利用人工智能对抗体进行优化的基于高通量亲和数据训练的深层语境语言模型(deep contextual language models trained on high-throughput affinity data),并运用名为ACE和SPR的方法,用于生成抗体结合亲和力的相对传统方法而言更优的测量,然后基于两种不同的抗体证明了可以定量预测未知抗体序列变体的结合。
利用人工智能对抗体进行优化的基于高通量亲和数据训练的深层语境语言模型(deep contextual language models trained on high-throughput affinity data),并运用名为ACE和SPR的方法,用于生成抗体结合亲和力的相对传统方法而言更优的测量,然后基于两种不同的抗体证明了可以定量预测未知抗体序列变体的结合。