分配的,首先需要理解如何将内存从操作系统分配给程序。计算机上的每一个进程都认为自己可以访问所有的物理内存。显然,由于同时在运行多个程序,所以每个进程不可能拥有全部内存。实际上,这些进程使用的是 虚拟内存。 只是作为一个例子,让我们假定您的程序正在访问地址为 629 的内存。不过,虚拟内存系统不需要将其存储在位置为 629 的 RAM 中。实际上,它甚至可以不在 RAM 中 —— 如果物理 RAM 已经满了,它甚至可能已经被转移到硬盘上!由于这地址不必反映内存所在的物理位置,所以它们被称为虚拟内存。操作系统维持着一个虚拟地址到物理地址的转换的表,以便计算机硬件可以正确地响应地址请求。并且,如果地址在硬盘上而不是在 RAM 中,那么操作系统将暂时停止您的进程,将其他内存转存到硬盘中,从硬盘上加载被请求的内存,然后再重新启动您的进程。这样,每个进程都获得了自己可以使用的地址空间,可以访问比您物理上安装的内存更多的内存。 在 32-位 x86 系统上,每一个进程可以访问 4 GB 内存。现在,大部分人的系统上并没有 4 GB 内存,即使您将 swap 也算上, 每个进程所使用的内存也肯定少于 4 GB。因此,当加载一个进程时,它会得到一个取决于某个称为 系统中断点(system break)的特定地址的初始内存分配。该地址之后是未被映射的内存 —— 用于在 RAM 或者硬盘中没有分配相应物理位置的内存。因此,如果一个进程运行超出了它初始分配的内存,那么它必须请求操作系统“映射进来(map in)”更多的内存。(映射是一个表示一一对应关系的数学术语 —— 当内存的虚拟地址有一个对应的物理地址来存储内存内容时,该内存将被映射。) 基于 UNIX 的系统有两个可映射到附加内存中的基本系统调用: brk: brk() 是一个非常简单的系统调用。还记得系统中断点吗?该位置是进程映射的内存边界。 brk() 只是简单地将这个位置向前或者向后移动,就可以向进程添加内存或者从进程取走内存。 mmap: mmap(),或者说是“内存映像”,似于 brk(),但是更为灵活。首先,它可以映射任何位置的内存,而不单单只局限于进程。其次,它不仅可以将虚拟地址映射到物理的 RAM 或者 swap,它还可以将它们映射到文件和文件位置,这样,读写内存将对文件中的数据进行读写。不过,在这里,我们只关心 mmap 向进程添加被映射的内存的能力。 munmap() 所做的事情与 mmap() 相反。 如您所见, brk() 或者 mmap() 都可以用来向我们的进程添加额外的虚拟内存。在我们的例子中将使用 brk(),因为它更简单,更通用。 实现一个简单的分配程序 如果您曾经编写过很多 C 程序,那么您可能曾多次使用过 malloc() 和 free()。不过,您可能没有用一些时间去思考它们在您的操作系统中是如何实现的。本节将向您展示 malloc 和 free 的一个最简化实现的代码,来帮助说明管理内存时都涉及到了哪些事情。 要试着运行这些示例,需要先 复制本代码清单,并将其粘贴到一个名为 malloc.c 的文件中。接下来,我将一次一个部分地对该清单进行解释。 在大部分操作系统中,内存分配由以下两个简单的函数来处理: void *malloc(long numbytes):该函数负责分配 numbytes 大小的内存,并返回指向第一个字节的指针。 void free(void *firstbyte):如果给定一个由先前的 malloc 返回的指针,那么该函数会将分配的空间归还给进程的“空闲空间”。 malloc_init 将是初始化内存分配程序的函数。它要完成以下三件事:将分配程序标识为已经初始化,找到系统中最后一个有效内存地址,然后建立起指向我们管理的内存的指针。这三个变量都是全局变量: 清单 1. 我们的简单分配程序的全局变量 int has_initialized = 0; void *managed_memory_start; void *last_valid_address; 如前所述,被映射的内存的边界(最后一个有效地址)常被称为系统中断点或者 当前中断点。在很多 UNIX® 系统中,为了指出当前系统中断点,必须使用 sbrk(0) 函数。 sbrk 根据参数中给出的字节数移动当前系统中断点,然后返回新的系统中断点。使用参数 0 只是返回当前中断点。这里是我们的 malloc 初始化代码,它将找到当前中断点并初始化我们的变量: 清单 2. 分配程序初始化函数 /* Include the sbrk function */ #include void malloc_init() { /* grab the last valid address from the OS */ last_valid_address = sbrk(0); /* we don't have any memory to manage yet, so *just set the beginning to be last_valid_address */ managed_memory_start = last_valid_address; /* Okay, we're initialized and ready to go */ has_initialized = 1; } 现在,为了完全地管理内存,我们需要能够追踪要分配和回收哪些内存。在对内存块进行了 free 调用之后,我们需要做的是诸如将它们标记为未被使用的等事情,并且,在调用 malloc 时,我们要能够定位未被使用的内存块。因此, malloc 返回的每块内存的起始处首先要有这个结构: 清单 3. 内存控制块结构定义 struct mem_control_block { int is_available; int size; }; 现在,您可能会认为当程序调用 malloc 时这会引发问题 —— 它们如何知道这个结构?答案是它们不必知道;在返回指针之前,我们会将其移动到这个结构之后,把它隐藏起来。这使得返回的指针指向没有用于任何其他用途的内存。那样,从调用程序的角度来看,它们所得到的全部是空闲的、开放的内存。然后,当通过 free() 将该指针传递回来时,我们只需要倒退几个内存字节就可以再次找到这个结构。 在讨论分配内存之前,我们将先讨论释放,因为它更简单。为了释放内存,我们必须要做的惟一一件事情就是,获得我们给出的指针,回退 sizeof(struct mem_control_block) 个字节,并将其标记为可用的。这里是对应的代码: 清单 4. 解除分配函数 void free(void *firstbyte) { struct mem_control_block *mcb; /* Backup from the given pointer to find the * mem_control_block */ mcb = firstbyte - sizeof(struct mem_control_block); /* Mark the block as being available */ mcb->is_available = 1; /* That's It! We're done. */ return; } 如您所见,在这个分配程序中,内存的释放使用了一个非常简单的机制,在固定时间内完成内存释放。分配内存稍微困难一些。以下是该算法的略述: 清单 5. 主分配程序的伪代码 1. If our allocator has not been initialized, initialize it. 2. Add sizeof(struct mem_control_block) to the size requested. 3. start at managed_memory_start. 4. Are we at last_valid address? 5. If we are: A. We didn't find any existing space that was large enough -- ask the operating system for more and return that. 6. Otherwise: A. Is the current space available (check is_available from the mem_control_block)? B. If it is: i) Is it large enough (check "size" from the mem_control_block)? ii) If so: a. Mark it as unavailable b. Move past mem_control_block and return the pointer iii) Otherwise: a. Move forward "size" bytes b. Go back go step 4 C. Otherwise: i) Move forward "size" bytes ii) Go back to step 4 我们主要使用连接的指针遍历内存来寻找开放的内存块。这里是代码: 清单 6. 主分配程序 void *malloc(long numbytes) { /* Holds where we are looking in memory */ void *current_location; /* This is the same as current_location, but cast to a * memory_control_block */ struct mem_control_block *current_location_mcb; /* This is the memory location we will return. It will * be set to 0 until we find something suitable */ void *memory_location; /* Initialize if we haven't already done so */ if(! has_initialized) { malloc_init(); } /* The memory we search for has to include the memory * control block, but the users of malloc don't need * to know this, so we'll just add it in for them. */ numbytes = numbytes + sizeof(struct mem_control_block); /* Set memory_location to 0 until we find a suitable * location */ memory_location = 0; /* Begin searching at the start of managed memory */ current_location = managed_memory_start; /* Keep going until we have searched all allocated space */ while(current_location != last_valid_address) { /* current_location and current_location_mcb point * to the same address. However, current_location_mcb * is of the correct type, so we can use it as a struct. * current_location is a void pointer so we can use it * to calculate addresses. */ current_location_mcb = (struct mem_control_block *)current_location; if(current_location_mcb->is_available) { if(current_location_mcb->size >= numbytes) { /* Woohoo! We've found an open, * appropriately-size location. */ /* It is no longer available */ current_location_mcb->is_available = 0; /* We own it */ memory_location = current_location; /* Leave the loop */ break; } } /* If we made it here, it's because the Current memory * block not suitable; move to the next one */ current_location = current_location + current_location_mcb->size; } /* If we still don't have a valid location, we'll * have to ask the operating system for more memory */ if(! memory_location) { /* Move the program break numbytes further */ sbrk(numbytes); /* The new memory will be where the last valid * address left off */ memory_location = last_valid_address; /* We'll move the last valid address forward * numbytes */ last_valid_address = last_valid_address + numbytes; /* We need to initialize the mem_control_block */ current_location_mcb = memory_location; current_location_mcb->is_available = 0; current_location_mcb->size = numbytes; } /* Now, no matter what (well, except for error conditions), * memory_location has the address of the memory, including * the mem_control_block */ /* Move the pointer past the mem_control_block */ memory_location = memory_location + sizeof(struct mem_control_block); /* Return the pointer */ return memory_location; } 这就是我们的内存管理器。现在,我们只需要构建它,并在程序中使用它即可。 运行下面的命令来构建 malloc 兼容的分配程序(实际上,我们忽略了 realloc() 等一些函数,不过, malloc() 和 free() 才是最主要的函数): 清单 7. 编译分配程序 gcc -shared -fpic malloc.c -o malloc.so 该程序将生成一个名为 malloc.so 的文件,它是一个包含有我们的代码的共享库。 在 UNIX 系统中,现在您可以用您的分配程序来取代系统的 malloc(),做法如下: 清单 8. 替换您的标准的 malloc LD_PRELOAD=/path/to/malloc.so export LD_PRELOAD LD_PRELOAD 环境变量使动态链接器在加载任何可执行程序之前,先加载给定的共享库的符号。它还为特定库中的符号赋予优先权。因此,从现在起,该会话中的任何应用程序都将使用我们的 malloc(),而不是只有系统的应用程序能够使用。有一些应用程序不使用 malloc(),不过它们是例外。其他使用 realloc() 等其他内存管理函数的应用程序,或者错误地假定 malloc() 内部行为的那些应用程序,很可能会崩溃。ash shell 似乎可以使用我们的新 malloc() 很好地工作。 如果您想确保 malloc() 正在被使用,那么您应该通过向函数的入口点添加 write() 调用来进行测试。 我们的内存管理器在很多方面都还存在欠缺,但它可以有效地展示内存管理需要做什么事情。它的某些缺点包括: 由于它对系统中断点(一个全局变量)进行操作,所以它不能与其他分配程序或者 mmap 一起使用。 当分配内存时,在最坏的情形下,它将不得不遍历 全部进程内存;其中可能包括位于硬盘上的很多内存,这意味着操作系统将不得不花时间去向硬盘移入数据和从硬盘中移出数据。 没有很好的内存不足处理方案( malloc 只假定内存分配是成功的)。 它没有实现很多其他的内存函数,比如 realloc()。 由于 sbrk() 可能会交回比我们请求的更多的内存,所以在堆(heap)的末端会遗漏一些内存。 虽然 is_available 标记只包含一位信息,但它要使用完整的 4-字节 的字。 分配程序不是线程安全的。 分配程序不能将空闲空间拼合为更大的内存块。 分配程序的过于简单的匹配算法会导致产生很多潜在的内存碎片。 我确信还有很多其他问题。这就是为什么它只是一个例子! 其他 malloc 实现 malloc() 的实现有很多,这些实现各有优点与缺点。在设计一个分配程序时,要面临许多需要折衷的选择,其中包括: 分配的速度。 回收的速度。 有线程的环境的行为。 内存将要被用光时的行为。 局部缓存。 簿记(Bookkeeping)内存开销。 虚拟内存环境中的行为。 小的或者大的对象。 实时保证。 每一个实现都有其自身的优缺点集合。在我们的简单的分配程序中,分配非常慢,而回收非常快。另外,由于它在使用虚拟内存系统方面较差,所以它最适于处理大的对象。 还有其他许多分配程序可以使用。其中包括: Doug Lea Malloc:Doug Lea Malloc 实际上是完整的一组分配程序,其中包括 Doug Lea 的原始分配程序,GNU libc 分配程序和 ptmalloc。 Doug Lea 的分配程序有着与我们的版本非常似的基本结构,但是它加入了索引,这使得搜索速度更快,并且可以将多个没有被使用的块组合为一个大的块。它还支持缓存,以便更快地再次使用最近释放的内存。 ptmalloc 是 Doug Lea Malloc 的一个扩展版本,支持多线程。在本文后面的 参考资料部分中,有一篇描述 Doug Lea 的 Malloc 实现的文章。 BSD Malloc:BSD Malloc 是随 4.2 BSD 发行的实现,包含在 FreeBSD 之中,这个分配程序可以从预先确实大小的对象构成的池中分配对象。它有一些用于对象大小的 size ,这些对象的大小为 2 的若干次幂减去某一常数。所以,如果您请求给定大小的一个对象,它就简单地分配一个与之匹配的 size 。这样就提供了一个快速的实现,但是可能会浪费内存。在 参考资料部分中,有一篇描述该实现的文章。 Hoard:编写 Hoard 的目标是使内存分配在多线程环境中进行得非常快。因此,它的构造以锁的使用为中心,从而使所有进程不必等待分配内存。它可以显著地加快那些进行很多分配和回收的多线程进程的速度。在 参考资料部分中,有一篇描述该实现的文章。 众多可用的分配程序中最有名的就是上述这些分配程序。如果您的程序有特别的分配需求,那么您可能更愿意编写一个定制的能匹配您的程序内存分配方式的分配程序。不过,如果不熟悉分配程序的设计,那么定制分配程序通常会带来比它们解决的问题更多的问题。要获得关于该主题的适当的介绍,请参阅 Donald Knuth 撰写的 The Art of Computer Programming Volume 1: Fundamental Algorithms 中的第 2.5 节“Dynamic Storage Allocation”(请参阅 参考资料中的链接)。它有点过时,因为它没有考虑虚拟内存环境,不过大部分算法都是基于前面给出的函数。 在 C++ 中,通过重载 operator new(),您可以以每个或者每个模板为单位实现自己的分配程序。在 Andrei Alexandrescu 撰写的 Modern C++ Design 的第 4 章(“Small Object Allocation”)中,描述一个小对象分配程序(请参阅 参考资料中的链接)。 基于 malloc() 的内存管理的缺点 不只是我们的内存管理器有缺点,基于 malloc() 的内存管理器仍然也有很多缺点,不管您使用的是哪个分配程序。对于那些需要保持长期存储的程序使用 malloc() 来管理内存可能会非常令人失望。如果您有大量的不固定的内存引用,经常难以知道它们何时被释放。生存期局限于当前函数的内存非常容易管理,但是对于生存期超出该范围的内存来说,管理内存则困难得多。而且,关于内存管理是由进行调用的程序还是由被调用的函数来负责这一问题,很多 API 都不是很明确。 因为管理内存的问题,很多程序倾向于使用它们自己的内存管理规则。C++ 的异常处理使得这项任务更成问题。有时好像致力于管理内存分配和清理的代码比实际完成计算任务的代码还要多!因此,我们将研究内存管理的其他选择。 回页首 半自动内存管理策略 引用计数 引用计数是一种 半自动(semi-automated)的内存管理技术,这表示它需要一些编程支持,但是它不需要您确切知道某一对象何时不再被使用。引用计数机制为您完成内存管理任务。 在引用计数中,所有共享的数据结构都有一个域来包含当前活动“引用”结构的次数。当向一个程序传递一个指向某个数据结构指针时,该程序会将引用计数增加 1。实质上,您是在告诉数据结构,它正在被存储在多少个位置上。然后,当您的进程完成对它的使用后,该程序就会将引用计数减少 1。结束这个动作之后,它还会检查计数是否已经减到零。如果是,那么它将释放内存。 这样做的好处是,您不必追踪程序中某个给定的数据结构可能会遵循的每一条路径。每次对其局部的引用,都将导致计数的适当增加或减少。这样可以防止在使用数据结构时释放该结构。不过,当您使用某个采用引用计数的数据结构时,您必须记得运行引用计数函数。另外,内置函数和第三方的库不会知道或者可以使用您的引用计数机制。引用计数也难以处理发生循环引用的数据结构。 要实现引用计数,您只需要两个函数 —— 一个增加引用计数,一个减少引用计数并当计数减少到零时释放内存。 一个示例引用计数函数集可能看起来如下所示: 清单 9. 基本的引用计数函数 /* Structure Definitions*/ /* Base structure that holds a refcount */ struct refcountedstruct { int refcount; } /* All refcounted structures must mirror struct * refcountedstruct for their first variables */ /* Refcount maintenance functions */ /* Increase reference count */ void REF(void *data) { struct refcountedstruct *rstruct; rstruct = (struct refcountedstruct *) data; rstruct->refcount++; } /* Decrease reference count */ void UNREF(void *data) { struct refcountedstruct *rstruct; rstruct = (struct refcountedstruct *) data; rstruct->refcount--; /* Free the structure if there are no more users */ if(rstruct->refcount == 0) { free(rstruct); } } REF 和 UNREF 可能会更复杂,这取决于您想要做的事情。例如,您可能想要为多线程程序增加锁,那么您可能想扩展 refcountedstruct,使它同样包含一个指向某个在释放内存之前要调用的函数的指针(似于面向对象语言中的析构函数 —— 如果您的结构中包含这些指针,那么这是 必需的)。 当使用 REF 和 UNREF 时,您需要遵守这些指针的分配规则: UNREF 分配前左端指针(left-hand-side pointer)指向的值。 REF 分配后左端指针(left-hand-side pointer)指向的值。 在传递使用引用计数的结构的函数中,函数需要遵循以下这些规则: 在函数的起始处 REF 每一个指针。 在函数的结束处 UNREF 第一个指针。 以下是一个使用引用计数的生动的代码示例: 清单 10. 使用引用计数的示例 /* EXAMPLES OF USAGE */ /* Data type to be refcounted */ struct mydata { int refcount; /* same as refcountedstruct */ int datafield1; /* Fields specific to this struct */ int datafield2; /* other declarations would go here as appropriate */ }; /* Use the functions in code */ void dosomething(struct mydata *data) { REF(data); /* Process data */ /* when we are through */ UNREF(data); } struct mydata *globalvar1; /* Note that in this one, we don't decrease the * refcount since we are maintaining the reference * past the end of the function call through the * global variable */ void storesomething(struct mydata *data) { REF(data); /* passed as a parameter */ globalvar1 = data; REF(data); /* ref because of Assignment */ UNREF(data); /* Function finished */ } 由于引用计数是如此简单,大部分程序员都自已去实现它,而不是使用库。不过,它们依赖于 malloc 和 free 等低层的分配程序来实际地分配和释放它们的内存。 在 Perl 等高级语言中,进行内存管理时使用引用计数非常广泛。在这些语言中,引用计数由语言自动地处理,所以您根本不必担心它,除非要编写扩展模块。由于所有内容都必须进行引用计数,所以这会对速度产生一些影响,但它极大地提高了编程的安全性和方便性。以下是引用计数的益处: 实现简单。 易于使用。 由于引用是数据结构的一部分,所以它有一个好的缓存位置。 不过,它也有其不足之处: 要求您永远不要忘记调用引用计数函数。 无法释放作为循环数据结构的一部分的结构。 减缓几乎每一个指针的分配。 尽管所使用的对象采用了引用计数,但是当使用异常处理(比如 try 或 setjmp()/ longjmp())时,您必须采取其他方法。 需要额外的内存来处理引用。 引用计数占用了结构中的第一个位置,在大部分机器中最快可以访问到的就是这个位置。 在多线程环境中更慢也更难以使用。 C++ 可以通过使用 智能指针(smart pointers)来容忍程序员所犯的一些错误,智能指针可以为您处理引用计数等指针处理细节。不过,如果不得不使用任何先前的不能处理智能指针的代码(比如对 C 库的联接),实际上,使用它们的后果通实比不使用它们更为困难和复杂。因此,它通常只是有益于纯 C++ 项目。如果您想使用智能指针,那么您实在应该去阅读 Alexandrescu 撰写的 Modern C++ Design 一书中的“Smart Pointers”那一章。 内存池 内存池是另一种半自动内存管理方法。内存池帮助某些程序进行自动内存管理,这些程序会经历一些特定的阶段,而且每个阶段中都有分配给进程的特定阶段的内存。例如,很多网络服务器进程都会分配很多针对每个连接的内存 —— 内存的最大生存期限为当前连接的存在期。Apache 使用了池式内存(pooled memory),将其连接拆分为各个阶段,每个阶段都有自己的内存池。在结束每个阶段时,会一次释放所有内存。 在池式内存管理中,每次内存分配都会指定内存池,从中分配内存。每个内存池都有不同的生存期限。在 Apache 中,有一个持续时间为服务器存在期的内存池,还有一个持续时间为连接的存在期的内存池,以及一个持续时间为请求的存在期的池,另外还有其他一些内存池。因此,如果我的一系列函数不会生成比连接持续时间更长的数据,那么我就可以完全从连接池中分配内存,并知道在连接结束时,这些内存会被自动释放。另外,有一些实现允许注册 清除函数(cleanup functions),在清除内存池之前,恰好可以调用它,来完成在内存被清理前需要完成的其他所有任务(似于面向对象中的析构函数)。 要在自己的程序中使用池,您既可以使用 GNU libc 的 obstack 实现,也可以使用 Apache 的 Apache Portable Runtime。GNU obstack 的好处在于,基于 GNU 的 Linux 发行版本中默认会包括它们。Apache Portable Runtime 的好处在于它有很多其他工具,可以处理编写多平台服务器软件所有方面的事情。要深入了解 GNU obstack 和 Apache 的池式内存实现,请参阅 参考资料部分中指向这些实现的文档的链接。 下面的假想代码列表展示了如何使用 obstack: 清单 11. obstack 的示例代码 #include #include /* Example code listing for using obstacks */ /* Used for obstack macros (xmalloc is a malloc function that exits if memory is exhausted */ #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free /* Pools */ /* Only permanent allocations should go in this pool */ struct obstack *global_pool; /* This pool is for per-connection data */ struct obstack *connection_pool; /* This pool is for per-request data */ struct obstack *request_pool; void allocation_failed() { exit(1); } int main() { /* Initialize Pools */ global_pool = (struct obstack *) xmalloc (sizeof (struct obstack)); obstack_init(global_pool); connection_pool = (struct obstack *) xmalloc (sizeof (struct obstack)); obstack_init(connection_pool); request_pool = (struct obstack *) xmalloc (sizeof (struct obstack)); obstack_init(request_pool); /* Set the error handling function */ obstack_alloc_failed_handler = &allocation_failed; /* Server main loop */ while(1) { wait_for_connection(); /* We are in a connection */ while(more_requests_available()) { /* Handle request */ handle_request(); /* Free all of the memory allocated * in the request pool */ obstack_free(request_pool, NULL); } /* We're finished with the connection, time * to free that pool */ obstack_free(connection_pool, NULL); } } int handle_request() { /* Be sure that all object allocations are allocated * from the request pool */ int bytes_i_need = 400; void *data1 = obstack_alloc(request_pool, bytes_i_need); /* Do stuff to process the request */ /* return */ return 0; } 基本上,在操作的每一个主要阶段结束之后,这个阶段的 obstack 会被释放。不过,要注意的是,如果一个过程需要分配持续时间比当前阶段更长的内存,那么它也可以使用更长期限的 obstack,比如连接或者全局内存。传递给 obstack_free() 的 NULL 指出它应该释放 obstack 的全部内容。可以用其他的值,但是它们通常不怎么实用。 使用池式内存分配的益处如下所示: 应用程序可以简单地管理内存。 内存分配和回收更快,因为每次都是在一个池中完成的。分配可以在 O(1) 时间内完成,释放内存池所需时间也差不多(实际上是 O(n) 时间,不过在大部分情况下会除以一个大的因数,使其变成 O(1))。 可以预先分配错误处理池(Error-handling pools),以便程序在常规内存被耗尽时仍可以恢复。 有非常易于使用的标准实现。 池式内存的缺点是: 内存池只适用于操作可以分阶段的程序。 内存池通常不能与第三方库很好地合作。 如果程序的结构发生变化,则不得不修改内存池,这可能会导致内存管理系统的重新设计。 您必须记住需要从哪个池进行分配。另外,如果在这里出错,就很难捕获该内存池。 回页首 垃圾收集 垃圾收集(Garbage collection)是全自动地检测并移除不再使用的数据对象。垃圾收集器通常会在当可用内存减少到少于一个具体的阈值时运行。通常,它们以程序所知的可用的一组“基本”数据 —— 栈数据、全局变量、寄存器 —— 作为出发点。然后它们尝试去追踪通过这些数据连接到每一块数据。收集器找到的都是有用的数据;它没有找到的就是垃圾,可以被销毁并重新使用这些无用的数据。为了有效地管理内存,很多型的垃圾收集器都需要知道数据结构内部指针的规划,所以,为了正确运行垃圾收集器,它们必须是语言本身的一部分。 收集器的型 复制(copying): 这些收集器将内存存储器分为两部分,只允许数据驻留在其中一部分上。它们定时地从“基本”的元素开始将数据从一部分复制到另一部分。内存新近被占用的部分现在成为活动的,另一部分上的所有内容都认为是垃圾。另外,当进行这项复制操作时,所有指针都必须被更新为指向每个内存条目的新位置。因此,为使用这种垃圾收集方法,垃圾收集器必须与编程语言集成在一起。 标记并清理(Mark and sweep):每一块数据都被加上一个标签。不定期的,所有标签都被设置为 0,收集器从“基本”的元素开始遍历数据。当它遇到内存时,就将标签标记为 1。最后没有被标记为 1 的所有内容都认为是垃圾,以后分配内存时会重新使用它们。 增量的(Incremental):增量垃圾收集器不需要遍历全部数据对象。因为在收集期间的突然等待,也因为与访问所有当前数据相关的缓存问题(所有内容都不得不被页入(page-in)),遍历所有内存会引发问题。增量收集器避免了这些问题。 保守的(Conservative):保守的垃圾收集器在管理内存时不需要知道与数据结构相关的任何信息。它们只查看所有数据型,并假定它们 可以全部都是指针。所以,如果一个字节序列可以是一个指向一块被分配的内存的指针,那么收集器就将其标记为正在被引用。有时没有被引用的内存会被收集,这样会引发问题,例如,如果一个整数域中包含一个值,该值是已分配内存的地址。不过,这种情况极少发生,而且它只会浪费少量内存。保守的收集器的优势是,它们可以与任何编程语言相集成。 Hans Boehm 的保守垃圾收集器是可用的最流行的垃圾收集器之一,因为它是免费的,而且既是保守的又是增量的,可以使用 --enable-redirect-malloc 选项来构建它,并且可以将它用作系统分配程序的简易替代者(drop-in replacement)(用 malloc/ free 代替它自己的 API)。实际上,如果这样做,您就可以使用与我们在示例分配程序中所使用的相同的 LD_PRELOAD 技巧,在系统上的几乎任何程序中启用垃圾收集。如果您怀疑某个程序正在泄漏内存,那么您可以使用这个垃圾收集器来控制进程。在早期,当 Mozilla 严重地泄漏内存时,很多人在其中使用了这项技术。这种垃圾收集器既可以在 Windows® 下运行,也可以在 UNIX 下运行。 垃圾收集的一些优点: 您永远不必担心内存的双重释放或者对象的生命周期。 使用某些收集器,您可以使用与常规分配相同的 API。 其缺点包括: 使用大部分收集器时,您都无法干涉何时释放内存。 在多数情况下,垃圾收集比其他形式的内存管理更慢。 垃圾收集错误引发的缺陷难于调试。 如果您忘记将不再使用的指针设置为 null,那么仍然会有内存泄漏。 回页首 结束语 一切都需要折衷:性能、易用、易于实现、支持线程的能力等,这里只列出了其中的一些。为了满足项目的要求,有很多内存管理模式可以供您使用。每种模式都有大量的实现,各有其优缺点。对很多项目来说,使用编程环境默认的技术就足够了,不过,当您的项目有特殊的需要时,了解可用的选择将会有帮助。下表对比了本文中涉及的内存管理策略。 表 1. 内存分配策略的对比 策略 分配速度 回收速度 局部缓存 易用性 通用性 实时可用 SMP 线程友好 定制分配程序 取决于实现 取决于实现 取决于实现 很难 无 取决于实现 取决于实现 简单分配程序 内存使用少时较快 很快 差 容易 高 否 否 GNU malloc 中 快 中 容易 高 否 中 Hoard 中 中 中 容易 高 否 是 引用计数 N/A N/A 非常好 中 中 是(取决于 malloc 实现) 取决于实现 池 中 非常快 极好 中 中 是(取决于 malloc 实现) 取决于实现 垃圾收集 中(进行收集时慢) 中 差 中 中 否 几乎不 增量垃圾收集 中 中 中 中 中 否 几乎不 增量保守垃圾收集 中 中 中 容易 高 否 几乎不 参考资料 您可以参阅本文在 developerWorks 全球站点上的 英文原文。 Web 上的文档 GNU C Library 手册的 obstacks 部分 提供了 obstacks 编程接口。 Apache Portable Runtime 文档 描述了它们的池式分配程序的接口。 基本的分配程序 Doug Lea 的 Malloc 是最流行的内存分配程序之一。 BSD Malloc 用于大部分基于 BSD 的系统中。 ptmalloc 起源于 Doug Lea 的 malloc,用于 GLIBC 之中。 Hoard 是一个为多线程应用程序优化的 malloc 实现。 GNU Memory-Mapped Malloc(GDB 的组成部分) 是一个基于 mmap() 的 malloc 实现。 池式分配程序 GNU Obstacks(GNU Libc 的组成部分)是安装最多的池式分配程序,因为在每一个基于 glibc 的系统中都有它。 Apache 的池式分配程序(Apache Portable Runtime 中) 是应用最为广泛的池式分配程序。 Squid 有其自己的池式分配程序。 NetBSD 也有其自己的池式分配程序。 talloc 是一个池式分配程序,是 Samba 的组成部分。 智能指针和定制分配程序 Loki C++ Library 有很多为 C++ 实现的通用模式,包括智能指针和一个定制的小对象分配程序。 垃圾收集器 Hahns Boehm Conservative Garbage Collector 是最流行的开源垃圾收集器,它可以用于常规的 C/C++ 程序。 关于现代操作系统中的虚拟内存的文章 Marshall Kirk McKusick 和 Michael J. Karels 合著的 A New Virtual Memory Implementation for Berkeley UNIX 讨论了 BSD 的 VM 系统。 Mel Gorman's Linux VM Documentation 讨论了 Linux VM 系统。 关于 malloc 的文章 Poul-Henning Kamp 撰写的 Malloc in Modern Virtual Memory Environments 讨论的是 malloc 以及它如何与 BSD 虚拟内存交互。 Berger、McKinley、Blumofe 和 Wilson 合著的 Hoard -- a Scalable Memory Allocator for Multithreaded Environments 讨论了 Hoard 分配程序的实现。 Marshall Kirk McKusick 和 Michael J. Karels 合著的 Design of a General Purpose Memory Allocator for the 4.3BSD UNIX Kernel 讨论了内核级的分配程序。 Doug Lea 撰写的 A Memory Allocator 给出了一个关于设计和实现分配程序的概述,其中包括设计选择与折衷。 Emery D. Berger 撰写的 Memory Management for High-Performance Applications 讨论的是定制内存管理以及它如何影响高性能应用程序。 关于定制分配程序的文章 Doug Lea 撰写的 Some Storage Management Techniques for Container Classes 描述的是为 C++ 编写定制分配程序。 Berger、Zorn 和 McKinley 合著的 Composing High-Performance Memory Allocators 讨论了如何编写定制分配程序来加快具体工作的速度。 Berger、Zorn 和 McKinley 合著的 Reconsidering Custom Memory Allocation 再次提及了定制分配的主题,看是否真正值得为其费心。 关于垃圾收集的文章 Paul R. Wilson 撰写的 Uniprocessor Garbage Collection Techniques 给出了垃圾收集的一个基本概述。 Benjamin Zorn 撰写的 The Measured Cost of Garbage Collection 给出了关于垃圾收集和性能的硬数据(hard data)。 Hans-Juergen Boehm 撰写的 Memory Allocation Myths and Half-Truths 给出了关于垃圾收集的神话(myths)。 Hans-Juergen Boehm 撰写的 Space Efficient Conservative Garbage Collection 是一篇描述他的用于 C/C++ 的垃圾收集器的文章。 Web 上的通用参考资料 内存管理参考 中有很多关于内存管理参考资料和技术文章的链接。 关于内存管理和内存层级的 OOPS Group Papers 是非常好的一组关于此主题的技术文章。 C++ 中的内存管理讨论的是为 C++ 编写定制的分配程序。 Programming Alternatives: Memory Management 讨论了程序员进行内存管理时的一些选择。 垃圾收集 FAQ 讨论了关于垃圾收集您需要了解的所有内容。 Richard Jones 的 Garbage Collection Bibliography 有指向任何您想要的关于垃圾收集的文章的链接。 书籍 Michael Daconta 撰写的 C++ Pointers and Dynamic Memory Management 介绍了关于内存管理的很多技术。 Frantisek Franek 撰写的 Memory as a Programming Concept in C and C++ 讨论了有效使用内存的技术与工具,并给出了在计算机编程中应当引起注意的内存相关错误的角色。 Richard Jones 和 Rafael Lins 合著的 Garbage Collection: Algorithms for Automatic Dynamic Memory Management 描述了当前使用的最常见的垃圾收集算法。 在 Donald Knuth 撰写的 The Art of Computer Programming 第 1 卷 Fundamental Algorithms 的第 2.5 节“Dynamic Storage Allocation”中,描述了实现基本的分配程序的一些技术。 在 Donald Knuth 撰写的 The Art of Computer Programming 第 1 卷 Fundamental Algorithms 的第 2.3.5 节“Lists and Garbage Collection”中,讨论了用于列表的垃圾收集算法。 Andrei Alexandrescu 撰写的 Modern C++ Design 第 4 章“Small Object Allocation”描述一个比 C++ 标准分配程序效率高得多的一个高速小对象分配程序。 Andrei Alexandrescu 撰写的 Modern C++ Design 第 7 章“Smart Pointers”描述了在 C++ 中智能指针的实现。 Jonathan 撰写的 Programming from the Ground Up 第 8 章“Intermediate Memory Topics”中有本文使用的简单分配程序的一个汇编语言版本。 来自 developerWorks 自我管理数据缓冲区内存 (developerWorks,2004 年 1 月)略述了一个用于管理内存的自管理的抽象数据缓存器的伪 C (pseudo-C)实现。 A framework for the user defined malloc replacement feature (developerWorks,2002 年 2 月)展示了如何利用 AIX 中的一个工具,使用自己设计的内存子系统取代原有的内存子系统。 掌握 Linux 调试技术 (developerWorks,2002 年 8 月)描述了可以使用调试方法的 4 种不同情形:段错误、内存溢出、内存泄漏和挂起。 在 处理 Java 程序中的内存漏洞 (developerWorks,2001 年 2 月)中,了解导致 Java 内存泄漏的原因,以及何时需要考虑它们。 在 developerWorks Linux 专区中,可以找到更多为 Linux 开发人员准备的参考资料。 从 developerWorks 的 Speed-start your Linux app 专区中,可以下载运行于 Linux 之上的 IBM 中间件产品的免费测试版本,其中包括 WebSphere® Studio Application Developer、WebSphere Application Server、DB2® Universal Database、Tivoli® Access Manager 和 Tivoli Directory Server,查找 how-to 文章和技术支持。 通过参与 developerWorks blogs 加入到 developerWorks 社区。 可以在 Developer Bookstore Linux 专栏中定购 打折出售的 Linux 书籍。 关于作者 Jonathan Bartlett 是 Programming from the Ground Up 一书的作者,这本书介绍的是 Linux 汇编语言编程。Jonathan Bartlett 是 New Media Worx 的总开发师,负责为客户开发 Web、视频、kiosk 和桌面应用程序。您可以通过 johnnyb@eskimo.com 与 Jonathan 联系。
oracle学习文档 笔记 全面 深刻 详细 通俗易懂 doc word格式 清晰 第一章 Oracle入门 一、 数据库概述 数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今五十年前。简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 常见的数据模型 1. 层次结构模型: 层次结构模型实质上是一种有根结点的定向有序树,IMS(Information Manage-mentSystem)是其典型代表。 2. 网状结构模型:按照网状数据结构建立的数据库系统称为网状数据库系统,其典型代表是DBTG(Data Base Task Group)。 3. 关系结构模型:关系式数据结构把一些复杂的数据结构归结为简单的二元关系(即二维表格形式)。常见的有Oracle、mssql、mysql等 二、 主流数据库 数据库名 公司 特点 工作环境 mssql 微软 只能能运行在windows平台,体积比较庞大,占用许多系统资源, 但使用很方便,支持命令和图形化管理,收费。 中型企业 Mysql 甲骨文 是个开源的数据库server,可运行在多种平台, 特点是响应速度特别快,主要面向中小企业 中小型企业 PostgreSQL 号称“世界上最先进的开源数据库“,可以运行在多种平台下,是tb级数据库,而且性能也很好 中大型企业 oracle 甲骨文 获得最高认证级别的ISO标准安全认证,性能最高, 保持开放平台下的TPC-D和TPC-C的世界记录。但价格不菲 大型企业 db2 IBM DB2在企业级的应用最为广泛, 在全球的500家最大的企业中,几乎85%以上用DB2数据库服务器。收费 大型企业 Access 微软 Access是一种桌面数据库,只适合数据量少的应用,在处理少量 数据和单机访问的数据库时是很好的,效率也很高 小型企业 三、 Oracle数据库概述 ORACLE数据库系统是美国ORACLE公司(甲骨文)提供的以分布式数据库为核心的一组软件产品,是目前最流行的客户/服务器(CLIENT/SERVER)或B/S体系结构的数据库之一。  拉里•埃里森  就业前景 从就业与择业的角度来讲,计算机相关专业的大学生从事oracle方面的技术是职业发展中的最佳选择。 其一、就业面广:全球前100强企业99家都在使用ORACLE相关技术,中国政府机构,大中型企事业单位都能有ORACLE技术的工程师岗位。 其二、技术层次深:如果期望进入IT服务或者产品公司(似毕博、DELL、IBM等),Oracle技术能够帮助提高就业的深度。 其三、职业方向多:Oracle数据库管理方向、Oracle开发及系统架构方向、Oracle数据建模数据仓库等方向。 四、 如何学习 认真听课、多思考问题、多动手操作、有问题一定要问、多参与讨论、多帮组同学 五、 体系结构 oracle的体系很庞大,要学习它,首先要了解oracle的框架。oracle的框架主要由物理结构、逻辑结构、内存分配、后台进程、oracle例程、系统改变号 (System Change Number)组成  物理结构 物理结构包含三种数据文件: 1) 控制文件 2) 数据文件 3) 在线重做日志文件  逻辑结构 功能:数据库如何使用物理空间 组成:表空间、段、区、块的组成层次 六、 oracle安装、卸载和启动  硬件要求 物理内存:1GB 可用物理内存:50M 交换空间大小:3.25GB 硬盘空间:10GB  安装 1. 安装程序成功下载,将会得到如下2个文件: 解压文件将得到database文件夹,文件组织如下: 点击setup.exe执行安装程序,开始安装。 2. 点击安装程序将会出现如下安装界面,步骤 1/9:配置安全更新 填写电子邮件地址(可以不填),去掉复选框,点击下一步 3. 步骤2/9:选择安装选项 勾选第一个,安装和配置数据库,点击下一步 4. 步骤3/8:选择系统 勾选第一个:桌面,点击下一步 5. 步骤4/8:配置数据库安装 选择安装路径,选择数据库版本(企业版),选择字符集(默认值) 填写全局数据库名,管理口令 6. 步骤5/8:先决条件检查 如果你的电脑满足要求但仍然显示检查失败,这时候直接忽略,勾选全部忽略 7. 步骤6/8:概要信息 核对将要安装数据的详细信息,并保存响应文件,以备以后查看。然后点击完成数据库安装 8. 步骤7/8:安装产品 产品安装过程中将会出现以上2个界面 9. 步骤8/8:完成安装  卸载Oracle 1. 在运行services.msc打开服务,停止Oracle的所有服务。 2. oracle11G自带一个卸载批处理\app\Administrator\product\11.2.0\dbhome_1\deinstall\deinstall.bat 3. 运行该批处理程序将自动完成oracle卸载工作,最后手动删除\app文件夹(可能需要重启才能删除) 4. 运行regedit命令,打开注册表窗口。删除注册表中与Oracle相关的内容,具体如下:  删除HKEY_LOCAL_MACHINE/SOFTWARE/ORACLE目录。  删除HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services中所有以oracle或OraWeb为开头的键。  删除HKEY_LOCAL_MACHINE/SYSETM/CurrentControlSet/Services/Eventlog/application中所有以oracle开头的键。  删除HKEY_CLASSES_ROOT目录下所有以Ora、Oracle、Orcl或EnumOra为前缀的键。  删除HKEY_CURRENT_USER/SOFTWARE/Microsoft/windows/CurrentVersion/Explorer/MenuOrder/Start Menu/Programs中所有以oracle 开头的键。  删除HKDY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBCINST.INI中除Microsoft ODBC for Oracle注册表键以外的所有含有Oracle的键。  删除环境变量中的PATHT CLASSPATH中包含Oracle的值。  删除“开始”/“程序”中所有Oracle的组和图标。  删除所有与Oracle相关的目录,包括: C:\Program file\Oracle目录。 ORACLE_BASE目录。 C:\Documents and Settings\系统用户名、LocalSettings\Temp目录下的临时文件。 七、 oracle中的数据库 八、 常用的工具  Sql Plus  Sql Developer  Oracle Enterprise Manager   第二章 用户和权限 一、 用户介绍 ORACLE用户是学习ORACLE数据库中的基础知识,下面就介绍下系统常用的默认ORACLE用户: 1. sys用户:超级用户,完全是个SYSDBA(管理数据库的人)。拥有dba,sysdba,sysoper等角色或权限。是oracle权限最高的用户,登录时不能用normal。 2. system用户:超级用户,默认是SYSOPT(操作数据库的人),不过它也能以SYSDBA的权限登陆。拥有普通dba角色权限。 3. scott用户:是个演示用户,是让你学习Oracle用的。 二、 常用命令 学习oracle,首先我们必须要掌握常用的基本命令,oracle中的命令比较多,常用的命令如下: 1. 登录命令(sqlplus) 说明:用于登录到oracle数据库 用法:sqlplus 用户名/密码 [as sysdba/sysoper] 注意:当用特权用户登录时,必须带上sysdba或sysoper 例子: 普通用户登录 sys用户登录 操作系统的身份登录 2. 连接命令(conn) 说明:用于连接到oracle数据库,也可实现用户的切换 用法:conn 用户名/密码 [as sysdba/sysoper] 注意:当用特权用户连接时,必须带上sysdba或sysoper 例子: 3. 断开连接(disc) 说明:断开与当前数据库的连接 用法:disc 4. 显示用户名(show user) 说明:显示当前用户名 用法:show user 5. 退出(exit) 说明:断开与当前数据库的连接并会退出 用法:exit 6. 编辑脚本(edit/ed) 说明:编辑指定或缓冲区的sql脚本 用法:edit [文件名] 列子: 7. 运行脚本 (start/@) 说明:运行指定的sql脚本 用法:start/@ 文件名 列子: 8. 印刷屏幕 (spool) 说明:将sql*plus屏幕中的内容输出到指定的文件 用法:开始印刷->spool 文件名 结束印刷->spool off 列子: 文件内容 9. 显示宽度 (linesize) 说明:设置显示行的宽度,默认是80个字符 用法:set linesize 120 10. 显示页数 (pagesize) 说明:设置每页显示的行数,默认是14页 用法:set pagesize 20 三、 用户管理 1. 创建用户 说明:Oracle中需要创建用户一定是要具有dba(数据库管理员)权限的用户才能创建,而且创建的新用户不具备任何权限,连登录都不可以。 用法:create user 新用户名 identified by 密码 例子: 2. 修改密码 说明:修改用户密码一般有两种方式,一种是通过命令password修改,另一种是通过语句alter user实现,如果要修改他人的密码,必须要具有相关的权限才可以 用法: 方式一 password [用户名] 方式二 alert user 用户名 identified by 新密码 例子: 修改当前用户(方式一) 修改当前用户(方式二) 修改其他用户(方式一) 修改其他用户(方式二) 3. 用户禁用与启用 说明:Oracle中想要禁用或启用一个账户也同样是使用alter user 命令来完成,只是语法和修改密码有所不同。 用法: 禁用 alert user 用户名 account lock 启用 alert user 用户名 account unlock 4. 删除用户 说明:Oracle中要删除一个用户,必须要具有dba的权限。而且不能删除当前用户,如果删除的用户有数据对象,那么必须加上关键字cascade。 用法:drop user 用户名 [cascade] 四、 用户权限与角色 1. 权限 Oracle中权限主要分为两种,系统权限和实体权限。  系统权限:系统规定用户使用数据库的权限。(系统权限是对用户而言)。  DBA: 拥有全部特权,是系统最高权限,只有DBA才可以创建数据库结构。  RESOURCE:拥有Resource权限的用户只可以创建实体,不可以创建数据库结构。  CONNECT:拥有Connect权限的用户只可以登录Oracle,不可以创建实体,不可以创建数据库结构。 注意: 对于普通用户:授予connect, resource权限。 对于DBA管理用户:授予connect,resource, dba权限。  授予系统权限 说明:要实现授予系统权限只能由DBA用户授出。 用法:grant 系统权限1[,系统权限2]… to 用户名1[,用户名2]…. 例子:  系统权限回收: 说明:系统权限只能由DBA用户回收 用法:revoke 系统权限 from 用户名 例子:  实体权限:某种权限用户对其它用户的表或视图的存取权限。(是针对表或视图而言的)。主要包括select, update, insert, alter, index, delete, all其中all包括所有权限。  授予实体权限 用法:grant 实体权限1[,实体权限2]… on 表名 to用户名1[,用户名2]…. 例子:  实体权限回收 用法:revoke 实体权限 on 表名from 用户名 例子:  查询用户拥有哪里权限: SQL> select * from role_tab_privs;//查询授予角色的对象权限 SQL> select * from role_role_privs;//查询授予另一角色的角色 SQL> select * from DBA_tab_privs;//查询直接授予用户的对象权限 SQL> select * from dba_role_privs;//查询授予用户的角色 SQL> select * from dba_sys_privs;//查询授予用户的系统权限 SQL> select * from role_sys_privs;//查询授予角色的系统权限 SQL> Select * from session_privs;// 查询当前用户所拥有的权限 2. 角色 角色。角色是一组权限的集合,将角色赋给一个用户,这个用户就拥有了这个角色中的所有权限。  系统预定义角色 预定义角色是在数据库安装后,系统自动创建的一些常用的角色。下面我们就简单介绍些系统角色:  CONNECT, RESOURCE, DBA这些预定义角色主要是为了向后兼容。其主要是用于数据库管理。oracle建议用户自己设计数据库管理和安全的权限规划,而不要简单的使用这些预定角色。将来的版本中这些角色可能不会作为预定义角色。  DELETE_CATALOG_ROLE, EXECUTE_CATALOG_ROLE,SELECT_CATALOG_ROLE这些角色主要用于访问数据字典视图和包。  EXP_FULL_DATABASE, IMP_FULL_DATABASE这两个角色用于数据导入导出工具的使用。  自定义角色 Oracle建议我们自定义自己的角色,使我们更加灵活方便去管理用户  创建角色 SQL> create role admin;  授权给角色 SQL> grant connect,resource to admin;  撤销角色的权限 SQL> revoke connect from admin;  删除角色 SQL> drop role admin;   第三章 Sql查询与函数 一、 SQL概述 SQL(Structured Query Language)结构化查询语言,是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统。同时也是数据库脚本文件的扩展名。  SQL语言主要包含5个部分  数据定义语言Data Definition Language(DDL),用来建立数据库、数据对象和定义其列。例如:CREATE、DROP、ALTER等语句。  数据操作语言Data Manipulation Language(DML),用来插入、修改、删除、查询,可以修改数据库中的数据。例如:INSERT(插入)、UPDATE(修改)、DELETE(删除)语句  数据查询语言 (Data Query Language, DQL) 是SQL语言中,负责进行数据查询而不会对数据本身进行修改的语句,这是最基本的SQL语句。例如:SELECT(查询)  数据控制语言Data Controlling Language(DCL),用来控制数据库组件的存取允许、存取权限等。例如:GRANT、REVOKE、COMMIT、ROLLBACK等语句。  事务控制语言(Transactional Control Language,TCL),用于维护数据的一致性,包括COMMIT(提交事务)、ROLLBACK(回滚事务)和SAVEPOINT(设置保存点)3条语句 二、 Oracle的数据型 参数 描述 字符型 char 1~2000字节 固定长度字符串,长度不够的用空格补充 varchar2 1~4000字节 可变长度字符串,与CHAR型相比,使用VARCHAR2可以节省磁盘空间,但查询效率没有char型高 数值型 Number(m,n) m(1~38) n(-84~127) 可以存储正数、负数、零、定点数和精度为38位的浮点数,其中,M表示精度,代表数字的总位数;N表示小数点右边数字的位数 日期型 date 7字节 用于存储表中的日期和时间数据,取值范围是公元前4712年1月1日至公元9999年12月31日,7个字节分别表示世纪、年、月、日、时、分和秒 二进制数据型 row 1~2000字节 可变长二进制数据,在具体定义字段的时候必须指明最大长度n long raw 1~2GB 可变长二进制数据 LOB数据型 clob 1~4GB 只能存储字符数据 nclob 1~4GB 保存本地语言字符集数据 blob 1~4GB 以二进制信息保存数据 三、 DDL语言 1. Create table命令 用于创建表。在创建表时,经常会创建该表的主键、外键、唯一约束、Check约束等  语法结构 create table 表名( [字段名] [型] [约束] ……….. CONSTRAINT fk_column FOREIGN KEY(column1,column2,…..column_n) REFERENCES tablename(column1,column2,…..column_n) )  例子: create table student( stuNo char(32) primary key,--主键约束 stuName varchar2(20) not null,--非空约束 cardId char(20) unique,--唯一约束 sex char(2) check(sex='男' or sex='女'),--检查约束 address varchar2(100) default '地址不详'--默认约束 ) create table mark( mid int primary key,--主键约束 stuNo char(32) not null, courseName varchar2(20) not null,--非空约束 score number(3) not null check(score>=0 and scoreselect * from em--查询所有数据 SQL>select ename,job from em--查询指定的字段数据 SQL> select * from emp where sal>1000--加条件 2. 聚合函数 聚合函数对一组值执行计算并返回单一的值。聚合函数忽略空值。聚合函数经常与 SELECT 语句的 GROUP BY 子句一同使用。不能在 WHERE 子句中使用组函数。  AVG(expression): 返回集合中各值的平均值 --查询所有人都的平均工资 select avg(sal) from emp  COUNT(expression): 以 Int32 形式返回集合中的项数 --查询工资低于2000的人数 select count(*) from emp where sal2000 5. 连接查询 连接查询是关系数据库中最主要的查询,主要包括内连接、外连接和交叉连接等。通过连接运算符可以实现多个表查询。  内连接 内连接也叫连接,是最早的一种连接。还可以被称为普通连接或者自然连接,内连接是从结果表中删除与其他被连接表中没有匹配行的所有行,所以内连接可能会丢失信息。  等值连接: select * from emp inner join dept on emp.deptno=dept.deptno select * from emp,dept where emp.deptno=dept.deptno  不等值连接: select * from emp inner join dept on emp.deptno!=dept.deptno  外连接 外连接分为三种:左外连接,右外连接,全外连接。对应SQL:LEFT/RIGHT/FULL OUTER JOIN。通常我们省略outer 这个关键字。写成:LEFT/RIGHT/FULL JOIN。  左外连接(left join): 是以左表的记录为基础的 select * from emp left join dept on emp.deptno=dept.deptno  右外连接(right join): 和left join的结果刚好相反,是以右表(BL)为基础的 select * from emp right join dept on emp.deptno=dept.deptno  全外连接(full join): 左表和右表都不做限制,所有的记录都显示,两表不足的地方用null 填充 select * from emp full join dept on emp.deptno=dept.deptno  交叉连接 交叉连接即笛卡儿乘积,是指两个关系中所有元组的任意组合。一般情况下,交叉查询是没有实际意义的。 select * from cross full join dept 6. 常用查询  like模糊查询 --查询姓名首字母为S开始的员工信息 select * from emp where ename like 'S%' --查询姓名第三个字母为A的员工信息 select * from emp where ename like '__A%'  is null/is not null 查询 --查询没有奖金的雇员信息 select * from emp where comm is null --查询有奖金的雇员信息 select * from emp where comm is not null  in查询 --查询雇员编号为7566、7499、7844的雇员信息 select * from emp where empno in(7566,7499,7844)  exists/not exists查询(效率高于in) --查询有上级领导的雇员信息 select * from emp e where exists (select * from emp where empno=e.mgr) --查询没有上级领导的雇员信息 select * from emp e where not exists (select * from emp where empno=e.mgr)  all查询 --查询比部门编号为20的所有雇员工资都高的雇员信息 select * from emp where sal > all(select sal from emp where deptno=20)  union合并不重复 select * from emp where comm is not null union select * from emp where sal>3000  union all合并重复 select * from emp where comm is not null union all select * from emp where sal>3000 7. 子查询 当一个查询是另一个查询的条件时,称之为子查询。子查询是一个 SELECT 语句,它嵌套在一个 SELECT、SELECT...INTO 语句、INSERT...INTO 语句、DELETE 语句、或 UPDATE 语句或嵌套在另一子查询中。  在CREATE TABLE语句中使用子查询 --创建表并拷贝数据 create table temp(id,name,sal) as select empno,ename,sal from emp  在INSERT语句中使用子查询 --当前表拷贝 insert into temp(id,name,sal) select * from temp --从其他表指定字段拷贝 insert into temp(id,name,sal) select empno,ename,sal from emp  在DELETE语句中使用子查询 --删除SALES部门中的所有雇员 delete from emp where deptno in (select deptno from dept where dname='SALES')  在UPDATE语句中使用子查询 --修改scott用户的工资和smith的工资一致 update emp set sal=(select sal from emp where ename='SMITH') where ename='SCOTT' --修改black用户的工作,工资,奖金和scott一致 update emp set(job,sal,comm)=(select job,sal,comm from emp where ename='SCOTT') where ename='BLAKE'  在SELECT语句中使用子查询 --查询和ALLEN同一部门的员工信息 select * from emp where deptno in (select deptno from emp where ename='ALLEN') --查询工资大于部门平均工资的雇员信息 select * from emp e (select avg(sal) asal,deptno from emp group by deptno) t where e.deptno=t.deptno and e.sal>t.asal 六、 TCL语言 1. COMMIT commit --提交事务 2. ROLLBACK rollback to p1 --回滚到指定的保存点 rollback --回滚所有的保存点 3. SAVEPOINT savepoint p1 --设置保存点 4. 只读事务 只读事务是指只允许执行查询的操作,而不允许执行任何其它dml操作的事务,它的作用是确保用户只能取得某时间点的数据。 set transaction read only 七、 oracle函数 1. 字符串函数 字符串函数是oracle中比较常用的,下面我们就介绍些常用的字符串函数:  concat:字符串连接函数,也可以使用’||’ --将职位和雇员名称显示在一列中 select concat(ename,concat('(',concat(job,')'))) from emp select ename || '(' || job || ')' from emp  length:返回字符串的长度 --查询雇员名字长度为5个字符的信息 select * from emp where length(ename)=5  lower:将字符串转换成小写 --以小写方式显示雇员名 select lower(ename) from emp  upper:将字符串转换成大写 --以大写方式显示雇员名 select upper (ename) from emp  substr:截取字符串 --只显示雇员名的前3个字母 select substr(ename,0,3) from emp  replace:替换字符串 --将雇员的金额显示为*号 select ename,replace(sal,sal,’*’) from emp  instr:查找字符串 --查找雇员名含有’LA’字符的信息 select * from emp where instr(ename,’LA’)>0 2. 日期函数  sysdate:返回当前session所在时区的默认时间 --获取当前系统时间 select sysdate from dual  add_months:返回指定日期月份+n之后的值,n可以为任何整数 --查询当前系统月份+2的时间 select add_months(sysdate,2) from dual --查询当前系统月份-2的时间 select add_months(sysdate,-2) from dual  last_day:返回指定时间所在月的最后一天 --获取当前系统月份的最后一天 select last_day(sysdate) from dual  months_between:返回月份差,结果可正可负,当然也有可能为0 --获取入职日期距离当前时间多少天 select months_between(sysdate, hiredate) from emp  trunc:为指定元素而截去的日期值 --获取当前系统年,其他默认 select trunc(sysdate,'yy') from dual --查询81年2月份入职的雇员 select * from emp where trunc(hiredate,'mm')=trunc(to_date('1981-02','yyyy-mm'),'mm') 3. 转换函数  to_char:将任意型转换成字符串 --日期转换 select to_char(sysdate, 'yyyy-mm-dd hh24:mi:ss') from dual --数字转换 select to_char(-100.789999999999,'L99G999D999') from dual  数字格式控制符 符号 描述 9 代表一位数字,如果当前位有数字,显示数字,否则不显示(小数部分仍然会强制显示) 0 强制显示该位,如果当前位有数字,显示数字,否则显示0 $ 增加美元符号显示 L 增加本地货币符号显示 . 小数点符号显示 , 千分位符号显示  to_date:将字符串转换成日期对象 --字符转换成日期 select to_date('2011-11-11 11:11:11', 'yyyy-mm-dd hh24:mi:ss') from dual  to_number:将字符转换成数字对象 --字符转换成数字对象 select to_number('209.976')*5 from dual select to_number('209.976', '9G999D999')*5 from dual 4. 数学函数  abs:返回数字的绝对值 select abs(-1999) from dual  ceil:返回大于或等于n的最小的整数值 select ceil(2.48) from dual  floor:返回小于等于n的最大整数值 select floor(2.48) from dual  round:四舍五入 select round(2.48) from dual select round(2.485,2) from dual  bin_to_num:二进制转换成十进制 select bin_to_num(1,0,0,1,0) from dual   第四章 锁 一、 概述 锁是实现数据库并发控制的一个非常重要的技术。当事务在对某个数据对象进行操作前,先向系统发出请求,对其加锁。加锁后事务就对该数据对象有了一定的控制,在该事务释放锁之前,其他的事务不能对此数据对象进行更新操作。 在数据库中有两种基本的锁型:排它锁(Exclusive Locks,即X锁)和共享锁(Share Locks,即S锁)。当数据对象被加上排它锁时,其他的事务不能对它读取和修改。加了共享锁的数据对象可以被其他事务读取,但不能修改。 根据保护的对象不同,Oracle数据库锁可以分为以下几大:  DML锁(data locks,数据锁),用于保护数据的完整性  DDL锁(dictionary locks,字典锁),用于保护数据库对象的结构,如表、索引等的结构定义  内部锁和闩(internal locks and latches),保护数据库的内部结构 二、 DML锁 DML锁的目的在于保证并发情况下的数据完整性,在Oracle数据库中,DML锁主要包括TM锁和TX锁,其中TM锁称为表级锁,TX锁称为事务锁或行级锁。 1. 行级锁 当事务执行数据库插入、更新、删除操作时,该事务自动获得操作表中操作行的排它锁 --不允许其他用户对雇员表的部门编号为20的数据进行修改 select * from emp where deptno=20 for update --不允许其他用户对雇员表的所有数据进行修改 select * from emp for update --如果已经被锁定,就不用等待 select * from emp for update nowait --如果已经被锁定,更新的时候等待5秒 select * from emp for update wait 5 2. 锁模式  0(none)  1(null)  2(rs):行共享  3(rx):行排他  4(s):共享  5(srx):共享行排他  6(x):排他 数字越大,锁级别越高 3. 表级锁 当事务获得行锁后,此事务也将自动获得该行的表锁(行排他),以防止其它事务进行DDL语句影响记录行的更新  行共享锁(RS锁):允许用户进行任何操作,禁止排他锁 lock table emp in row share mode  行排他锁(RX锁):允许用户进行任何操作,禁止共享锁 lock table emp in row exclusive mode  共享锁(R锁):其他用户只能看,不能修改 lock table emp in share mode  排他锁(X锁):其他用户只能看,不能修改,不能加其他锁 lock table emp in exclusive mode  共享行排他(SRX锁):比行排他和共享锁级别高,不能添加共享锁 lock table emp in share row exclusive mode 4. 锁兼容性 S X RS RX SRX N/A S Y N Y N N Y X N N N N N Y RS Y N Y Y Y Y RX N N Y Y N Y SRX N N Y N N Y N/Y Y Y Y Y Y Y 5. 死锁 当两个事务需要一组有冲突的锁,而不能将事务继续下去的话,就出现死锁。 1) 用户A修改A表,事务不提交 2) 用户B修改B表,事务不提交 3) 用户A修改B表,阻塞 4) 用户B修改A表,阻塞 Oracle系统能自动发现死锁,并会自动选择工作量最少的事务进行撤销和释放所有锁 6. 悲观锁和乐观锁 数据的锁定分为两种方法,第一种叫做悲观锁,第二种叫做乐观锁  悲观锁:就是对数据的冲突采取一种悲观的态度,也就是说假设数据肯定会冲突,所以在数据开始读取的时候就把数据锁定住。  乐观锁:就是认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让用户返回错误的信息,让用户决定如何去做。 三、 DDL锁 1. 排它DDL锁 创建、修改、删除一个数据库对象的DDL语句获得操作对象的排它锁。 2. 共享DDL锁 需在数据库对象之间建立相互依赖关系的DDL语句通常需共享获得DDL锁 3. 分析锁 分析锁是一种独特的DDL锁型,ORACLE使用它追踪共享池对象及它所引用数据库对象之间的依赖关系 四、 内部锁和闩 这是ORACLE中的一种特殊锁,用于顺序访问内部系统结构。当事务需向缓冲区写入信息时,为了使用此块内存区域,ORACLE首先必须取得这块内存区域的闩锁,才能向此块内存写入信息。   第五章 数据库对象 一、 概述 ORACLE数据库主要有如下数据库对象:  tablespace and datafile(表空间和数据文件)  table(表)  constraints(约束)  index(索引)  view(试图)  sequence(序列)  synonyms(同义词)  DB-link(数据库链路) 二、 表空间和数据文件 表空间是数据库的逻辑组成部分,从物理上讲,数据库数据是存放在数据文件中,从逻辑上讲数据库则是存放在表空间中,表空间是由一个或多个数据文件组成。  表空间  某一时刻只能属于一个数据库  由一个或多个数据文件组成  可进一步划分为逻辑存储  表空间主要分为两种  System表空间  随数据库创建  包含数据字典  包含system还原段  非system表空间  用于分开存储段  易于空间管理  控制分配给用户的空间量  数据文件  只能属于一个表空间和一个数据库  是方案对象数据的资料档案库  创建表空间  语法 CREATE TABLESPACE tablespacename [DATAFILE clause] [MINIMUM EXTENT integer[k|m]] [BLOCKSIZE integer[k]] [LOGGING|NOLOGGING] [DEFAULT storage_clause] [ONLINE|OFFLINE] [PERMANENT|TEMPORARY] [extent_management_clause] [segment_management_clause]  例子 --创建本地管理表空间 create tablespace firstSpance datafile 'e:/firstspance.dbf'size 100M extent management local uniform size 256k --修改文件大小 alter database datafile 'e:/firstspance.dbf' resize 110m --删除表空间 drop tablespace firstSpance INCLUDING CONTENTS and datafiles --使用数据库表空间 --创建用户指定表空间 create user guest identified by 123456 default tablespace firstSpance --表中指定表空间 create table account( accountid number(4), accountName varchar2(20) )tablespace firstSpance --表空间脱机 alter tablespace firstSpance offline --表空间联机 alter tablespace firstSpance online --表空间只读,不能进行dml操作 alter tablespace firstSpance read only 三、 同义词 Oracle数据库中提供了同义词管理的功能。同义词是数据库方案对象的一个别名,经常用于简化对象访问和提高对象访问的安全性。Oracle同义词有两种型,分别是公用Oracle同义词与私有Oracle同义词。  公有同义词  语法 CREATE [OR REPLACE] PUBLIC SYNONYM sys_name FOR [SCHEMA.] object_name  创建(需拥有CREATE PUBLIC SYNONYM权限才可以创建) --创建同义词 create public synonym syn_emp for scott.emp --访问同义词 select * from syn_emp  删除 drop public synonym syn_emp  私有同义词  语法 CREATE [OR REPLACE] SYNONYM sys_name FOR [SCHEMA.] object_name  创建 --创建同义词 create synonym syn_pri_emp for emp --访问同义词 select * from syn_ pri _emp  删除 drop public synonym syn_emp 四、 表分区 当表中的数据量不断增大,查询数据的速度就会变慢,应用程序的性能就会下降,这时就应该考虑对表进行分区。表进行分区后,逻辑上表仍然是一张完整的表,只是将表中的数据在物理上存放到多个表空间(物理文件上),这样查询数据时,不至于每次都扫描整张表。  优点:  改善查询性能:对分区对象的查询可以仅搜索自己关心的分区,提高检索速度。  增强可用性:如果表的某个分区出现故障,表在其他分区的数据仍然可用;  维护方便:如果表的某个分区出现故障,需要修复数据,只修复该分区即可;  均衡I/O:可以把不同的分区映射到磁盘以平衡I/O,改善整个系统性能。  使用场合  表的大小超过2GB  表中包含历史数据,新的数据被增加都新的分区中  常见分区方法:  范围 --- 8  Hash --- 8i  列表 --- 9i  组合 --- 8i 1. 范围分区 范围分区将数据基于范围映射到每一个分区,这个范围是你在创建分区时指定的分区键决定的。这种分区方式是最为常用的,并且分区键经常采用日期。  特点:  最早、最经典的分区算法  Range分区通过对分区字段值的范围进行分区  Range分区特别适合于按时间周期进行数据的存储。日、周、月、年等。  数据管理能力强(数据迁移、数据备份、数据交换)  范围分区的数据可能不均匀  范围分区与记录值相关,实施难度和可维护性相对较差  例子  按值划分 --创建 CREATE TABLE book ( bookid NUMBER(5), bookname VARCHAR2(30), price NUMBER(8) )PARTITION BY RANGE (price)--分区字段 ( PARTITION P1 VALUES LESS THAN (4) TABLESPACE system, PARTITION P2 VALUES LESS THAN (8) TABLESPACE system, PARTITION P3 VALUES LESS THAN (maxvalue) TABLESPACE system, ) --MAXVALUE代表了一个不确定的值,这个值高于其它分区中的任何分区键的值  按日期划分 CREATE TABLE student ( stuno NUMBER(5), stuname VARCHAR2(30), birthday date )PARTITION BY RANGE (birthday)--分区字段 ( PARTITION P1990 VALUES LESS THAN (to_date('1990-01-01','yyyy-mm-dd')) TABLESPACE system, PARTITION P1991 VALUES LESS THAN (to_date('1991-01-01','yyyy-mm-dd')) TABLESPACE system ); 2. Hash分区(散列分区) 这分区是在列值上使用散列算法,以确定将行放入哪个分区中。当列的值没有合适的条件时,建议使用散列分区。散列分区为通过指定分区编号来均匀分布数据的一种分区型。如果你要使用hash分区,只需指定分区的数量即可。建议分区的数量采用2的n次方,这样可以使得各个分区间数据分布更加均匀。  特点  基于分区字段的HASH值,自动将记录插入到指定分区。  分区数一般是2的幂  易于实施  总体性能最佳  适合于静态数据  HASH分区适合于数据的均匀存储  数据管理能力弱  HASH分区对数据值无法控制  例子 CREATE TABLE classes ( clsno NUMBER(5), clsname VARCHAR2(30) )PARTITION BY HASH(clsno)--分区字段 ( PARTITION ph1 tablespace system, PARTITION ph2 tablespace system ) 3. List分区(列表分区) 该分区的特点是某列的值只有几个,基于这样的特点我们可以采用列表分区。  特点  List分区通过对分区字段的离散值进行分区  List分区是不排序的,而且分区之间也没有关联  List分区适合于对数据离散值进行控制  List分区只支持单个字段  List分区具有与range分区相似的优缺点  数据管理能力强  各分区的数据可能不均匀  例子 CREATE TABLE users ( userid NUMBER(5), username VARCHAR2(30), province char(5) )PARTITION BY list(province)--分区字段 ( PARTITION pl1 values('广东') tablespace system, PARTITION pl2 values('江西') tablespace system, PARTITION pl3 values('广西') tablespace system, PARTITION pl4 values('湖南') tablespace system ); 4. 组合分区 常见的组合分区主要有范围散列分区和范围列表分区  特点  既适合于历史数据,又适合于数据均匀分布  与范围分区一样提供高可用性和管理性  实现粒度更细的操作  组合范围列表分区 这种分区是基于范围分区和列表分区,表首先按某列进行范围分区,然后再按某列进行列表分区,分区之中的分区被称为子分区。  例子 CREATE TABLE student ( stuno NUMBER(5), stuname VARCHAR2(30), birthday date, province char(5) )PARTITION BY RANGE (birthday) --主分区字段 subpartition BY LIST(province)--子分区字符 ( PARTITION P1990 VALUES LESS THAN(to_date('1990-01-01','yyyy-mm-dd')) TABLESPACE system ( SUBPARTITION pl1 values('广东') tablespace system, SUBPARTITION pl2 values('江西') tablespace system, SUBPARTITION pl3 values('广西') tablespace system, SUBPARTITION pl4 values('湖南') tablespace system ), PARTITION P1991 VALUES LESS THAN(to_date('1991-01-01','yyyy-mm-dd')) TABLESPACE system ( SUBPARTITION p21 values('广东') tablespace system, SUBPARTITION p22 values('江西') tablespace system, SUBPARTITION p23 values('广西') tablespace system, SUBPARTITION p24 values('湖南') tablespace system ) );  组合范围散列分区 这种分区是基于范围分区和散列分区,表首先按某列进行范围分区,然后再按某列进行散列分区。  例子 CREATE TABLE student ( stuno NUMBER(5), stuname VARCHAR2(30), birthday date )PARTITION BY RANGE(birthday) --主分区字段 SUBPARTITION BY HASH(stuno)--子分区字符 ( PARTITION P1990 VALUES LESS THAN(to_date('1990-01-01','yyyy-mm-dd')) TABLESPACE system ( SUBPARTITION ph12 tablespace system, SUBPARTITION ph13 tablespace system ), PARTITION P1991 VALUES LESS THAN(to_date('1991-01-01','yyyy-mm-dd')) TABLESPACE system ( SUBPARTITION ph21 tablespace system, SUBPARTITION ph22 tablespace system ) ); 5. 表分区常用操作  添加分区 --添加主分区 alter table book add partition p4 values less than(maxvalue) tablespace system --添加子分区 ALTER TABLE student MODIFY PARTITION P1990 ADD SUBPARTITION pl5 values('福建')  删除分区 --删除主分区 ALTER TABLE student DROP PARTITION P1990 --删除子分区 ALTER TABLE student DROP SUBPARTITION p15  重命名表分区 ALTER TABLE student RENAME PARTITION P21 TO P2  显示数据库所有分区表的信息 select * from DBA_PART_TABLES  显示当前用户所有分区表的信息 select * from USER_PART_TABLES  查询指定表分区数据 select * from users partition(pl2)--主分区 select * from users subpartition(phl2)--子分区  删除分区表一个分区的数据 alter table book truncate partition p11   第六章 视图 一、 概述 视图是基于一个表或多个表或视图的逻辑表,本身不包含数据,通过它可以对表里面的数据进行查询和修改。视图基于的表称为基表。视图是存储在数据字典里的一条select语句。 通过创建视图可以提取数据的逻辑上的集合或组合。  为什么使用视图  控制数据访问  简化查询  数据独立性  避免重复访问相同的数据  使用修改基表的最大好处是安全性,即保证那些能被任意人修改的列的安全性  Oracle中视图分  关系视图  内嵌视图  对象视图  物化视图 二、 关系视图 关系视图是作为数据库对象存在的,创建之后也可以通过工具或数据字典来查看视图的相关信息。关系视图是4种视图中最简单,同时也最常用的视图。  语法 CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view_name [(alias[, alias]...)] AS subquery [WITH CHECK OPTION [CONSTRAINT constraint]] [WITH READ ONLY] 1. OR REPLACE:若所创建的试图已经存在,ORACLE自动重建该视图 2. FORCE:不管基表是否存在ORACLE都会自动创建该视图 3. NOFORCE:只有基表都存在ORACLE才会创建该视图 4. Alias:为视图产生的列定义的别名 5. subquery:一条完整的SELECT语句,可以在该语句中定义别名 6. WITH CHECK OPTION:插入或修改的数据行必须满足视图定义的约束 7. WITH READ ONLY:该视图上不能进行任何DML操作  例子 create or replace view view_Account_dept as select * from emp where deptno=10 --只读视图 create or replace view view_Account_dept as select * from emp where deptno=10 order by sal with read only --约束视图 create or replace view view_Account_dept as select * from emp where deptno=10 with check option  查询视图 select * from emp where view_Account_dept  修改视图 通过OR REPLACE 重新创建同名视图即可  删除视图 DROP VIEW VIEW_NAME语句删除视图  视图上的DML 操作原则 1. 简单视图可以执行DML操作; 2. 在视图包含GROUP函数,GROUP BY子句,DISTINCT关键字时不能执行delete语句 3. 在视图包含GROUP函数,GROUP BY子句,DISTINCT关键字,ROWNUM为例,列定义为表达式时不能执行update语句 4. 在视图包含GROUP函数,GROUP BY子句,DISTINCT关键字,ROWNUM为例,列定义为表达式,表中非空的列子视图定义中未包括时不能执行insert语句 5. 可以使用WITH READ ONLY来屏蔽DML操作 三、 内嵌视图 内嵌视图是在from语句中的可以把表改成一个子查询。内嵌视图不属于任何用户,也不是对象,内嵌视图是子查询的一种。  例子 Select * from (select * from emp where deptno=10) where sal>2000 四、 对象视图 对象型在数据库编程中有许多好处,但有时,应用程序已经开发完成。为了迎合对象型而重建数据表是不现实的。对象视图正是解决这一问题的优秀策略。 五、 物化视图 常用于数据库的容灾,不是传统意义上虚拟视图,是实体化视图,和表一样可以存储数据、查询数据。主备数据库数据同步通过物化视图实现,主备数据库通过data link连接,在主备数据库物化视图进行数据复制。当主数据库垮掉时,备数据库接管,实现容灾。  语法 create materialized view materialized_view_name build [immediate|deferred] --1.创建方式 refresh [complete|fast|force|never] --2.物化视图刷新方式 on [commit|demand] --3.刷新触发方式 start with (start_date) --4.开始时间 next (interval_date) --5.间隔时间 with [primary key|rowid] --默认 primary key ENABLE QUERY REWRITE --7.是否启用查询重写 as --8.关键字 select statement; --9.基表选取数据的select语句 1. 创建方式  immediate(默认):立即  deferred:延迟,至第一次refresh时,才生效 2. 物化视图刷新方式  force(默认):如果可以快速刷新,就执行快速刷新,否则,执行完全刷新  complete:完全刷新,即刷新时更新全部数据,包括视图中已经生成的原有数据  fast:快速刷新,只刷新增量部分。前提是,需要在基表上创建物化视图日志。该日志记录基表数据变化情况,所以才能实现增量刷新  never:从不刷新 3. 刷新触发方式  on commit:基表有commit动作时,刷新视图,不能跨库执行(因为不知道别的库的提交动作)  on demand,在需要时刷新,根据后面设定的起始时间和时间间隔进行刷新,或者手动调用dbms_mview包中的过程刷新时再执行刷新。 4. 开始时间和间隔时间  4和5即开始刷新时间和下次刷新的时间间隔。如:start with sysdate next sysdate+1/1440表示马上开始,刷新间隔为1分钟。(与 on commit选项冲突) 5. 创建模式  primary key(默认):基于基表的主键创建  rowed:不能对基表执行分组函数、多表连结等需要把多个rowid合成一行的操作 6. 是否启用查询重写  如果设置了初始化参数query_rewrite_enabled=true则默认就会启用查询重写。但是,数据库默认该参数为false。并且,不是什么时候都应该启用查询重写。所以,该参数应该设置为false,而在创建特定物化视图时,根据需要开启该功能。 7. 注意  如果选择使用了上面第4,5选项,则不支持查询重写功能(原因很简单,所谓重写,就是将对基表的查询定位到了物化视图上,而4、5选项会造成物化视图上部分数据延迟,所以,不能重写)。  例子 --创建增量刷新的物化视图时应先创建存储的日志空间 --在scott.emp表中创建物化视图日志 create materialized view log on emp tablespace users with rowid; --开始创建物化视图 --方式一 create materialized view mv_emp tablespace users --指定表空间 build immediate --创建视图时即生成数据 refresh fast --基于增量刷新 on commit --数据DML操作提交就刷新 with rowid --基于ROWID刷新 as select * from emp --方式二 create materialized view mv_emp2 tablespace users --指定表空间 refresh fast --基于增量刷新 start with sysdate --创建视图时即生成数据 next sysdate+1/1440 /*每隔一分钟刷新一次*/ with rowid --基于ROWID刷新 as select * from emp --删除物化视图日志 drop materialized view mv_emp   第七章 索引 一、 概述 索引是建立在表上的可选对象,设计索引的目的是为了提高查询的速度。但同时索引也会增加系统的负担,进行影响系统的性能。 索引一旦建立后,当在表上进行DML操作时,Oracle会自动维护索引,并决定何时使用索引。 索引的使用对用户是透明的,用户不需要在执行SQL语句时指定使用哪个索引及如何使用索引,也就是说,无论表上是否创建有索引,SQL语句的用法不变。用户在进行操作时,不需要考虑索引的存在,索引只与系统性能相关。  索引的原理 当在一个没有创建索引的表中查询符合某个条件的记录时,DBMS会顺序地逐条读取每个记录与查询条件进行匹配,这种方式称为全表扫描。全表扫描方式需要遍历整个表,效率很低。  索引的型 Oracle支持多种型的索引,可以按列的多少、索引值是否唯一和索引数据的组织形式对索引进行分,以满足各种表和查询条件的要求。  单列索引和复合索引  B树索引  位图索引  函数索引  创建索引 CREATE [UNIQUE] | [BITMAP] INDEX index_name ON table_name([column1 [ASC|DESC],column2 [ASC|DESC],…] | [express]) [TABLESPACE tablespace_name] [PCTFREE n1] [STORAGE (INITIAL n2)] [NOLOGGING] [NOLINE] [NOSORT]  UNIQUE:表示唯一索引,默认情况下,不使用该选项。  BITMAP:表示创建位图索引,默认情况下,不使用该选项。  PCTFREE:指定索引在数据块中的空闲空间。对于经常插入数据的表,应该为表中索引指定一个较大的空闲空间。  NOLOGGING:表示在创建索引的过程中不产生任何重做日志信息。默认情况下,不使用该选项。  ONLINE:表示在创建或重建索引时,允许对表进行DML操作。默认情况下,不使用该选项。  NOSORT:默认情况下,不使用该选项。则Oracle在创建索引时对表中记录进行排序。如果表中数据已经是按该索引顺序排列的,则可以使用该选项。 二、 单列索引和复合索引 一个索引可以由一个或多个列组成。基于单个列所创建的索引称为单列索引,基于两列或多列所创建的索引称为多列索引。 三、 B树索引 B树索引是Oracle数据库中最常用的一种索引。当使用CREATE INDEX语句创建索引时,默认创建的索引就是B树索引。B树索引就是一棵二叉树,它由根、分支节点和叶子节点三部分构成。叶子节点包含索引列和指向表中每个匹配行的ROWID值。叶子节点是一个双向链表,因此可以对其进行任何方面的范围扫描。 B树索引中所有叶子节点都具有相同的深度,所以不管查询条件如何,查询速度基本相同。另外,B树索引能够适应各种查询条件,包括精确查询、模糊查询和比较查询。  例子 --创建B树索引,属于单列索引 create index idx_emp_job on emp(job) --创建B树索引,属于复合索引 create index idx_emp_nameorsal on emp(ename,sal) --创建唯一的B树索引,属于单列索引 create unique index idx_emp_ename on emp(ename) --删除索引 drop index idx_emp_job drop index idx_emp_nameorsal drop index idx_emp_ename --如果表已存在大量的数据,需要规划索引段 create index idx_emp_nameorsal on emp(ename,sal) pctfree 30 tablespace system 四、 位图索引 在B树索引中,保存的是经排序过的索引列及其对应的ROWID值。但是对于一些基数很小的列来说,这样做并不能显著提高查询的速度。所谓基数,是指某个列可能拥有的不重复值的个数。比如性别列的基数为2(只有男和女)。 因此,对于象性别、婚姻状况、政治面貌等只具有几个固定值的字段而言,如果要建立索引,应该建立位图索引,而不是默认的B树索引。  例子 --创建位图索引,单列索引 create bitmap index idx_bm_job on emp(job) --创建位图索引,复合索引 create bitmap index idx_bm_jobordeptno on emp(job,deptno) --删除位图索引 drop index idx_bm_job drop index idx_bm_jobordeptno 五、 函数索引 函数索引既可以使用B树索引,也可以使用位图索引,可以根据函数或表达式的结果的基数大小来进行选择,当函数或表达式的结果不确定时采用B树索引,当函数或表达式的结果是固定的几个值时采用位图索引。  例子 --合并索引 alter index idx_emp_ename COALESCE 六、 并和重建索引 表在使用一段时间后,由于用户不断对其进行更新操作,而每次对表的更新必然伴随着索引的改变,因此,在索引中会产生大量的碎片,从而降低索引的使用效率。有两种方法可以清理碎片:合并索引和重建索引。  合并索引就是将B树叶子节点中的存储碎片合并在一起,从而提高存取效率,但这种合并并不会改变索引的物理组织结构。 --创建B树型的函数索引 create index idx_fun_emp_hiredate on emp(to_char(hiredate,'yyyy-mm-dd')) --创建位图型的函数索引 create index idx_fun_emp_job on emp(upper(job))  重建索引相当于删除原来的索引,然后再创建一个新的索引,因此,CREAT INDEX语句中的选项同样适用于重建索引。如果在索引列上频繁进行UPDATE和DELETE操作,为了提高空间的利用率,应该定期重建索引。 七、 管理索引的原则 使用索引的目的是为了提高系统的效率,但同时它也会增加系统的负担,进行影响系统的性能,因为系统必须在进行DML操作后维护索引数据。 在新的SQL标准中并不推荐使用索引,而是建议在创建表的时候用主键替代。因此,为了防止使用索引后反而降低系统的性能,应该遵循一些基本的原则: 1. 小表不需要建立索引。 2. 对于大表而言,如果经常查询的记录数目少于表中总记录数目的15%时,可以创建索引。这个比例并不绝对,它与全表扫描速度成反比。 3. 对于大部分列值不重复的列可建立索引。 4. 对于基数大的列,适合建立B树索引,而对于基数小的列适合建立位图索引。 5. 对于列中有许多空值,但经常查询所有的非空值记录的列,应该建立索引。 6. LONG和LONG RAW列不能创建索引。 7. 经常进行连接查询的列上应该创建索引。 8. 在使用CREATE INDEX语句创建查询时,将最常查询的列放在其他列前面。 9. 维护索引需要开销,特别时对表进行插入和删除操作时,因此要限制表中索引的数量。对于主要用于读的表,则索引多就有好处,但是,一个表如果经常被更改,则索引应少点。 10. 在表中插入数据后创建索引。如果在装载数据之前创建了索引,那么当插入每行时,Oracle都必须更改每个索引。 八、 ROWID和ROWNUM 1. ROWID rowid是一个伪列,是用来确保表中行的唯一性,它并不能指示出行的物理位置,但可以用来定位行。rowid是存储在索引中的一组既定的值(当行确定后)。我们可以像表中普通的列一样将它选出来, 利用rowid是访问表中一行的最快方式。rowid的是基于64位编码的18个字符显示(数据对象编号(6)+文件编号(3) +块编号(6)+行编号(3)=18位) select rowid from emp  ROWID的使用 --快速删除重复的记录 delete from temp t where rowid not in( select max(rowid) from temp where t.id=id and t.name=name and t.sal = sal ) 2. ROWNUM ROWNUM是一个序列,是oracle数据库从数据文件或缓冲区中读取数据的顺序。它取得第一条记录则rownum值为1,第二条为2,依次推。 select rownum,emp.* from emp  ROWID的使用 --取前3条记录 select * from emp where rownum<=3--方式一 select * from emp where rownum!=4--方式二 --分页 select * from emp where empno not in( select empno from emp where rownum<5--方式一 ) and rownum <4   第八章 PL/SQL编程 一、 介绍 PL/SQL是oracle在标准sql语言上的扩展,PL/SQL不仅允许嵌入sql语言,还可以定义变量和常量,允许使用例外处理各种错误,这样使它的功能变得更加强大。 PL/SQL也是一种语言,叫做过程化sql语言(procedural language/sql),通过此语言可以实现复杂功能或者复杂的计算。  优点 1. 提高应用程序的运行性能 2. 模块化的设计思想 3. 减少网络传输量 4. 提高安全性  缺点 1. 可移植性差 2. 违反MVC设计模式 3. 无法进行面向对象编程 4. 无法做成通用的业务逻辑框架 5. 代码可读性差,相当难维护  分 二、 PL/SQL基础 1. 编写规范 1) 注释 --单行注释 /*块注释*/ 2) 标识符的命名规范  定义变量:建议用v_作为前缀v_price  定义常量:建议用c_作为前缀c_pi  定义游标:建议用_cursor作为后缀emp_cursor  定义例外:建议用e_作为前缀e_error 2. 块结构 PL/SQL块由三个部分组成:定义部分、执行部分、例外处理部分 Declare /* 定义部分(可选):定义常量、变量、游标、例外,复杂数据型 */ begin /* 执行部分(必须):要执行的PL/SQL语句和SQL语句 */ exception /*例外部分(可选):处理运行各种错误*/ end 案例一 :只定义执行部分 begin /* dbms_output是oracle提供的包(似java开发包) 该包包含一些过程,put_line就是其一个过程 */ dbms_output.put_line('HELLO WORLD'); --控制台输出 end; 案例二 :定义声明部分和执行部分 declare --声明变量 v_name varchar2(20); v_sal number(7,2); begin --执行查询 select ename,sal into v_name,v_sal from emp where rownum=1; --控制台输出 dbms_output.put_line('用户名:' || v_name); dbms_output.put_line('工资:' || v_sal); end; 案例三 :定义声明部分、执行部分和例外部分 declare --声明变量 v_name varchar2(20); v_sal number(7,2); begin --执行查询,条件中的&表示从控制接受数据 select ename,sal into v_name,v_sal from emp where empno=&no; --控制台输出 dbms_output.put_line('用户名:' || v_name); dbms_output.put_line('工资:' || v_sal); exception --例外处理(no_data_found) when no_data_found then dbms_output.put_line('执行查询没有结果'); end; 3. 预定义例外 1) case_not_found预定义例外 在开发pl/sql块中编写case语句时,如果在when子句中没有包含必须的条件分支,就会触发case_not_found例外。 2) cursor_already_open预定义例外 当重新打开已经打开的游标时,会隐含的触发cursor_already_open例外。 3) dup_val_on_index预定义例外 在唯一索引所对应的列上插入重复的值时,会隐含的触发例外 4) invalid_cursorn预定义例外 当试图在不合法的游标上执行操作时,会触发该例外 5) invalid_number预定义例外 当输入的数据有误时,会触发该例外 6) no_data_found预定义例外 当执行select into没有返回行,就会触发该例外 7) too_many_rows预定义例外 当执行select into语句时,如果返回超过了一行,则会触发该例外 8) zero_divide预定义例外 当执行2/0语句时,则会触发该例外 9) value_error预定义例外 当在执行赋值操作时,如果变量的长度不足以容纳实际数据,则会触发该例外value_error 10) others 4. 变量型分 在编写PL/SQL时,可以定义变量和常量,常用的型主要有:  标量型(scalar)  复合型(composite)  参照型(reference)  lob(large object) 5. 标量型:常用型 declare --定义一个变长字符串 v_name varchar2(20); --定义小数,并赋值 v_sal number(7,2) :=9.8; --定义整数 v_num number(4); --定义日期 v_birthday date; --定义布尔型,不能为空,初始值为false v_flg boolean not null default false; --使用%type型 v_job emp.job%type; begin v_flg := true; v_birthday :=sysdate; dbms_output.put_line('当前时间:' || v_birthday); end; 6. 复合型:可以存放多个值。主要包括PL/SQL记录、PL/SQL表、嵌入表和varray这四种型 记录型:似于c中的结构体 declare --定义记录型 type emp_record_type is record( empno emp.empno%type, ename emp.ename%type, sal emp.sal%type ); --定义变量引用记录型 v_record emp_record_type; begin --使用记录型 select empno,ename,sal into v_record from emp where rownum=1; --控制台输出 dbms_output.put_line('雇员编号:' || v_record.empno); dbms_output.put_line('雇员姓名:' || v_record.ename); dbms_output.put_line('雇员工资:' || v_record.sal); end; 表型:似于java语言中的数组 declare --声明表型 type emp_table_type is table of varchar2(20) index by PLS_INTEGER;--表示表按整数来排序 v_enames emp_table_type;--定义变量引用表型 begin select ename into v_enames(0) from emp where rownum=1; select ename into v_enames(1) from emp where empno=7499; select ename into v_enames(2) from emp where empno=7698; --输出 dbms_output.put_line('下标0:' || v_enames(0)); dbms_output.put_line('下标1:' || v_enames(1)); dbms_output.put_line('下标2:' || v_enames(2)); end; varray型:可变长数组 declare --定义varray型 type varray_list is varray(20) of number(4); --定义变量引用varray型 v_list varray_list:=varray_list(7369,7499,7566); begin --for i in v_list.first..v_list.last for i in 1..v_list.count loop dbms_output.put_line(v_list(i)); end loop; end; PL/SQL集合方法 1) exists():用于确定特定集合元素是否存在 2) count:用于返回集合变量的元素总个数 3) limit:用于返回varray变量所允许的最大元素个数 4) first:用于返回集合变量中的一个元素的下标 5) last:用于返回集合变量中最后一个元素的下标 6) prior():返回当前元素前一个元素的下标 7) next():返回当前元素后一个元素的下标 8) extend:为集合变量添加元素,此方法适合用于嵌套表和varray 9) trim:从集合变量尾部删除元素,此方法适用于嵌套表和varray 10) delete:从集合变量中删除特定的元素,此方法适用于嵌套表和index-by表 7. 参照型:似c语言中的指针,oracle的游标 三、 PL/SQL控制语句 1. 条件分支语句 1) if—then declare --声明变量 v_empno emp.empno%type; v_sal emp.sal%type; begin --根据雇员编号查询工资 select empno,sal into v_empno,v_sal from emp where empno=&no; --如果工资小于2000就加100 if v_sal<2000 then --工资加100 update emp set sal = sal+100 where empno=v_empno; --提交 commit; end if; end; 2) if—then—else declare --声明变量 v_loginname varchar2(10); v_password varchar2(10); begin --从控制台接收数据 v_loginname := '&ln'; v_password := '&pw'; if v_loginname = 'admin' and v_password = '123456' then dbms_output.put_line('用户登录成功!'); else dbms_output.put_line('用户登录失败!'); end if; end; 3) if—then—elsif—else declare --声明变量 v_empno emp.empno%type; v_job emp.job%type; begin --根据雇员编号查询职位 select empno,job into v_empno,v_job from emp where empno=&no; /*如果雇员所属职位是manager工资加1000 职位是salesman工资加500 其他职位加200 */ if v_job = 'MANAGER' then --MANAGER职位工资加1000 update emp set sal = sal+1000 where empno=v_empno; elsif v_job = 'SALESMAN' then --SALESMAN职位工资加500 update emp set sal = sal+500 where empno=v_empno; else --其他职位工资加200 update emp set sal = sal+200 where empno=v_empno; end if; --提交 commit; end; 4) case declare --声明变量 v_mark number(4); v_outstr varchar2(40); begin --从控制台接收成绩 v_mark := &m; case when v_mark=90 then v_outstr := '优秀'; when v_mark=80 then v_outstr := '良好'; when v_mark=70 then v_outstr := '中等'; when v_mark=60 then v_outstr := '及格'; when v_mark=0 then v_outstr := '不及格'; else v_outstr := '成绩输入有误'; end case; --控制台输出 dbms_output.put_line(v_outstr); end; 2. 循环语句 1) loop LOOP 要执行的语句; EXIT WHEN /*条件满足,退出循环语句*/ END LOOP; 其中:EXIT WHEN 子句是必须的,否则循环将无法停止。 declare v_num number(4):=1; begin --从控制台接收数据并插入到account表中 loop insert into account values(v_num,'&name'); exit when v_num =10; v_num :=v_num+1; end loop; end; 2) while WHILE LOOP要执行的语句;END LOOP; 其中:  循环语句执行的顺序是先判断的真假,如果为真则循环执行,否则退出循环  在WHILE循环语

62,614

社区成员

发帖
与我相关
我的任务
社区描述
Java 2 Standard Edition
社区管理员
  • Java SE
加入社区
  • 近7日
  • 近30日
  • 至今
社区公告
暂无公告

试试用AI创作助手写篇文章吧