NeurIPS-21 | MGSSL: 基于官能团的分子属性预测图网络自监督预训练
本文介绍一篇来自中国科学技术大学刘淇教授课题组和腾讯量子实验室联合发表的一篇文章。该文章提出了基于官能团的分子属性预测图网络自监督预训练方法MGSSL。MGSSL结合化学领域知识,在大量无标签分子数据中划分官能团和构建官能团树,并进一步通过官能团生成式自监督任务,使得预训练的图网络可以学习到官能团的结构和语义信息,提高下游分子属性预测任务的效果。1.研究背景分子属性预测任务对于药物合成和筛选具有重要意义,例如新冠病毒药物筛选。传统通过实验和理论计算的方法的得到分子属性耗时且昂贵。近年来,基于深.