Nat. Mach. Intel. | 通过课程学习方法优化分子从头设计模型
本文介绍由瑞典分子人工智能研究所的Atanas Patronov团队发表在Nature Machine Intelligence的研究成果。作者将课程学习应用于药物发现中。在全新的设计平台中实现课程学习(CL),并将其应用于不同复杂性的分子设计问题中。结果表明,与标准的基于策略的强化学习相比,课程学习能够加速学习效率和优化模型输出的质量。分子设计需要在化学空间中进行多参数优化(MPO)搜索,估计在1023-1060个分子的范围内。之前的分子设计方法有虚拟筛选(VS)等,但随着深度学习的兴起,深度学习已逐渐替