67,944
社区成员




x=rand(100000,1); %0-1之间的随机数分布
x=randn() %0-1之间的正态分布
unifrnd(a,b,[M,N,P,...])
生成的随机数区间在 (a,b) 内,排列成 M*N*P... 多维向量。如果只写 M,则生成 M*M 矩阵;如果参数为 [M,N] 可以省略掉方括号
normrnd()
normrnd(mu,sigma,[M,N,P,...])
此函数生成指定均值、标准差的正态分布的随机数。基本语法
chi2rnd()
此函数生成服从卡方(Chi-square) 分布的随机数。卡方分布只有一个参数:自由度 v。基本语法
chi2rnd(v,[M,N,P,...])
生成的随机数服从自由度为 v 的卡方分布,这些随机数排列成 M*N*P... 多维向量。如果只写 M,则生成 M*M 矩阵;如果参数为 [M,N] 可以省略掉方括号
frnd()
此函数生成服从 F 分布的随机数。F分布有2个参数:v1, v2。基本语法
frnd(v1,v2,[M,N,P,...])
生成的随机数服从参数为 (v1,v2) 的卡方分布,这些随机数排列成 M*N*P... 多维向量。如果只写 M,则生成 M*M 矩阵;如果参数为 [M,N] 可以省略掉方括号
trnd()
此函数生成服从 t 分布 (Student's t Distribution,这里 Student 不是学生的意思,而是 Cosset.W.S. 的笔名) 的随机数。t 分布有 1 个参数:自由度 v。基本语法
trnd(v,[M,N,P,...])
生成的随机数服从参数为 v 的t分布,这些随机数排列成 M*N*P... 多维向量。如果只写 M,则生成 M*M 矩阵;如果参数为 [M,N] 可以省略掉方括号。
可以发现t分布比标准正太分布要 “瘦”,不过随着自由度 v 的增大,t 分布会逐渐变胖,当自由度为正无穷时,它就变成标准正态分布了。
betarnd()
此函数生成服从 Beta 分布的随机数。Beta 分布有两个参数分别是 A 和 B。
生成beta分布随机数的语法是:
betarnd(A,B,[M,N,P,...])
exprnd()
此函数生成服从指数分布的随机数。指数分布只有一个参数: mu。
生成指数分布随机数的语法是:
exprnd(mu,[M,N,P,...])
gamrnd()
生成服从 Gamma 分布的随机数。Gamma 分布有两个参数:A 和 B。
生成 Gamma 分布随机数的语法是:
gamrnd(A,B,[M,N,P,...])
lognrnd()
生成服从对数正态分布的随机数。其有两个参数:mu 和 sigma,服从这个这样的随机数取对数后就服从均值为 mu,标准差为 sigma 的正态分布。
生成对数正态分布随机数的语法是:
lognrnd(mu,sigma,[M,N,P,...])
randperm(n)
产生一个1到n之间自然数的随机排列
randsrc(100,1,[alphabet; prob])
alphabet表示需要产生的数字,prob表示对应的概率,注意:两者的维数要一致。
比如:要产生 1、4、 6这三个数。它们分别出现的概率为 0.1 、0.4、 0.5 如何设计程序使得按照这个概率产生100个随机数呢?
alphabet = [1 4 6]; prob = [0.1 0.4 0.5];
randsrc(100,1,[alphabet; prob])
很不错的内容,干货满满,已支持师傅,期望师傅能输出更多干货,并强烈给师傅五星好评
另外,如果可以的话,期待师傅能给正在参加年度博客之星评选的我一个五星好评,您的五星好评都是对我的支持与鼓励(帖子中有大额红包惊喜哟,不要忘记评了五星后领红包哟)
⭐ ⭐ ⭐ ⭐ ⭐ 博主信息⭐ ⭐ ⭐ ⭐ ⭐
博主:橙留香Park
本人原力等级:5
链接直达:https://bbs.csdn.net/topics/611387568
微信直达:Blue_Team_Park
⭐ ⭐ ⭐ ⭐ ⭐ 五星必回!!!⭐ ⭐ ⭐ ⭐ ⭐
点赞五星好评回馈小福利:抽奖赠书 | 总价值200元,书由君自行挑选(从此页面参与抽奖的同学,只需五星好评后,参与抽奖)